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Abstract

The critical influence of follicle stimulating hormone
(FSH) on male fertility relates both to its impact on Sertoli
cell proliferation in perinatal life and to its influence on the
synthesis of Sertoli cell-derived products essential for germ
cell survival and function in the developing adult testis.
The nature and timing of this shift of germ cells to their
reliance on specific Sertoli cell-derived products are not
defined. Based on existing data, it is apparent that the
dominant function of FSH shifts between 9 and 18 day
postpartum (dpp) during the first wave of spermatogenesis
from driving Sertoli cell proliferation to support germ cells.
To enable comprehensive analysis of the impact of acute
in vivo FSH suppression on Sertoli and germ cell develop-
ment, FSH was selectively suppressed in Sprague–Dawley
rats by passive immunisation for 2 days and/or 4 days prior
to testis collection at 3, 9 and 18 dpp. The 3 dpp samples
displayed no measurable changes, while 4 days of FSH
suppression decreased Sertoli cell proliferation and
numbers in 9 dpp, but not 18 dpp, animals. In contrast,

germ cell numbers were unaffected at 9 dpp but decreased
at 18 dpp following FSH suppression, with a correspond-
ing increase in germ cell apoptosis measured at 18 dpp.
Sixty transcripts were measured as changed at 18 dpp in
response to 4 days of FSH suppression, as assessed using
Affymetrix microarrays. Some of these are known as
Sertoli cell-derived FSH-responsive genes (e.g. StAR,
cathepsin L, insulin-like growth factor binding protein-3),
while others encode proteins involved in cell cycle and
survival regulation (e.g. cyclin D1, scavenger receptor class
B 1). These data demonstrate that FSH differentially
affects Sertoli and germ cells in an age-dependent manner
in vivo, promoting Sertoli cell mitosis at day 9, and
supporting germ cell viability at day 18. This model has
enabled identification of candidate genes that contribute to
the FSH-mediated pathway by which Sertoli cells support
germ cells.
Journal of Endocrinology (2005) 186, 429–446

Introduction

Sperm production in the adult male requires establishment
of the Sertoli cell population and initiation of the first
spermatogenic wave, events that occur during foetal and
early postnatal life. In the rat, Sertoli cells proliferate until
around 15 days after birth, setting the full complement of
Sertoli cells. Surrounded by Sertoli cells, the gonocytes
multiply in the foetal testis and then enter a period of
quiescence lasting a week. They resume mitosis at 3 days
after birth and migrate to the basement membrane at the
seminiferous cord perimeter. Once they have contacted
the basement membrane they are called spermatogonia.
Spermatogonia subsequently pass through three develop-
mental phases involving mitosis, meiosis and spermiogen-
esis to form spermatozoa, with the germ cells completing

the first wave of spermatogenesis at 43 days after birth in
the rat (de Rooij 1998).

The mechanisms by which the Sertoli and germ cell
populations are regulated during the first spermatogenic
wave are under investigation and appear to be influenced
by a complex network of interacting signals. It is known
that pituitary-derived follicle stimulating hormone (FSH)
exerts its effects on the developing germ cells indirectly, as
only the Sertoli cells bear FSH receptors. A key role of
FSH in setting the size of the Sertoli cell population in
early postnatal life has been attributed to its stimulatory
effect on Sertoli cell division (Orth 1984, Orth et al. 1988,
Boitani et al. 1995). The response of the Sertoli cell to
FSH changes during the first wave of spermatogenesis
in rodents, and this influences the proliferation of
Sertoli cells (Boitani et al. 1995, Meehan et al. 2000,
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Buzzard et al. 2003). Synthesis of several Sertoli cell
products also changes during development, however
whether some of these are regulated by FSH in vivo
remains to be determined (Munsie et al. 1997, Yan et al.
2001, Fragale et al. 2001, Migrenne et al. 2003, Pellegrini
et al. 2003). FSH-regulated apoptosis during the first
spermatogenic wave has not been examined, however in
adult rats, germ cells are lost through apoptosis (Meachem
et al. 1999), rather than through reduced proliferation
when FSH is manipulated (McLachlan et al. 1995).
However the regulation of adult spermatogenesis cannot
be assumed to be mediated in the same manner as is the
first spermatogenic wave, as shifts in the expression
patterns of key regulatory genes (i.e., Bcl-2 family mem-
bers and stem cell factor (SCF) have been observed as
Sertoli cells mature and eventually mature germ cell
populations emerge (Munsie et al. 1997, Huang et al.
1992, Meehan et al. 2001).

A large number of FSH responsive genes have been
identified, however in most cases, their specific contribu-
tion to Sertoli cell and germ cell viability and function is
undefined. The interaction of SCF with its receptor, c-kit,
is essential for germ cell progression and survival in first
wave and adult spermatogenesis (Yoshinaga et al. 1991,
Packer et al. 1995), and expression of SCF in Sertoli cells
has been shown to be regulated by FSH in vitro and in vivo
(Rossi et al. 1993, McLean et al. 2002). Expression of
the transcription factor DMRT1 in Sertoli cells can be
elevated by FSH in vivo (Chen & Heckert 2001) and a role
for DMRT1 in early postnatal testicular development
relating to the termination of Sertoli cell proliferation has
been deduced from the phenotype of DMRT -/- mice
(Raymond et al. 2000). Some genes encoding apoptotic
regulators in the Bcl-2 family of proteins have also been
shown to be responsive to FSH, including Bcl-w and Bok
(Yan et al. 2000, Suominen et al. 2001). A recent study
using microarray analyses has defined 100–300 known
transcripts that are regulated by FSH in cultures of Sertoli
cells from 20 days post partum (dpp) rats (McLean et al.
2002). It is now timely to identify the FSH regulated genes
involved in testicular development and spermatogenesis
using an in vivo approach.

To more precisely understand the dynamic mechanisms
by which FSH acts in immature rats, we set out to identify
the cells that respond to in vivo changes in FSH levels
during the first wave of spermatogenesis and to examine
the functional changes in these cells. Administration of an
antibody to FSH was performed to selectively suppress
FSH for two or four days by immunoneutralisation. This
acute FSH suppression differentially affected Sertoli and
germ cell numbers during development as assessed by the,
unbiased, optical disector stereological technique, corre-
sponding with selective changes in proliferation and
apoptosis in these cell types. Rat genomic microarrays
enabled identification of candidate genes regulated by
FSH from 14 to 18 dpp. The value of this model for

interrogating the changing roles of FSH in the first wave of
spermatogenesis is discussed.

Material and Methods

Animals

Male outbred Sprague–Dawley rat pups with mothers
were obtained from the Monash University Central
Animal House (Clayton, Australia). They were maintained
at 20 �C in a fixed 12 h light:12 h darkness cycle with free
access to food and water in accordance with the Australian
Code of Practice for Care and Use of Animals for Scientific
Purposes (1997, National Health and Medical Research
Council, Australia). This study was approved by the
Monash Medical Centre Animal Ethics Committee.

Passive immunisation against FSH

The ability of the polyclonal ovine antisera raised against
rat FSH (FSHAb) to neutralise rat FSH in vitro and in vivo
has been previously described (Meachem et al. 1998). The
level of neutralisation of serum FSH achieved in adult
rats was greater than 90% (reaching the limit of assay
detection). Rat pups were immunised with the FSHAb or
with normal sheep immunoglobulin (ConAb) at a daily
dose of 10 mg/kg, a 5-fold higher dose than that pre-
viously administered to adult rats. Each animal received
s.c. injections 2 days prior to death at 3 days dpp, and 2 and
4 days prior to death at 9 and 18 dpp. Ten rats were
injected for each data point.

Tissue collection and preparation

One h prior to death, each rat received 5-bromodeoxyurdine
(BrdU; 50 mg/kg, s.c. Sigma) to enable proliferation
analysis. Rats were killed 24 h after the final injection of
the antibody, at 3, 9 or 18 dpp, by decapitation. Trunk
blood was collected and allowed to clot overnight at 4 �C
prior to serum collection for hormone assays. Due to the
small amounts of serum collected for day 3 and 9 dpp rats,
these samples were pooled in groups of three and two
animals, respectively. The testes were then excised and
weighed. The right testis of each animal was snap frozen
on dry ice and stored at �75 �C for RNA preparation,
while left testis was immersion-fixed with Bouin’s solution
for less than 5 h and sliced into 2-mm thick slabs ortho-
gonal to the long axis of the testis. The testes from 9 and
18 dpp rats were divided into two, or four slices, respect-
ively, and half of each processed into hydroxyethylmeth-
acrylate resin (Technovit 7100; Kulzer and Co. GmBH,
Friedrichsdorf, Germany) according to the manufacturer’s
instructions, while the other half was used for routine
embedding into paraffin. The whole left testis from 3 dpp
rats was embedded in resin and paraffin in every second
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animal. Thick (25 µm) resin sections were serially cut
(Supercut Microtome, Reichert Jung 2050, Nossloch,
Germany), stained with the Periodic acid-Schiff’s reaction
reagents and counterstained with Mayer’s Haematoxylin
for the determination of cell number. Thin (5µm) paraffin
sections were placed on Superfrost Plus slides for analysis of
proliferation and apoptosis.

Cell number estimates using the optical disector

The optical disector stereological method (Wreford 1995)
was used to determine the total number of cell nuclei per
testis. All measurements were performed using a 100�
objective on an Olympus BX-50 microscope (Olympus,
Tokyo, Japan). A microcator (D 8225; Heideinhain,
Traunreut, Germany) that monitored scanned depth was
attached to the microscope stage. The images were
captured by a JVC TK-C1381 video camera coupled to a
Pentium PC computer using a Screen Machine II fast
multimedia video adapter (FAST, Hamburg, Germany).
The software package, CASTGRID V1·60 (Olympus,
Denmark, Germany), was used to generate an unbiased
counting frame superimposed on video image. Fields were
selected by a systematic uniform random sampling
scheme as previously described (McLachlan et al. 1994,
Wreford 1995) with the use of a motorized stage (Multi-
control 2000; ITK, Lahnau, Germany). The final screen
magnification was 2708-fold.

Sertoli cells were identified by their irregularly shaped
nuclei, which were often positioned towards to the
basement membrane and contained multiple nucleoli.
Gonocytes were relatively large circular to ovoid cells
with large circular nuclei, centrally located within the
epithelium. Type A and B spermatogonia/preleptotene
spermatocytes, leptotene/zygotene spermatocytes and
pachytene spermatocytes were identified according to the
characteristics described (Russell et al. 1990). Type B
spermatogonia and preleptotene spermatocytes were not
readily distinguishable at these stages of development and
were counted as one. At least 300 Sertoli cell nuclei in total
per testis were counted using the unbiased counting frame
(175–430 µm2) and at least 80 gonocytes, spermatogonia
(type A, B spermatogonia and preletotene spermatocytes)
or spermatocytes (leptotene, zygotene and pachytene sper-
matocytes) were counted employing a larger frame (430–
1923 µm2). The frame size was selected based on cell
frequency at different time points; less abundant cell types
were counted in a larger counting frame. No correction for
shrinkage was required (Meachem et al. 1996). Slides were
masked prior to each type of quantitation (cell number,
proliferation and apoptosis) to facilitate unbiased counting.

Proliferation analysis

BrdU incorporation into testicular cells at 3, 9 and 18 dpp
was detected by immunohistochemistry as previously

described (Schlatt et al. 1999), with minor modifications as
described below (see Fig 1A). In brief, slides bearing
paraffin-embedded tissue sections were deparaffinized,
rehydrated, and subjected to antigen retrieval in citrate
buffer (0·1 M, pH 6; 90–95 �C for 10 min then room
temperature for 20 min). Sections were treated succes-
sively with trypsin (0·25%, 1·5 min) and 3% hydrogen
peroxide in methanol (20 min) and washed in PBS. All
subsequent procedures were performed at room tempera-
ture, washes were in PBS, and incubations were in a
humid chamber. Sections were treated with first with
Superblock (40 min; DAKO, Carpenteria, CA, USA) and
then with the monoclonal antibody to BrdU (clone BU
-33, 4µl/ml in PBS, 1 h; Sigma). Following washes,
biotinylated rabbit anti-mouse IgG was added (1:300 in
PBS, 30 min; Zymed, California, USA). Sections were
washed and incubated first in ABC complex (40 min;
Vectastain Elite, Vector Laboratories, Burlingame, CA)
and then with Tyramide Signal Amplification Biotin
reagent (30 min; PerkinElmer Life Sciences, Inc, Boston,
MA, USA) according to the manufacturers’ instructions.
After washing, diaminobenzidine (DAB) was added to
reveal sites of antibody binding with a dark brown reaction
product (2–3 min; DAKO Liquid DAB Substrate Chro-
mogen System), and sections were counterstained with
Mayer’s Haematoxylin (3 min; Sigma), blued in Scott’s tap
water (1 min), and finally dehydrated and mounted in
Depex (BDH Laboratory Suppliers, Poole, Dorset, UK)
under glass coverslips. Cell types with anti-BrDU nuclear
staining were identified on the basis of their location
within the cord and the size and shape of cell nuclei, as
described above.

The percentage of BrdU labelled cells was assessed using
an unbiased counting frame of 430 µm2. To determine the
proliferation index for each cell type, the total number of
BrdU-labelled cells was divided by the total number of
labelled and unlabelled cells.

Apoptosis analysis

Tissue sections (5 µm) were deparaffinized and rehydrated
prior to the detection of DNA fragmentation (see Fig 1B).
Apoptotic cells were detected using the terminal deoxy-
nucleotidyl transferase (TdT)-mediated dUTP-biotin
nick-end labelling (TUNEL) method (Meachem et al.
1999). Apoptotic cells were visualised using the chro-
mogen DAB and processed as described for BrDU detec-
tion. On control sections, the TdT enzyme was omitted.
TUNEL-positive cell types were identified based on their
location within the cord, their size, and the shape of the
cell nucleus.

The percentage of cells with TUNEL labelling was
assessed using an unbiased counting frame of 430 µm2 and
the apoptotic index calculated by dividing the number of
TUNEL labelled cells by the total number of labelled and
unlabelled cells.
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Serum androgen levels

Serum androgen levels were measured by RIA using
iodinated histamine-testosterone in combination with an
acidic buffer (pH 5·1) to disrupt binding between testos-
terone and binding proteins in unextracted serum samples
(O’Donnell et al. 1994). Serum samples (5–25µl) were
assayed in duplicate across two assays. Within assay vari-
ation for both assays was 3%, and between assay variation
was 9%. Assay sensitivity was 0·6 ng/ml.

Serum inhibin levels

Immunoreactive inhibin was measured by heterologous
RIA as described previously (Robertson et al. 1988).
Results are expressed in terms of an in-house rat ovarian
extract calibrated against human recombinant (hr)-
inhibin. Iodinated hr-inhibin was used as tracer. The
antiserum used was rabbit antiserum (#1989) which is
directed towards the �-subunit thereby measuring both
inhibin A and B, and cross-reacts 288% with pro-⋅C, the
prosequence of the inhibin alpha subunit (Robertson et al.
1989). Goat anti-rabbit IgG (GAR#12; Monash Institute
of Reproduction & Development, Monash University,
Melbourne, Australia) was used as second antibody. The
assay buffer used was 0·01 M PBS containing 0·5% BSA
(Sigma). Mouse serum pools diluted in a dose-dependent
manner and were parallel to the standard curve (data not
shown). The samples were run in a single assay in 20µl
duplicates. The within-assay variation was 7·2%. Assay
sensitivity was 0·17 ng/ml.

Oligonucleotide microarray hybridisation

To identify genes regulated by FSH at the 18 day time
point, total RNA was isolated from total testes using acid
phenol extraction (Chomczynski & Sacchi 1987). RNA
from two individual animals treated from 14 dpp-18 dpp
with either FSHAb or ConAb (4 samples in total) was
used. The gene expression profile of FSHAb- and
ConAb-treated testis were individually determined using
Affymetrix RG_U34A rat chips (Affymetrix Inc., Santa
Clara, CA, USA) as previously described (McLean
et al. 2002). The RNA from the FSHAb- and the

Figure 1 Representative photomicrographs of cross sections of the
testis from rats receiving normal sheep immunoglobulin for up to
4 days. Panel A. BrdU incorporation in the 3 dpp rat testis
detected by immunohistochemistry. White arrows: nucleus of
unlabelled Sertoli cell (SC) and gonocyte (G). Black arrow: nucleus
of a labelled Sertoli cell. Panel B. BrdU incorporation in the 9 dpp
rat testis. White arrows: nucleus of unlabelled Sertoli cell (SC) and
type B spermatogonia Black arrows: nucleus of labelled Sertoli cell
(SC) and type B spermatogonia. Panel C. DNA fragmentation
indicative of cellular apoptosis detected by TUNEL in 18 dpp rat
testis. White arrows: nucleus of unlabelled Sertoli cell (SC), type B
spermatogonia (B) and pachytene spermatocyte (PSC). Black
arrows: nucleus of labelled pachytene spermatocytes (PSC).
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ConAb-treated testis was extracted and purified before
biotin labelling and hybridisation to the microarray gene
chip. Two replicates of each sample were hybridised to
separate chips giving a total of four chips in the analysis.
Each gene set on the Affymetrix chip is composed of 16
pairs of 24-mer oligonucleotides, with 8799 genes on each
RG_U34A chip. Included in each set is one anti-sense
strand specific for the gene and one anti-sense strand
with single point mutations is used as a comparative
negative control. The labelled RNA was visualized on a
Hewlett-Packard Gene Array Scanner (Hewlett-Packard
Co., Palo Alto, CA, USA). An initial two way comparison
was performed using the Affymetrix Suite software. In
both experiments the FSHAb- and ConAb-treated chips
were compared against each other.

Bioinformatics and microarray statistics

The bioinformatics and statistical analysis performed is as
previously described (Eisen et al. 1998, Chaudhary et al.
2005, Kezele et al. 2002). Microarray output was exam-
ined visually for excessive background noise and physical
anomalies. The default Microarray Suite (MAS, Silicon
Genetics, Redwood City, CA, USA) statistical values
were used for all analyses. An absolute analysis using MAS
was performed to assess the relative abundance of the
transcripts based on signal and detection (present, absent,
or marginal) for the 16 different oligonucleotides per gene
and comparison for analysis. The absolute analysis from
MAS was imported into GeneSpring 5·1 software (Silicon
Genetics, Redwood City, CA, USA). The data were
normalized within GeneSpring using the default/
recommended normalisation methods. These include set-
ting of signal values below 0·01 to 0·01, total chip
normalisation to the 50th percentile, and normalisation of
each gene to the median. These normalisations allowed for
the comparison of data based on relative abundance in any
sample set rather than compared with a specific control
value. Transcripts expressed differentially at a statistically
significant level were determined using a one-way
ANOVA parametric test with variances not assumed
equal, and a P-value cutoff of 0·05. This was applied to all
samples and considered all transcripts represented on the
arrays. Two independent samples for each treatment group
were analyzed was performed and allowed a 2�2 factorial
comparison in the experiment. Subsequently, expression
restrictions were applied to identify the transcripts
expressed in a significant manner. These restrictions were
designed so that the remaining transcripts met the follow-
ing requirements in addition to being expressed in a
significant manner: 1) each transcript have a signal value of
at least 100 in the average of both samples, from at least
one of the treatments tested and 2) had an average fold
change of 1·5 or greater in signal intensity between
treatments. Transcripts that passed these restrictions were
considered for further analysis. Previous studies have

shown that microarray data correlates well with real-time
quantitative PCR and Northern analysis (Eisen et al.
1998, Chaudhary et al. 2005, Kezele et al. 2002, Sadate-
Ngatchou et al. 2004) . Therefore, microarray data does
not need to be confirmed as previously suggested (Shima
et al. 2004). However, two selected genes were used in a
real-time quantitative PCR procedure as previously
described (McChlery & Clarke 2003) to help confirm the
microarray procedure. The microarray chip data can be
accessed at www.skinner.wsu.edu.

Reverse transcription (RT) and real-time PCR analysis

Real time PCR was used to measure the relative levels of
two candidate FSH-regulated genes. Total RNA collected
from two individual day 18 rats treated with either ConAb
or with FSH Ab for 4 days was treated to remove residual
genomic DNA (Ambion DNA-free Treatment Kit;
Ambion, Austin TX, USA). RNA (500 ng) was converted
to cDNA in a final volume of 20 µl using Superscript II
according to the manufacturer’s protocol (Invitrogen). For
each sample, the absence of contaminating genomic DNA
in cDNA samples was confirmed using reactions in which
the RT enzyme was omitted. Quantitative RT-PCR
analysis was performed using the Roche LightCycler
(Roche, Mannheim, Germany) and the FastStart DNA
Master SYBR-green 1 system (Roche). Oligonucleotide
primer sequences for IGFBP-3, Smad3, and beta-actin
were obtained either from published sources or Frodo.wi.
mit.edu/cgi-bin/primer3/primer3_www.cgi;version 3·0
(Table 1). For PCR analysis, sample cDNA was diluted
1:10- to 1:50-fold, and PCR reaction conditions, includ-
ing Mg2+ concentration, primer concentration, anneal
time and extension time were optimized for each primer
pair as summarized in Table 1. For all PCR analyses,
standard curves were generated using dilutions of an
immature rat testicular cDNA preparation of arbitrary
units (i.e. 17 dpp). PCR of all standards and samples were
performed using duplicate reactions for approximately
40–45 cycles, after which a melting curve analysis was
performed to monitor PCR product purity (see Table 1).
In initial experiments, PCR product identities were veri-
fied by agarose gel electrophoresis and DNA sequencing
(data not shown).

Statistics

A two-sample t-test was used to determine differences
between FSHAb and ConAb treated samples with the
assumption that data were normally distributed for all
histological and hormone data. If data did not show normal
distribution, then a Mann–Whitney test was carried
out using Sigmastat for Windows version 2·0 (Jandel
Corporation, CA, USA). Data are expressed as mean�
S.E.M., n=7 rats per group. Statistical analysis of micro-
array data is described in Bioinformatics and microarray
statistics.
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Results

Testicular weights and serum hormone measurements

Testicular weights were not significantly different follow-
ing 2 days of FSH suppression in 3 dpp rats compared with
their corresponding controls (Table 2), however testicular
weights were reduced in 9 and 18 dpp animals after 2 (to
84% of control) and 4 days (to 78% of control) of FSH
suppression. FSH suppression did not affect serum andro-
gen levels at any time point compared with controls
(Table 2). Serum inhibin levels following 2 days of FSH
suppression in 3, 9 and 18 dpp rats were significantly
reduced to 74%, 71% and 69%, and after 4 days 73% and
53% in 9 and 18 dpp rats compared with control values,
respectively (Table 2). This reduction in circulating
inhibin levels is presumed to reflect the successful neu-
tralisation of FSH bioactivity through administration of the
antibody raised against FSH, as FSH normally stimulates
production of inhibin from Sertoli cells.

Cell populations decreased in FSH withdrawn rats

At 3 dpp there were no differences in gonocyte (0·098�
0·010 vs 0·091�0·054 million/testis) or Sertoli cell num-
bers (3·50�2·4 vs 3·50�2·3 million/testis) following
2 days of FSHAb treatment compared with ConAb treat-
ment (Fig 2A), correlating no change in testis weight. At
9 dpp, there was a significant reduction (to 63% of control;
P<0·05) in the number of Sertoli cells following 4 days of
FSH suppression (16·8�1·7 vs 23·0�1·7 million/testis),
while spermatogonial numbers were unchanged (0·9�
0·08 vs 1·1�0·4 million/testis) (Fig 2B). At 18 dpp no
difference in the number of Sertoli cells were observed in
response to 4 days of FSHAb treatment (40·2�3·20 vs
44·2�4·18 million/testis). A reduction in spermatogonia
to 75% (16·9�1·8 vs 22·2�1·0 million/testis, P<0·05) of
control group values was observed following 4 days of FSH
suppression. Spermatocyte number tended to be reduced
to 80% (12·4�1·1 vs 15·5�1·0 million/testis, P=0·061)
of control group values was observed following 4 days of
FSH suppression, although this did not achieve significance
(Fig 2C).

FSH suppression decreases Sertoli cell proliferation in
day 9 rats

At 3 dpp, no differences in Sertoli cell proliferation were
observed between FSHAb- and ConAb-treated rats
(23·4%�3·2 vs 27·2%�1·8); no BrdU labelled gonocytes
were observed in these samples (Refer Fig 1). At
9 dpp, there was a significant reduction (to 66% of control,
P<0·01) in the proliferation rate of Sertoli cells following
FSH suppression (14·3%�0·6 vs 21·6%�1·2) (Fig 2A),
while no change was observed for spermatogonia
(23·2%�2·4 vs 21·1%�1·6, P=0·11) (Fig 3A). AtTa
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18 dpp, in response to FSH suppression, there was no
change in Sertoli cell (6·8%�2·3 vs 9·5%�1·0, P=0·30),
spermatogonial (19·6%�1·9 vs 23·3%�1·0, P=0·11) or
spermatocyte proliferation (11·9%�1·4 vs 10·8%�1·7,
P=0·64) (Fig 3B) compared with their corresponding
controls. These data indicate that the reduction in testis
weight due to FSH suppression at 9 dpp, but not at 18
dpp, reflects the lower number of Sertoli cells in these
samples. The incidence of apoptosis was next investigated
as an alternative basis for the reduced testis weights in the
18 dpp samples (Fig 3B).

Germ cell apoptosis is affected by FSH suppression in
18 dpp rats

No apoptosis was observed in Sertoli cells and gonocytes at
3 dpp (Refer Fig 1). No differences in Sertoli cell
(0·6%�0·2 vs 0·9%�0·2, P=0·36) or spermatogonial
apoptosis (6·6%�1·1 vs 4·6%�0·9, P=0·20) were
observed following 4 days of FSH suppression at 9 dpp
compared with controls (Fig 4A). However, at 18 dpp,
there was a significant elevation of spermatogonial apop-
tosis (250% of control) in response to FSH suppression
(15·5%�1·6 vs 6·2%�1·0, P<0·001); spermatocyte
apoptosis increased to 136% of control levels (16·1%�2·2
vs 11·8%�1·4, P=0·13), although this did not achieve
significance (Fig 4B). No change in Sertoli cell apoptosis
was observed at any time point (Fig 4). These data indicate
that a shift occurs between 9 and 18 dpp within the germ
cell population towards reliance for support cues on
FSH-derived products. The nature of this support system

and the effects of its removal were examined using a
genomic microarray to identify genes regulated by altered
levels of FSH at 18 dpp.

Microarray analysis

Thirty genes were identified in the 18 dpp samples as
up-regulated and 30 as down-regulated (Table 3) follow-
ing FSH suppression by treatment with FSHAb for 4 days.
These 60 genes of interest met the selection criteria
outlined previously; all give at least one signal intensity
greater than 100, are flagged as changing, and have fold
changes of 1·5 or greater.

Amongst these genes, 12 out of 60 (20%) have pre-
viously been reported to be regulated by FSH, predomi-
nantly through in vitro studies. Many of the genes on this
list have not yet been identified as being expressed in the
testis (26/60), and some of those known to be in the testis
have not previously been assessed for regulation by FSH
(14/34). This latter category of candidate in vivo FSH
target genes have been reported to be expressed in Sertoli
cells (4/14), germ cells (8/14) and/or non-Sertoli somatic
cells (6/14); clearly the non-Sertoli cells expressed
genes that would be regulated indirectly, through FSH
regulation of Sertoli cell biosynthesis or other functions.

RT-PCR analysis

IGFBP-3 mRNA expression levels (measured in two
individual animals) in FSHAb-treated rats were signifi-
cantly elevated approximately 2·5-fold above the levels

Table 2 The testicular weights (mg), serum testosterone (ng/ml) and inhibin (ng/ml) levels
at 3 dpp, 9 dpp and 18 dpp following 2 and 4 days of FSH suppression. Rats were treated
with normal sheep immunoglobulin (ConAb) and with antibody raised against rat FSH
(FSHAb) at 3 dpp, 9 dpp and 18 dpp following 2 and 4 days of treatment. The data are
expressed as mean�S.E.M., with n=10 rats/group.

Testicular weight
(mg)

Serum testosterone
(ng/ml)

Serum inhibin
(ng/ml)

Treatment
3 days post partum

+ConAb 2d 5·1�0·2 0·64�0·08 3·57�0·21
+FSHAb 2d 5·1�0·1 0·63�0·11 2·65�0·06**

9 days post partum
+ConAb 2d 17·9�0·9 1·36�0·3 4·53�0·3
+FSHAb 2d 15·2�0·5* 1·18�0·1 3·23�0·2*
+ConAb 4d 18·7�0·4 0·89�0·2 4·17�0·24
+FSHAb 4d 14·6�0·5** 0·70�0·1 3·03�0·19*

18 days post partum
+ConAb 2d 75·4�3·0 0·92�0·3 3·51�0·4
+FSHAb 2d 63·2�3·4* 0·92�0·2 2·43�0·2*
+ConAb 4d 74·1�1·2 1·80�0·5 5·75�0·31
+FSHAb 4d 57·9�2·1** 1·36�0·2 3·09�0·20**

Asterisks denote significant differences between rats receiving FSHAb and their corresponding controls.
*P<0·01 and **P<0·001.
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measured in two individual ConAb-treated rats. In con-
trast, Smad 3 mRNA expression was significantly reduced
by approximately 6 -fold following FSHAb treatment
compared with ConAb-treated rats (Fig 5).

Discussion

These data illustrate that the influence of FSH on Sertoli
and germ cells are dynamic and cell-type specific during

the first spermatogenic wave in the rat. We developed this
model to enable a co-ordinated documentation of specific
cellular changes, in association with the identification of
testicular genes, for which expression is affected by vari-
ance in bioactive FSH levels. The results are in accord
with previous observations that FSH and activin regulate
Sertoli and germ cell proliferation in an age-dependent
manner in vitro (Boitani et al. 1995, Fragale et al. 2001).
Our findings expand on earlier analyses by measuring
proliferation and apoptosis in the same samples and estab-
lishing a method for identification of FSH target genes
in vivo. More specifically, this study demonstrated for the
first time in vivo that acute FSH suppression reduces both
the Sertoli and germ cell populations, first by inhibiting
Sertoli cell proliferation from 5 to 9 dpp, and later by
inducing germ cell apoptosis between 14 and 18 dpp (see
Fig 6).

Acute suppression of FSH for 4 days resulted in
decreased testis weights in 9 and 18 dpp rats. This decrease

Figure 2 The number of Sertoli cells, spermatogonia and
spermatocytes at 3 dpp (A), 9 dpp (B) and 18 dpp (C) following 2
and 4 days of FSH suppression. Cell numbers in rats treated with
normal sheep immunoglobulin (black bars) and rats treated with
antibody raised against rat FSH (white bars) at 3 dpp, 9 dpp and
18 dpp. Sertoli cell, spermatogonial and spermatocyte numbers
are expressed as mean �S.E.M., where n=7 rats/group. Asterisk
identify significant differences between treated and control groups
at P<0·05.

Figure 3 Proliferation of specific cell populations of the
seminiferous epithelium at 9 dpp (A) and 18 dpp (B) following
4 days of FSH suppression. Percentage of cells incorporating BrdU
in rats treated with normal sheep immunoglobulin (black bars) and
rats treated with antibody raised against rat FSH (white bars) at
9 dpp and 18 dpp. The percentages of labelled versus unlabelled
total cells, Sertoli cells, spermatogonia and spermatocytes are
expressed as mean �S.E.M., where n=7 rats/group. Asterisks
denote significant differences between treated and control groups
at P<0·01.
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in testicular weight was attributed, at least in part, to the
decreased Sertoli cell population at 9 dpp and a decreased
germ cell population in 18 dpp rats as assessed by the
optical disector stereological technique. The Sertoli cell
population decrease resulted from inhibition of prolifer-
ation and not from elevated apoptosis. In contrast, the
reduction in spermatogonial and spermatocyte cell number
at 18 dpp resulted from elevated apoptosis of germ cells.

Sertoli cell development

Our findings are in accord with other studies which show
that FSH plays a central role in regulating the size of the
Sertoli cell population (Meachem et al. 1996) by support-
ing Sertoli cell proliferation during early postnatal life
(Orth 1984, Orth et al. 1988, Boitani et al. 1995).
Whether FSH plays a role in terminating Sertoli cell
proliferation around 15 days after birth is beyond the scope
of this study, however data from other in vitro and in vivo

studies indicate a role for FSH in this process (Baker &
O’Shaughnessy 2001, Buzzard et al. 2002). Survival of
Sertoli cells in the postnatal rat does not appear to be
influenced by FSH levels, as evidenced by the fact that
FSH suppression did not induce Sertoli cell apoptosis,
though the possibility remains that there are residual levels
of serum FSH in this model which are sufficient to support
Sertoli cell survival. We predict that a greater impact on
testicular physiology could be apparent if complete FSH
withdrawal were achieved.

Several other factors have been demonstrated to regu-
late Sertoli cell development in the time interval under
investigation here, including thyroid hormone (Cooke &
Meisami 1991, Van Haaster et al. 1992), activin (Boitani
et al. 1995, Fragale et al. 2001, Buzzard et al. 2003), glial
cell line-derived neurotrophic factor (GDNF) (Hu et al.
1999), interleukin-1 (Petersen et al. 2002), and transform-
ing growth factor (TGF) and epidermal growth factor
(Petersen et al. 2001). Interactions between these factors
and FSH-mediated regulation of Sertoli cell function is not
well understood, though two previously identified FSH
regulated target genes, cyclin D2 (Buemer et al. 2000) and
DMRT-1 (Raymond et al. 2000) are potential mediators.

In this study, the FSHAb dose administered was five
times higher than that previously shown to neutralise
greater than 90% of serum FSH in adult rats (Meachem
et al. 1998, 1999). This dose was selected because serum
FSH levels are 3–5 higher during postnatal life than in
adulthood, as measured using RIA (Kirby et al. 1992). In
our previous studies with this antibody, neutralisation of
bioactive material was determined using an FSH in vitro
bioassay, based on the induction of aromatase activity
in immature rat Sertoli cells and assay of free FSH
from rat serum using HPLC and RIA (Meachem
et al. 1998, 1999). The significant reduction in serum
inhibin levels following FSHAb administration in the
present study are a positive indicator of the efficacy of FSH
immunoneutralisation. Whether FSH regulates Sertoli cell
development in the 3 dpp testis remains unclear. Our data
suggest that Sertoli cell proliferation and apoptosis are not
governed by FSH between 1 and 3 dpp in the rat.
Consistent with this, Buzzard et al. (2003) reports that
proliferation of purified Sertoli cells from rats younger than
6 dpp is not affected by FSH. On the other hand, Boitani
et al. (1995) and Meehan et al. (2000) reported that Sertoli
cell proliferation in 3 dpp rat testis fragment cultures was
enhanced in the presence of FSH. Differences between
our new data and that reported in earlier studies may
reflect differences between in vitro and in vivo models, with
the latter being uniquely employed in the present study. It
is possible that removal of FSH for 2 days in vivo may be
insufficient to observe a subtle but functionally important
change in Sertoli cell proliferation at this age, due to this
relatively small population of Sertoli cells present at this
time (<4 million Sertoli cells/ 3 dpp testis). It may be
necessary to extend the period of FSH suppression or to

Figure 4 Apoptosis in specific cell populations of the seminiferous
epithelium at 9 dpp (A) and 18 dpp (B) following 4 days of FSH
suppression. The percentages of TUNEL labelled cells in rats
treated with normal sheep immunoglobulin (black bars) and rats
treated with antibody raised against rat FSH (white bars) at 9 dpp
and 18 dpp. The percentages of labelled versus unlabelled total
cells, Sertoli cells, spermatogonia and spermatocytes are expressed
as mean �S.E.M., where n=7 rats/group. Asterisks denote
significant differences between treated and control groups at
P<0·001.
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increase the dose of neutralising antibody if in fact residual
levels of FSH exist. The Sertoli cell numbers measured in
control antibody-treated groups in this study are in accord
with our previous study (Meachem et al. 1996) and that of
others (Simorangkir et al. 1997), reporting numbers quan-
tified by the optical disector stereological technique, in rats
of similar ages.

Germ cell development

These data provide no evidence that FSH supports the
maturation of gonocytes into type A spermatogonia.
Studies of congenitally deficient hypogonadal mice (hpg)
lacking both FSH and LH show that gonocyte number is

not altered in these newborn mice compared with wild-
type controls, however gonocyte number is significantly
reduced at 5 dpp, suggesting that gonocyte survival may be
in part regulated by gonadotrophins. Whether this is an
effect specific to FSH is yet to be elucidated (Baker &
O’Shaughnessy 2001). Several other recent studies
highlight the impact of locally produced members of the
TGF® superfamily on germ cell development, including
bone morphogenetic protein 4 (BMP4) (Pellegrini et al.
2003), activin (Boitani et al. 1995, Meehan et al. 2000)
and GDNF (Meng et al. 2000, Yomogida et al. 2003), and
production of both inhibin (an activin antagonist) and
GDNF is regulated by FSH (Tadokoro et al. 2002).
Meehan et al. (2000) provides in vitro evidence, using 1
and 3 day cultures of 3 dpp rat testis fragments, that FSH
plus follistatin mediates gonocyte maturation into type A
spermatogonia, but that FSH alone does not support
gonocytes, as assessed on a per Sertoli cell basis. Meehan’s
study reported that activin independently elevated gono-
cyte number 4-fold above that of DMEM treated frag-
ments and that follistatin prevented this activin-induced
rise, giving rise to the concept that balance between
activin and follistatin can influence germ cell maturation at
the onset of spermatogenesis. Another facet of first wave
initiation, gonocyte migration, relies at least in part on the
interaction of c-kit and its FSH-regulated ligand, SCF
(Orth et al. 2000), and it is apparent that the population of
migratory gonocytes have stem cell activity, while those
lacking pseudopods are undergoing apoptosis (Orwig et al.
2002). Thus influence of FSH at this age may reflect a
complex set of interacting signals.

Several lines of evidence indicate that FSH enables
spermatogonial survival in the adult rat, (Shetty et al. 1996,
Meachem et al. 1999) without directly enhancing germ
cell proliferation in vivo (McLachlan et al. 1995). In
immature rats rendered FSH- and LH-replete by hypo-
physectomy, administration of FSH reduced the number
of degenerating cells (Russell et al. 1987) and prevented
germ cell apoptosis (Tapanainen et al. 1993). Evidence
from culture of adult rat seminiferous tubules (Henriksen
et al. 1996) and of immature rat testis fragments (Boitani
et al. 1993) indicates that FSH also enhances proliferation
of differentiated spermatogonia in vitro. The significant
reduction in the spermatogonial population after 4 days of
FSH suppression in the current study provides evidence
that FSH influences survival of germ cell populations from
14–18 dpp. The reduction in germ cell number reduction
appears attributable to a 2·5-fold higher apoptotic index
compared with control levels, not to a change in prolifer-
ation rate. We also observed that spermatogonial numbers
were not influenced by FSH at 9 days after birth, and this
finding is inconsistent with in vitro data (Boitani et al.
1995). Low levels of circulating FSH may be present in
the animals examined in this study; this may be suf-
ficient to support spermatogonial development, as small
increases in FSH can significantly impact the recovery of

Figure 5 Expression levels of rat Smad 3 and IGFBP-3 by real time
PCR. Two rats treated with normal sheep immunoglobulin (black
bars) and treated with antibody raised against rat FSH (white bars)
were tested to validate data obtained from the microarray analysis.
Each sample was measured over three separate experiments in
terms of ng of mRNA normalised to beta actin. Data are mean
�S.D.
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spermatogonial number in adult rats (Meachem et al.
1998). In the present study, spermatogonial number was
assessed using a sensitive, unbiased optical disector method
appropriate for counting these cells. Effects of lowered
FSH levels may have been masked due to factors associated
with counting a small population of cells. Spermatogonial
and spermatocyte numbers in control antibody-treated rats
in this study were in accord with our (Meachem et al.
1996) and that of others (Simorangkir et al. 1997) reporting
data that were assessed in rats of similar ages by the using
the optical disector technique.

Age dependent changes in cell survival resulting from
FSH suppression may be due to developmentally regulated
changes in the cellular synthesis of apoptotic regulators,
such that documented for members of the Bcl-2 family
during the first wave of mouse spermatogenesis (Meehan
et al. 2001). The Bcl-w (Yan et al. 2000) and Bok
(Suominen et al. 2001) mRNAs were shown to be up- and
down-regulated respectively by FSH in vitro, and the bcl-w
knockout mouse has elevated germ cell apoptosis following

14 dpp, indicating the potential influence of Bcl-2 family
members on the cellular responses in this model.

Identification of genes regulated by FSH in vivo

Interrogation of a rat gene microarray with RNA from
18 dpp rats in this study identified 60 genes that were
regulated by 4 days of FSH suppression in vivo. Twenty
percent of these differentially expressed genes have been
previously identified as FSH-regulated, predominantly
through in vitro methods, a finding which indicates the
validity of this model and experimental approach. For
example, in an analysis of 20 dpp rat Sertoli cells using the
same microarray platform, FSH-responsive mRNAs were
identified at 2, 4, 8 and 24 h of culture (McLean et al.
2002). In accord with the present analysis, that in vitro
analysis identified the genes encoding steroidogenic acute
regulatory (StAR) protein and endothelin as down- and
up- regulated, respectively, in the absence of FSH.
FSH has now been identified through both in vitro

Figure 6 Dynamic effects of FSH on Sertoli and germ cell development during first wave in rats assessed through in vivo and in vitro
analyses. Time points listed illustrate progressive maturation of germ cells and Sertoli cells in the first wave of spermatogenesis in rat. At
3 dpp, Sertoli cells are proliferating and gonocytes are re-entering the cell cycle and migrating to the basement membrane of the
seminiferous cord to become undifferentiated and stem cell spermatogonia. At 9 dpp, proliferating Sertoli cells and differentiating
spermatogonia are observed. By 18 dpp, Sertoli cell proliferation has ceased, and the cords have transformed into seminiferous tubules as
tight junctions form between Sertoli cells and vectorial secretion from this epithelium commences. Germ cells that have progressed to the
pachytene stage of meiosis are predominant in the seminiferous tubules. In this study, suppression of FSH by passive immunisation for
2 and 4 days revealed the age-dependent differential in vivo affects of FSH on Sertoli and germ cells: promotion of Sertoli cell mitosis at
9 dpp and increasing germ cell viability at 18 dpp. These data are in agreement with previous in vitro observations that FSH regulates
Sertoli cell proliferation in an age-dependent manner, interacting with activin to promote Sertoli proliferation and germ cell development
at discrete ages. This comparison also highlights differences that may specifically reflect the use of in vitro versus in vivo models.
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(McLean et al. 2002) and in vivo studies to be one of the
wide variety of transcriptional regulators of StAR mRNA
synthesis (Gregory & De Phillip 1998, Manna et al. 2003).
Cyclin D2 and androgen binding protein (ABP) are
additional Sertoli cell proteins up-regulated by FSH that
are required for normal testicular function (Skinner et al.
1989, Danzo 1995, Larriba et al. 1995, Sicinski et al. 1996,
Joseph et al. 1997), while protein C inhibitor, also required
for spermatogenesis (Uhrin et al. 2000, Odet et al. 2003),
appears to be synthesized only in germ cells and Leydig
cells (Odet et al. 2003). In vivo confirmation of the negative
regulation by FSH of genes encoding insulin-like growth
factor binding protein-3 (IGFBP-3) (Smith et al. 1990,
Rappaport & Smith 1995, Khan et al. 2002), HNF-3/
forkhead (Wolfrum et al. 2003), transferring (Kaestner
et al. 1998), endothelin-1 (Fantoni et al. 1993, Tripiciano
et al. 1999) and cathepsin-L (Penttila et al. 1995, Wright
et al. 2003) is presented. Members of the HNF-3/
forkhead transcription factor family are part of a signal
transduction cascade from Akt/protein kinase B that
regulates transcription of apoptosis-related genes
(Wolfrum et al. 2003). HNF-gamma is known to regulate
transferrin (Kaestner et al. 1998), a gene that is itself
regulated by FSH (Migrenne et al. 2003); we hypothesize
that HNF-3 represents an intermediate for FSH regulation
of several genes.

The high concordance of the present data with previous
reports provides validation of the methodological approach
used to identify in vivo targets of FSH regulation, though
some differences may be noted. In this study, FSH
suppression led to elevated testicular N-cadherin mRNA,
but in a previous 2 day in vitro analysis, FSH alone did not
affect N-cadherin expression; FSH in combination with
testosterone stimulated it (Lampa et al. 1999). This most
likely reflects a specific difference between in vitro and
in vivo models regarding hormone responses; alternatively,
the duration of suppression or addition may underpin the
difference between these two results.

In addition, novel candidates for FSH regulation have
been uncovered, some of which may be indirectly regu-
lated by altered levels of available FSH or represent bona
fide novel FSH-regulated genes. Targets not previously
identified in the testis include aminolevulinic acid synthase
2 and melanoma inhibitory activity.

Several categories of encoded gene products within the
array of candidate FSH target genes may aid identification
of the pathways and processes that underpin the reduction
in germ cell survival that was measured after 4 days of
treatment with the FSHAb. Most striking are the genes
relating to cell cycle regulation and apoptosis (e.g. lamin,
cyclin D1, cyclin D2, Scavenger Receptor B1). Products
of other FSH target genes comprise or influence the
architecture of the seminiferous epithelium (e.g. cadherin,
cathepsin L), while others are known to function in signal
transduction (e.g. HNF3, MAPKKK, Smad 3, rat retinol-
binding protein) and to participate in regulation of hor-

monal inputs (StAR and androgen binding protein).
However, because the microarray analysis presented in this
study addresses a single time point, early and acutely
affected FSH gene targets may be undetected. The cellular
responses identified in this study (i.e. germ cell apoptosis)
would have been initiated before the time point of analysis,
so future studies will address this in order to more fully
comprehend the pathways through which FSH levels
influence Sertoli cell function and germ cell survival.

The limit for microarray signal changes considered to be
significant was a 1·5-fold difference between the control
and treatment groups. The highest difference detected was
6·57-fold, with several others showing around a 4-fold
difference. While this level of change is low in comparison
to systems where a single cell type is tested, these data do
demonstrate that this approach can identify FSH-regulated
genes in a complex cell mixture (i.e. total testis). This is, in
fact, comparable to the situation that might be required for
analysis of clinical samples, where the small sample size
would preclude the use of cell separation methods prior to
analysis. The fact that up- and down-regulation of genes is
measurable following 4 days of treatment indicates that in
conditions where FSH suppression has been long term,
FSH target gene expression interrogation may be a useful
tool for identifying the basis of pathological change. It is
important to note that some alterations in gene expression
may be in part attributed to the reduction in testicular
weight as a consequence of cell loss. However, we believe
the disproportionate change in gene expression (1·5–6
fold) compared with the 22% reduction in testis weight
following FSH suppression indicates that the changes in
gene expression are primarily due to specific FSH effects.

In conclusion, the model used in this study has success-
fully identified distinct developmental responses to FSH in
Sertoli and germ cells in the postnatal rat and identified
candidate genes that may underpin these responses at 18
dpp. These data illustrate the switch in Sertoli cell function
during the first spermatogenic wave, as they cease pro-
liferation and establish a niche for support of germ cell
development. In addition, the emerging dependence of
germ cells on Sertoli cell-derived products can be explored
through identification of FSH-target genes and the
pathways in which they function.
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