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Abstract

Epigenetic programming of the germ line occurs during embryonic development in a sex-specific manner. The male germ 
line becomes imprinted following sex determination. Environmental influences can alter this epigenetic programming and 
affect not only the developing offspring, but also potentially subsequent generations. Exposure to an endocrine disruptor (i.e. 
vinclozolin) during embryonic gonadal sex determination can alter the male germ-line epigenetics (e.g. DNA methylation). The 
epigenetic mechanism involves the alteration of DNA methylation in the germ line that appears to transmit transgenerational 
adult onset disease, including spermatogenic defects, prostate disease, kidney disease and cancer.
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Genomic DNA is the essential building block of all species 
and is not readily mutated or modified. Epigenetics can be 
a heritable change in gene expression within the genome 
that does not directly involve changes to the genomic DNA 
sequence. Epigenetic regulation of the genome involves factors 
such as histone modifications (i.e. acetylation and methylation) 
and DNA methylation that directs chromatin structure and 
gene transcription. Epigenetic alterations are associated with 
many human diseases such as cancers (Feinberg, 2004; Schulz 
and Hatina, 2006), autism (Muhle et al., 2004) and Angelman 
and Beckwith–Wiedemann syndromes (Jiang et al., 2004). 
The epigenetic programming of the germ line appears similar 
in humans and other mammalian species (Beaujean et al., 
2004; Fulka et al., 2004), such that alterations in germ-line 
programming may influence genome activity and disease (Steele 
et al., 2005; Tarozzi et al., 2007; Yang et al., 2007). These non-

genomic epigenetic factors are currently speculated to have 
an important impact on disease risk and transgenerational 
inheritance (Gluckman et al., 2007).

The DNA methylation pattern of the genome becomes 
reprogrammed following de-methylation and re-methylation 
processes after fertilization and during early embryonic 
development. This epigenetic reprogramming during early 
embryonic cell differentiation transmits a unique DNA 
methylation pattern to developing organs in the offspring. 
An additional epigenetic reprogramming event (i.e. DNA 
methylation) occurs later in development in the germ line 
during sex determination. A small subset of imprinted genes 
is transmitted to subsequent generations through the male 
or female germ line. Imprinted genes have an allele specific 
DNA methylation pattern and expression that is maternally or 
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paternally transmitted between generations. Clearly a number 
of different epigenetic mechanisms (e.g. histone modifications, 
chromatin structure and DNA methylation) will be involved 
in programming the germ line. Alterations in the epigenetic 
reprogramming of the germ line can promote heritable changes 
on transcription and disease.

Prior to sex determination during embryonic development 
the primordial germ cells migrate down the genital ridge and 
colonize the indifferent biopotential gonad (Hughes, 2001; 
Kanai et al., 2005). As the primordial germ cells migrate down 
the genital ridge their genomic DNA becomes de-methylated 
such that the genome prior to and during sex determination 
is not methylated (Yamazaki et al., 2003). Following sex 
determination, the germ cell DNA is re-methylated in a sex-
specific manner (Li et al., 2004). In the male, somatic cells 
in the developing gonad are required for normal germ-cell 
development and DNA methylation (Hisano et al., 2003; 
Nishino et al., 2004). Modification of the methylation pattern of 
previously identified imprinted genes has been shown to induce 
disease states (Robertson, 2005). Therefore, alterations in the 
DNA methylation pattern following sex determination could 
lead to an epigenetic transgenerational disease state.

Many environmental factors and toxicants have been shown 
not to directly modify the genomic DNA sequence; however, 
these factors can cause changes in histone modification or 
DNA methylation, and this impacts chromatin structure and 
gene transcription. A consideration of environment–genome 
interactions requires that epigenetic regulation be considered as 
one of the components of the molecular basis upon which the 
environmental factors interact with the genome and result in 
disease (Herceg, 2007; Weidman et al., 2007).

Environmental toxicants have been found to promote 
transgenerational disease phenotypes (Anway and Skinner, 
2006). The transgenerational phenotype has been induced by the 
endocrine disruptor vinclozolin, an anti-androgenic compound 
used as a fungicide in the fruit industry (e.g. wineries) (Kelce et 
al., 1994). The transient exposure of an F0 generation gestating 
rat to vinclozolin at the time of embryonic sex determination 
promotes an adult-onset disease of spermatogenic defects and 
male subfertility in the offspring. Research has demonstrated that 
90% of all male progeny for four generations (F1–F4) developed 
spermatogenic defects following the direct exposure of the 
F0 gestating rat (Anway et al., 2005). This transgenerational 
phenotype was only transmitted through the male germ line (i.e. 
spermatozoon) and was not passed through the female germ 
line (i.e. oocyte). In young adult males, prior to 120 days of age, 
the primary disease phenotype was a spermatogenic cell defect 
in the male testis (Anway et al., 2005, 2006b). However, when 
the animals were allowed to age up to 14 months, additional 
transgenerational disease phenotypes developed at increased 
frequencies including 15% tumour development, 50% prostate 
disease, 35% kidney disease, 30% immune abnormalities and 
25% spermatogenic defects in males from F1–F4 generations 
(Anway et al., 2006a). Female animals were also found to 
develop transgenerational disease including tumours and 
kidney disease (Anway et al., 2006a). Furthermore, the testis 
phenotype was also promoted by the transient embryonic 
exposure to the pesticide methoxychlor, which contains a 
mixture of metabolites with oestrogenic, anti-oestrogenic and 
antiandrogenic activities (Anway et al., 2005).

The ability of endocrine disruptors to promote adult-onset 
disease has been discussed previously (Gluckman et al., 
2004). Endocrine disruptors are a large class of environmental 
toxicants ranging from plastics to pesticides (Heindel, 2005). 
These environmental toxicants generally do not promote DNA 
sequence mutations, which generally occur at a frequency 
lower than 0.01% (Barber et al., 2002). The frequency of the 
transgenerational phenotype described above (occurring in 
30–90% of the animals) also could not be attributed to DNA 
sequence mutations. Therefore, the hypothesis was developed 
that the induced transgenerational phenotype is likely to be 
epigenetic in origin, resulting from changes in gene function 
that are not related to a specific DNA sequence mutations 
(Anway et al., 2005; Anway and Skinner, 2006). Epigenetic 
or non-genomic inheritance clearly occurs and has impacts on 
health and disease (Rakyan and Beck, 2006; Gluckman et al., 
2007; Jass, 2007). The environment has the ability to regulate 
the epigenome that subsequently influences genome activity 
and disease susceptibility (Whitelaw and Whitelaw, 2006; 
Jirtle and Skinner, 2007). Although observations demonstrate 
these epigenetic transgenerational phenotypes exist, the impact 
they have on health and disease remains to be elucidated. 
The identification of epigenetic biomarkers correlated to 
disease could provide early stage diagnostic markers to allow 
preventative medicine strategies to be developed.

This transgenerational phenomenon demonstrates an epigenetic 
mechanism by which environmental toxicants may promote 
transgenerational phenotypes and adult-onset disease (Gluckman 
and Hanson, 2004; Heindel, 2005). A large number of studies 
have demonstrated that embryonic or post-natal exposures can 
induce adult-onset disease. The mechanism for this fetal basis 
of adult-onset disease is unknown, but is likely to involve 
epigenetic alterations in the genome (Dolinoy et al., 2007; van 
Vliet et al., 2007). Many adult-onset disease phenotypes are not 
transgenerational, but manifest in the exposed individuals. These 
individual disease exposures and phenotypes may also involve 
epigenetic mechanisms. A recent study demonstrated a neonatal 
exposure to bisphenol A altered DNA methylation of a number 
of genes and promoted an increased frequency of prostate 
disease in the adult (Ho et al., 2006). Therefore, an embryonic, 
post-natal or adult exposure could cause an epigenetic event that 
then alters the physiology of a tissue and promotes disease. It is 
likely that rapidly developing tissues will be more sensitive to 
environmental exposures and epigenetic modifications.
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