Assisted Reproduction/Contraception

Assisted Reproduction –
- Infertility
- ART – Artificial Insemination and Other Technology
- IVF and ICSI
- Pre-implantation Diagnosis (PGD) and Cloning
- Stem Cells and Reproduction

Contraception
- Population Growth and Projections
- Need and History of Contraception
- Sterilization and Other Procedure Use
- Female Hormonal Contraception and Morning After Pill
- Female Implants
- Male Contraception and Targets
- Male Hormonal Contraception and Efficiency
- Other Male Contraceptive Targets

Required Reading

REFERENCES

No authors listed. Male contraception, a choice on the horizon. Proceedings of the final meeting of the joint Rockefeller/Ernst Schering Network on Epididymal Research

Ilic D, Telfer EE, Ogilvie C, Kolundzic N, Khalaf Y. What can stem cell technology offer to IVF patients? BJOG. 2019 Jun;126(7):824-827.

Robert C, et al. (2011) Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays. Mol Reprod Dev. Sep;78(9):651-64.
Modern Ethical Dilemmas in ART
Guido Pennings, Seppe Segers, and Heidi Mertes, Bioethics Institute Ghent, Gent, Belgium
© 2018 Elsevier Inc. All rights reserved.

Introduction

Medically assisted reproduction offers people an increasingly broad spectrum of techniques to have the child they long for. These techniques can be subdivided in two categories: those using the intended parents own genetic material/gametes and those using donor genetic material/gametes. For the large majority of the people, the applications in the latter category are "solutions of the last resort": only if there is no way that a couple or person can have a genetically related child will a non-genetically related child be considered. However, almost all the techniques to bypass a defect of the reproductive system imply manipulations and modifications of which the consequences for the long term health of the future offspring are unknown. One recent example that caused quite some concern is mitochondrial transfer. Women at risk of transmitting a mitochondrial disorder to their offspring either transfer healthy mitochondria from a donor into their oocytes or transfer the nucleus of their egg into an enucleated donor oocyte. The health consequences of this manipulation are unknown. The important point is, however, that this issue could be avoided by using donor eggs. Still, despite the risks, one goes ahead with the development of the technique. The same applies to people with known increased risks of transmitting a genetic disease who go through multiple cycles of IVF and PGD while donor gametes would solve the issue. At the same time, the use of donor gametes is not self-evident or easy either. In the present climate in which much emphasis is put on the person of the donor, the importance of knowing one's genetic origin in order to develop one's identity and the strong value attached to the genetic relationship between the donor and the child, gamete donation is increasingly confronted with moral and psychological problems. Moreover, there is a shortage of donor gametes (in particular of eggs) in many countries, resulting in long waiting lists.

In this article we will look more closely at two applications that illustrate this general problem: oocyte cryopreservation for healthy women and stem cell derived gametes. Both examples show in different ways the importance of genetic parenthood.

Oocyte Cryopreservation for Healthy Women

One of the interventions in ART that has been the topic of ethical debate for several years now is oocyte cryopreservation in anticipation of age-related fertility decline, known as "social egg freezing", "elective egg freezing", "non-medical egg freezing" or "AGE banking" (whereby AGE is an acronym for Anticipated Gamete Exhaustion). Although the first healthy live birth from a frozen human egg cell dates back to 1986, egg freezing has long been so inefficient that it was hardly considered a valid treatment option. From 2004 onwards, however, there has been an explosion in research directed at oocyte cryopreservation (OC), leading to successful slow freezing and vitrification protocols for human egg cells with high survival rates after thawing and with reassuring preliminary data on the health of the resulting offspring (Cobo et al., 2014). There are several applications for this new technology: donor egg banking, but also autologous egg banking. The latter was introduced in the context of oncofertility, so that women fearing premature infertility due to disease, gonadotoxic medical treatments or irradiation therapies could bank their eggs before irreversibly losing them.

Soon there was also an interest in storing eggs for women not faced with a medical condition leading to premature infertility, but for those approaching the natural boundaries of their reproductive lifespan while being unable to start a parental project, for example due to lack of a partner. However, whereas the introduction of OC for oncofertility was met with much enthusiasm and optimism, the expansion of the option of OC to healthy women did not incite the same reactions (Mertes, 2013). Both the European Society for Human Reproduction and Embryology (ESHRE) and the American Society for Reproductive Medicine (ASRM) initially denounced the use of OC for healthy women, while endorsing it for medical conditions. In 2012, ESHRE changed its recommendations, saying that OC should also be available for non-medical reasons, whereas the ASRM remains cautious (ESHRE Task Force on Ethics and Law et al., 2012; Practice Committee of the American Society for Reproductive Medicine and Practice Committee of the Society for Reproductive Technology, 2012).

Medical versus Social freezing: A Tenable Distinction?

A first important question is on which grounds a moral distinction can be made between "medical egg freezing" and "non-medical egg freezing". If women are only allowed to preserve their fertility when they anticipate premature infertility, but not when they anticipate natural infertility, one needs to give a justification for this differential treatment. Several arguments are possible, but not convincing. A first one is that we should respect natural boundaries. But why? Is medicine not constantly interfering with the natural decline of our bodies? A second one is that only those who are unable to anticipate (and thus prevent) being infertile before embarking on parenthood are deserving of a medical intervention. But why? First, medicine is constantly curing preventable medical problems. Second, the "solution" of reproducing early in life is not an option for everyone: there are very good reasons for waiting to establish a family until certain side constraints are in place, such as having a partner, financial stability, et cetera.
Moreover, there is a large gray area between medical and non-medical reasons for egg banking. In which category do women who freeze their eggs due to a family history of early menopause (and a low ovarian reserve) belong? What about women who have undergone a cancer treatment in the past that has diminished, but not depleted their ovarian reserve and who want to store eggs after their treatment because they fear premature ovarian failure? In short, it is difficult to indicate what the crucial difference between the two applications (medical and non-medical) is and even more so why it would matter.

Reasons for Caution

Yet there are reasons to be cautious about the introduction of AGE banking, with the main fear being that this new technology is being “oversold”. Cobo et al. (2016) report cumulative live birth rates in women 35 or younger of respectively 15.4%, 40.8%, and 85.2% when freezing 5, 8 or 15 oocytes. The cumulative live birth rates achieved with 5, 8 and 11 oocytes for women 36 or older were 5.1%, 19.9% and 35.6% (in this group the additional benefit of banking more than 11 oocytes is very small). At present most women opting for AGE banking belong to the latter group, not the former, as reported average ages at the time of egg banking range from 36 to 38 years. Although these are good success rates compared to a subfertile population, this still means that most of these women have at best a 35% chance of achieving a healthy live birth (if their ovarian response is good enough to generate 11 oocytes). This contrasts with the image of egg freezing that commercial companies offering this technology create. Egg banking is said to “stop the biological clock” or offer “insurance” against infertility. The fear is that women will expect more of egg banking than the intervention can deliver and that many women will feel disappointed and betrayed when it turns out that the eggs they stored do not lead to a live birth. In this sense, an intervention that is being marketed as increasing women’s reproductive autonomy becomes an intervention that curtails reproductive autonomy and preys on desperate women.

Should this technology be marketed to young women then, with higher success rates? In fact, this may equally lead to an undermining of a woman’s intended reproductive life plan. When egg banking becomes a deliberate attempt to put parenthood “on hold” while other life goals are being pursued (possibly under pressure of employers), women may insufficiently be aware that egg banking in such a context jeopardizes a woman’s reproductive potential, rather than safeguarding it, as a woman’s chances of reproducing naturally at a younger age will always be better than her chances of reproducing with banked eggs at an older age. This fear became a lot less hypothetical when Facebook and Apple announced in 2014 that they would offer egg freezing to their female employees (Mertes, 2015).

What Does a Cautious Implementation Look Like?

The crucial question then becomes: how can this technology be implemented in a way that has maximal respect for reproductive autonomy and an acceptable utility rate? Regarding the utility rate the paradox is that the younger women freeze their eggs, the better quality the eggs will be, but the less chance that the woman will actually need them, as they have plenty of time to reproduce naturally. The older a woman is when she freezes her eggs, the worse their quality, but also the less chance she has of reproducing naturally (and the more chance to need her stored eggs). The ideal age for egg banking would therefore be between 30 and 35 (Mertes and Pennings, 2011). Also, women opting for egg banking should be counseled carefully about the drawbacks of AGE banking: about the success rates, tailored to their age/ovarian reserve; about the technicalities of the procedure, for example the fact that ICSI will be needed; about the maximal storage period, etc. Next to this practical counseling, it would also be beneficial to inspire candidates for AGE banking to critically reflect on the importance of (genetic) parenthood and on the prospect of the alternatives. This may imply that women approaching their forties or young women with many fertile years ahead of them will end up being discouraged from storing their eggs, while women who are most likely to benefit will be encouraged to bank. Given the possible biasing effect of commercial interests, it becomes increasingly important to ensure that counseling and information provision to women is as objective and complete as possible.

Stem Cell Derived Gametes

The in vitro creation of stem cell-derived (SCD) gametes promises new possibilities for human procreation, both via basic science applications and clinical use in assisted reproduction. The value of genetic relatedness is an important incentive in the development of this technique. Proof of principle for in vitro gametogenesis (IVG) is available in mice, and it is believed that the differentiation of functional human gametes from pluripotent stem cells will be possible in the “not too distant future” (Cohen et al., 2017). Creation of gametes from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is the main focus. Other sources such as bone marrow stem cells and germline stem cells receive less (ethical) attention. We will first outline the possible reproductive applications of IVG and then the ethical challenges of both ESC-derived and iPSC-derived gametes.

Patient-Specific SCD-Gametes

The most important goal of IVG is to establish a genetic link between the parents-to-be and the future offspring. To establish a genetic link, patient-specific SCD-gametes are needed. This requires either the creation of a cloned embryo through somatic cell nuclear transfer (SCNT) from which ESCs are derived or the creation of induced pluripotent stem cells (iPSCs) from a somatic
cell of the patient, which will then be differentiated into gametes. It is also suggested that IVG would make equal genetic relatedness between the child and both partners possible for same-sex couples, but researchers remain skeptical about reprogramming stem cells to gametes of the opposite sex (Moreno et al., 2015). Moreover, if IVG is to lead to the creation of patient-specific SCD-gametes at all, the technique of SCNT or the technique to obtain iPSCs would have to be improved.

If it would become possible to create patient-specific SCD-gametes, it could also be combined with technologies to prevent certain diseases in the future offspring. IVG could enable the creation of a large gamete and embryo pool to select (through PGD) genetic traits. Alternatively, stem cells could be modified via genome editing, and then differentiated into gametes (Vassena et al., 2016). This can be seen as an additional benefit, although it also raises concerns about possible usage to select/edit non-disease related traits.

Non-Patient-Specific SCD-Gametes

Deriving gametes from ESCs of embryos created by fertilization is presumably more feasible and closer to clinical application than creating patient-specific SCD-gametes. This would require the use of donated spare IVF embryos, or embryos created from oocytes and sperm donated for this goal. However, these gametes would be non-patient-specific, and will thus not lead to shared genetic parenthood.

Yet, the value of parent–child genetic relatedness also plays a central role here. Non-patient-specific SCD-gametes could be used to create an SCD-gamete bank for “third party” assisted reproduction. One benefit of this scenario over “traditional” donor assisted reproduction is that the parents-to-be would not have to fear that the donor would claim parental rights based on his/her genetic link with the child, since the donor (the embryo) is destroyed in the process of gamete derivation (unless such rights would be accorded to the genetic grandparents, viz. the embryo donors). Also, the resulting child would have no “unknown” genetic progenitor to look for, which might be more comforting than knowing that one’s genetic parent is “out there”. It could, however, be countered that this benefit is undermined by the child’s inability to enrich his/her narrative by knowing that one of his/her genetic parents never existed as a person.

Non-patient-specific SCD-gametes could also be used for same-sex reproduction: a gamete derived from a fertilized embryo, created by combining a donor gamete with one of the partner’s gametes, could be combined with the other partner’s complementary gamete (Segers et al., 2017b). This would lead to a 50% genetic link between the latter partner and the child, while both the other partner and the donor would share 25% of the child’s DNA. Many would consider it an important advantage of this scenario that although a donor is still involved, it will not be possible to ascribe a greater parental status to him/her solely on the basis of his/her genetic contribution. The partner who contributed as much to the child’s genetic makeup as the donor, would outrank the donor given his/her role as a social parent and the intention to be a parent.

New Possibilities of Reproduction

Application of IVG for reproductive purposes could revolutionize human procreation. Apart from possible use in same-sex reproduction and treatments for infertile couples of reproductive age, IVG could allow anyone to produce gametes, regardless of age or relationship status (Smajdor and Cutas, 2015). If person-specific gametes could be created from stem cells, this could allow women to reproduce later in life, despite declining oocyte quality and even if they have already gone through menopause (see above). Prepubescent children would not be restricted by their age to have genetically related offspring either. IVG could also allow variations in the number of people involved in genetic parenting. Fusing someone’s natural gamete with a derived gamete from this same person could result in single genetic parenthood. Also multiple genetic parenting might become possible: gametes of multiple persons could be combined to create embryos, from which ESC-derived gametes could be established, which could then be recombined in as much cycles as needed to obtain a child who is genetically related to each of the participating persons. For a more extensive ethical discussion of these scenarios, see: Smajdor and Cutas (2015) and Segers et al. (2017a). In the final section, we will explore some of the general ethical concerns about IVG.

Main Ethical Concerns

For reproductive IVG, the main ethical issue is the safety risk to the offspring. At this stage, clinical application of IVG is unacceptable because of the potential high risk to the offspring’s physical wellbeing. This is especially the case for patient-specific SCD-gametes, as both the technique of SCNT and that of iPSCs derivation are hindered by incomplete reprogramming of the somatic cell nucleus to an embryonic state. The derivation of gametes from ESC-lines from embryos created by fertilization would be less complicated and therefore possibly safer. Still, this raises the question what standard of risk is acceptable to make genetic relatedness possible, or, in the case of non-patient-specific reproductive IVG, to avoid the attribution of parental status to the donor. It could be argued that, unless their life is not worth living, IVG offspring cannot be harmed by the parental choice to reproduce through IVG because without this decision they would not have existed at all. However, this conclusion runs counter to most people’s moral intuition. Instead the “reasonable welfare principle” has been suggested: this standard is adopted by the European Society of Human Reproduction and Embryology (ESHRE) and holds that the use of a reproductive technology is only acceptable if the resulting child will have a reasonably happy life (Pennings et al., 2007).
Even if IVG would be safe, it is worth contemplating that the endeavor of creating SCD-gametes for reproduction might reinforce the dogma of genetic relatedness. Even the use of non-patient-specific SCD-gametes could, at least implicitly, propagate the importance of genetic ties in a parent–child relationship. This is not morally wrong per se, and is also not unique to IVG, but it could send the incorrect message that a good parent–child relationship requires a genetic link. According to this reinforcement argument, IVG would create rather than meet demand, which is a fortiori important given the related questions of access, cost and resource allocation. Because IVG will probably not be affordable for everyone who could benefit from it, it could be argued that access to IVG should be state covered. It is questionable, however, whether the goals that are served by IVG are important enough to outweigh other claims on public resources. When this weighing is done, not only the goal of reproduction should be considered, but also the possible benefits of IVG in the research context.

A final argument is that IVG as such is unacceptable because it inherently involves embryo destruction. Embryo destruction is obvious if ESC-derived gametes are used (both patient-specific and non-patient-specific), but also the iPSC route might be troubling for those who oppose embryo destruction. While iPSC-derived gametes generally avoid the use of embryos, embryos will still have to be created in the research phase to ensure the safety of the technique. Many people find it less disrespectful to use spare IVF embryos (as they will be destroyed anyway), but those applications involving the destruction of embryos created from SCD-gametes that were differentiated from spare embryos will likely be opposed by those who object to the intentional creation/destruction of embryos. Only if the prohibition of embryo destruction is not regarded as an absolute rule, and if the importance of the goals of IVG (whether reproductive or scientific) outweigh the cons of creating and destroying embryos, can those who oppose embryo destruction accept IVG in general.

Conclusion

Having a genetically related child is a highly valued goal in many people’s lives. Still, it is not easy to justify as the benefits of this wish are unclear. When the wish is accompanied by possible health risks for the offspring, society and the future parents will have to decide what risk is acceptable. In this balancing act, the existence of alternatives has to be taken into account. Donor gametes are such an alternative in most circumstances. However, this solution is more complicated from the psychosocial point of view given the increasing value attributed to genetic relationships.

References

Opportunities for Female Contraception

Fertility requires interaction between the oocyte and the sperm. During intercourse, ejaculation results in the release of hundreds of millions of sperm in the vagina, near the opening of the uterine cervix. Sperm penetrate the cervical mucous and move through the lumen of the uterus into the oviduct (also called the fallopian tube or uterine tube). The oocyte (also known as the egg or ovum) leaves the ovary at ovulation, enters the oviduct through the fimbria, and is propelled through the oviduct and toward the uterus by the movement of cilia and muscle contractions of the oviduct. Fertilization, the fusion of oocyte and sperm, occurs in the oviduct. After fertilization, the single cell embryo, or zygote, continues to move through the oviduct and toward the uterus as the early cell divisions of embryonic development get underway.

The oocyte develops within the ovarian follicle. The mature ovarian follicle (also called a dominant, ovulatory, or Graafian follicle) produces large amounts of the steroid hormone estrogen, which enters the circulation. High serum levels of estrogen stimulate the anterior pituitary to release a large amount or "surge" of LH. This surge of LH acts at the ovarian follicle to initiate a series of events that culminate in ovulation, including rupture of the follicle and release of the oocyte. After ovulation, the ruptured follicle is transformed into a corpus luteum and produces large amounts of the steroid hormone progesterone.

Estrogen and progesterone stimulate changes in the woman's body that affect fertility. Estrogen stimulates the oviduct to produce fluid and increases muscle contractions, which assist the movement of the oocyte from the fimbria and toward the uterus. Estrogen results in the production of a thin, watery cervical mucous, which is easily penetrated by sperm moving from the vagina into the uterus and toward the oviduct. Estrogen causes the endometrial lining of the uterus to regrow after menstruation. In turn, progesterone reduces fluid secretion and muscle contractions in the oviduct, limiting oocyte entry into the oviduct and transport through the oviduct. Progesterone increases the viscosity of cervical mucous, reducing sperm transit from the vagina to the uterus and oviduct. Progesterone also acts at the endometrial lining of the uterus to prepare for implantation and pregnancy. Falling progesterone levels after a period of progesterone exposure causes shedding of the uterine endometrium or menstruation. However, continuous exposure to progesterone prevents growth and development of the uterine endometrium.

Structure and function of the female reproductive tract offers many opportunities to intervene and prevent fertility (Table 1). Barrier methods prevent movement of sperm from the vagina, thereby preventing fertilization. Occlusion of the oviducts also prevents sperm–oocyte interaction. Spermicides damage or destroy sperm cells, so sperm are unable to fertilize the oocyte. Chemical spermicides and the intrauterine device (IUD) utilize this approach to fertility prevention. Hormonal contraception disrupts many aspects of female reproductive function, ultimately reducing fertility. Behavioral methods to prevent pregnancy include abstinence, periodic abstinence, and withdrawal of the penis from the vagina prior to ejaculation.
Selection of a Contraceptive Method

There are many considerations for selection of a contraceptive method. Permanent contraception eliminates the possibility of all future pregnancies. Reversible contraceptives can prevent pregnancy in the short-term while preserving long-term fertility. Contraception can be used with the intention of preventing all pregnancies. However, reduction of overall family size by increasing time interval between pregnancies can also be achieved with contraception. When selecting a contraceptive method, a woman may also consider safety, effectiveness, cost of the method, how often the user needs to employ the contraceptive, whether the method requires action immediately before intercourse, side effects caused by use of the method, impact on the sexual experience, if her partner should be involved, and whether a clinician must be consulted to acquire or employ the method properly.

Steroid Hormones as Components of Contraceptives

Steroid hormones, including estrogen and progesterone, are important to the proper function of the female reproductive system. High levels of estrogen are characteristic of the first half of the menstrual cycle. During this period of follicle growth and maturation, estrogen supports the health of reproductive tract organs including the oviduct, uterus, and cervix. Estrogen also increases the number of progesterone receptors in these organs. After ovulation, the follicle transforms into the corpus luteum, which produces large amounts of progesterone. Reproductive tract organs respond to progesterone via progesterone receptors to decrease oviductal motility, thicken cervical mucous, and prepare the uterine endometrium for possible implantation. Progesterone also decreases the number of estrogen receptors in these tissues, decreasing the effects of estrogen and limiting the ability of estrogen to increase progesterone receptor numbers.

Progesterone or a progesterone-like molecule (progestins) is an essential component of all hormonal contraceptives. As described earlier, progesterone decreases many reproductive tract functions required for fertilization. Progesterone also decreases estrogen action at these tissues due to the decrease in estrogen receptors. Finally, progesterone prevents the release of surge levels of LH, so LH cannot initiate events within the ovary that lead to ovulation, including follicle rupture and release of the oocyte. Many hormonal contraceptives also include an estrogen to reduce unwanted and unpredictable uterine bleeding (often called breakthrough bleeding) and to help maintain the overall health of nonreproductive tissues, such as the bone, skin, and heart.

The development of synthetic, orally active progestins and estrogens was a major advance in female contraception. Progestins, including progesterone and 17α-hydroxyprogesterone, and estrogens, including estradiol and estrone, are produced in the body primarily by the ovary. For a contraceptive, circulating levels of steroid hormones must be maintained at relatively constant levels. Natural progestins and estrogens circulate in the bloodstream for several hours after production and then are removed from circulation by the liver and kidneys. Natural steroid hormones are damaged by passage through the digestive system, so oral administration of progesterone and estrogen is impractical. For these reasons, use of naturally occurring steroid hormones would require frequent readministration.

These limitations were overcome with the development of synthetic progestin and estrogen molecules. Synthetic hormones maintain bioactivity after oral administration, passage through the digestive system, and uptake into the circulation. Synthetic hormones can also be administered via transdermal patches, subcutaneous implants, and injections. Synthetic hormones remain

Table 1 Most effective contraceptive method used in the past month by US women in 2012

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of users</th>
<th>Percent of women aged 15–44</th>
</tr>
</thead>
<tbody>
<tr>
<td>The pill</td>
<td>9,720,000</td>
<td>16.0</td>
</tr>
<tr>
<td>Female permanent contraception</td>
<td>9,443,000</td>
<td>15.5</td>
</tr>
<tr>
<td>IUD</td>
<td>3,884,000</td>
<td>6.4</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>1,817,000</td>
<td>3.0</td>
</tr>
<tr>
<td>Progestin injection</td>
<td>1,697,000</td>
<td>2.8</td>
</tr>
<tr>
<td>Vaginal ring</td>
<td>759,000</td>
<td>1.2</td>
</tr>
<tr>
<td>Periodic abstinence</td>
<td>509,000</td>
<td>0.8</td>
</tr>
<tr>
<td>Progestin implant</td>
<td>492,000</td>
<td>0.8</td>
</tr>
<tr>
<td>Hormone patch</td>
<td>217,000</td>
<td>0.4</td>
</tr>
<tr>
<td>Emergency contraception</td>
<td>91,000</td>
<td>0.2</td>
</tr>
<tr>
<td>Other female methods</td>
<td>133,000</td>
<td>0.3</td>
</tr>
<tr>
<td>Male methods</td>
<td>8,823,000</td>
<td>14.5</td>
</tr>
<tr>
<td>No method; at risk of unintended pregnancy</td>
<td>4,175,000</td>
<td>6.9</td>
</tr>
<tr>
<td>No method; not at risk of unintended pregnancy</td>
<td>19,126,000</td>
<td>31.4</td>
</tr>
</tbody>
</table>

Includes diaphragm, female condom, spermicide, cervical cap, and sponge.
Includes male condom and male sterilization (vasectomy).

Table adapted with permission from Guttmacher Institute, Contraceptive use in the United States, Fact Sheet, New York: Guttmacher Institute, 2016, https://www.guttmacher.org/fact-sheet/contraceptive-use-united-states.
in the circulation longer than natural steroids because their chemical structure prevents rapid modification, conjugation, and elimination in the liver and kidneys. Synthetic progestins and estrogens activate progesterone receptors and estrogen receptors, respectively, but often with higher potency than natural progesterone and estrogen. These are just some of the reasons that synthetic progestin and estrogen molecules are used as components of hormonal contraceptives.

Synthetic progestins that bind to progesterone receptors but block activity of progesterone receptors are called antiprogestins. These synthetic hormones can prevent fertility by disrupting the activity of progesterone in reproductive tissues. The most common contraceptive actions of antiprogestins are to (1) reduce or eliminate the ovulatory LH surge and (2) block necessary actions of progesterone within the ovulatory follicle prior to ovulation. Actions of antiprogestins in the uterus to disrupt implantation or early stages of placenta development are not contraceptive since these actions occur after fertilization has taken place.

Hormonal Contraception: Combination Hormonal Contraceptives

The first combination oral hormonal contraceptive, commonly known as The Pill, contained large amounts of a synthetic estrogen and a synthetic progestin. Since The Pill was introduced in 1960, there has been a steady decrease in the concentration of the progestin and the estrogen in oral contraceptive products. Products with lower steroid doses remain highly effective at preventing pregnancy with a substantial reduction in side effects, especially deep vein thrombosis and other cardiovascular events.

The regimen of oral hormonal contraceptives was initially designed to mimic the 28-day interval between menstruations. A common formulation involved 21 days of steroid-containing pills, with 7 days of placebos to allow circulating steroid hormone levels to fall and permit menstruation. Changes in duration of administration have resulted in a variety of regimens, including 24 days of steroids with 4 days of placebo, continuous steroid administration for 84 days, and continuous steroid administration for 365 days. Continuous pill use increases the incidence of no menstrual bleeding, which is highly acceptable to some women. However, unscheduled endometrial bleeding, known as breakthrough bleeding, can occur with any steroid regimen. Oral hormonal contraceptives containing estrogen and progestin have a pregnancy rate of 1%–4% in well-controlled clinical trials (Table 2).

Hormonal contraception is also available in nonpill forms. Estrogen plus progestin contraceptives can be administered via a transdermal delivery system, vaginal ring, or injection. Transdermal and vaginal delivery use a regimen of 21 days of active hormone and 7 days of no hormone to permit menstruation and approximate the length of the typical menstrual cycle. The monthly injection has a duration of efficacy of 28 days and must be administered every 4 weeks. The contraceptive efficacy of these methods is very high, with pregnancy rates of 1%–2% in well-controlled clinical trials.

The lower dose combination oral hormonal contraceptive products in current use are relatively safe. The principal significant adverse events resulting from use of combination oral hormonal contraception are increased incidence of venous thrombosis in the leg and pulmonary emboli. Use of a modern, low-dose combination oral hormonal contraceptive doubles a woman’s risk for these cardiovascular events. However, the risk of cardiovascular events associated with these contraceptives is much lower than the risk of cardiovascular events associated with pregnancy. Women with certain inherited clotting disorders or a family history of certain cardiovascular disorders should consider other methods of contraception. Women over the age of 35 who have hypertension, have diabetes mellitus, or smoke cigarettes are at increased risk of stroke and myocardial infarction. In women without these risk factors, low-dose combination oral hormonal contraceptives can be used during a woman’s reproductive years up to menopause without a significant age-related increased risk of cardiovascular disease.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Pregnancy rates (number out of 100 women) during the first year of continuous use of the contraceptive method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Perfect usea</td>
</tr>
<tr>
<td>Intruterine device—levonorgestrel</td>
<td>0.1</td>
</tr>
<tr>
<td>Progesterin implant</td>
<td>0.1</td>
</tr>
<tr>
<td>Progesterin injection</td>
<td>0.3</td>
</tr>
<tr>
<td>Female permanent contraceptiona</td>
<td>0.5</td>
</tr>
<tr>
<td>Intruterine device—copper</td>
<td>0.6</td>
</tr>
<tr>
<td>Oral combined hormonal</td>
<td>1</td>
</tr>
<tr>
<td>Oral progestin only</td>
<td>0.5</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>4</td>
</tr>
<tr>
<td>Diaphragm with spermicide</td>
<td>6</td>
</tr>
<tr>
<td>Female condom</td>
<td>5</td>
</tr>
<tr>
<td>Periodic abstinence</td>
<td>5</td>
</tr>
<tr>
<td>Spermicide alone</td>
<td>6</td>
</tr>
<tr>
<td>No contraception</td>
<td>85</td>
</tr>
</tbody>
</table>

aFrom product label or other information.

aIncludes both surgical and nonsurgical methods.
Side effects include nausea, weight gain, mood disturbances, breast tenderness, headache, and unscheduled endometrial bleeding. These side effects may disappear or improve with continued use. However, for some women, side effects are significant and result in discontinuation of the method.

Typical failure rates for oral, transdermal, vaginal, or injectable combined hormonal contraceptives are approximately 9% and are likely the result of compliance errors by the user.

Hormonal Contraception: Progestin-Only Methods

Progestins inhibit the pituitary LH surge and, therefore, prevent ovulation as the principal mechanism of action. Additional actions of progestins to decrease the likelihood of fertilization contribute to the high effectiveness of progestin contraceptives. Clinical testing of synthetic progestin-only oral methods reports pregnancy rates of <1%. Typical user’s failure rates for daily oral progestin-only methods are about 9%.

Contraceptive efficacy can be enhanced with delivery systems that provide extended duration of progestin activity and minimize or eliminate the need to remember to use the contraceptive. Progestins can be delivered by subcutaneous implants, vaginal ring, IUD, and injection. These methods are termed long-acting reversible contraceptives (LARCs). Subcutaneous implants, vaginal rings, and IUDs contain the progestin within a plastic membrane. The plastic membrane controls the amount of hormone released each day, resulting in a duration of action of 1 month to 8 years, depending on the individual device. The high efficacy associated with these methods is due, in large part, to the fact that the user does not need to remember to use the method on a daily or weekly basis. Implants, vaginal rings, and IUDs can be removed for relatively rapid return to fertility. However, injections form a subcutaneous depot of progestin that cannot be removed. As such, return to fertility after discontinuing injections can require up to a year. The delivery system has a significant effect on typical user pregnancy rates with progestin-only contraceptives, making LARCs highly effective. Theoretical and typical user pregnancy rates are both <1%.

The primary side effect of progestin-only contraceptives is unscheduled and irregular endometrial bleeding. This bleeding does not reflect a malignancy but is the principal reason for discontinuation of progestin-only methods. Progestins have none of the estrogen-related significant side effects, most importantly blood clots. For this reason, hormonal contraceptives that contain progestin with no estrogen may be appropriate for women at higher risk of cardiovascular issues, including older women and women who smoke. Progestin-only contraceptives are appropriate for breastfeeding women since the estrogen component of combined hormonal contraceptives interferes with lactation.

Intrauterine Devices

The IUD is a T-shaped plastic device that is placed within the lumen of the uterus, such that the arms of the “T” point toward the oviducts, with the lower end of the “T” pointing toward the cervix. The plastic of the IUD has contraceptive action, creating a sterile inflammatory response that has spermicidal activity. However, all currently available IUDs are designed to have enhanced activities. Some IUDs include copper wound on the arms and stem, which enhances the spermicidal activity. Other IUDs include a progestin within the stem of the device. With progestin-releasing IUDs, locally elevated progestin within the uterine lumen decreases endometrial development and reduces or eliminates menstruation; progestin also decreases uterine contractions to reduce the rate of spontaneous expulsion of the IUD.

An IUD should be placed in the uterus by an experienced clinician. For insertion, the arms of the T are folded parallel to the stem of the device and held in place with an inserter. The inserter is introduced through the cervix and into the uterine cavity. Once properly placed, the IUD is deployed and achieves its active T shape. Each IUD has a different length of time approved for use, with a range of 5–10 years. Fertility is typically restored within a few weeks of IUD removal. IUDs provide highly effective protection against pregnancy, with theoretical and typical user pregnancy rates <1%.

Barrier Methods

Perhaps the best known barrier method is the male condom. The female condom is also a barrier contraceptive method. Female condoms are made out of latex, nitrile, or polyurethane. The female condom is designed to fit into the vagina, with a plastic ring anchoring it in the upper vagina. The condom covers the vaginal walls and extends outside of the vagina where a second ring prevents it from being pressed inward at the time of intercourse. Similar to the male condom, sperm are retained within the female condom after ejaculation, preventing sperm transit from the vagina to the cervix. Clinical studies of consistent use are associated with pregnancy rates of 4%–5%, while typical use pregnancy rates of 21% for the female condom have been reported. Condoms, including both male and female condoms, are highly recommended for use by couples at risk for sexually transmitted infections.

The diaphragm is a round device with a pouch, and the outer edge contains a spring designed to hold the device in place in the upper vagina. The uterine cervix fits into the diaphragm pouch, which is filled with a spermicide by the user prior to insertion. The diaphragm should be inserted before penile penetration and left in place for 1 h after ejaculation. Diaphragms are reusable and come in a variety of sizes. A diaphragm should be fitted by a clinician; the fit should be checked regularly, especially after pregnancy
or significant weight gain/loss. Diaphragms used consistently and correctly have a failure rate of 6%. Typical use failure rates are 20% for the diaphragm.

The cervical cap is a reusable contraceptive device similar to the diaphragm, except that the cap is smaller and fits tightly around the opening to the cervix. Effectiveness is enhanced when used with a spermicide. A cervical cap should be fitted by a clinician and refitted after pregnancy. Failure rates with consistent and typical use are slightly higher than for the diaphragm.

Side effects of barrier methods are minimal. Individuals with allergies to latex should select products that do not contain latex.

Spermicides

Spermicides are detergents that damage the cell membrane of the sperm. Spermicides must be placed within the vagina before penile penetration to be effective. The spermicide most commonly available is nonoxynol-9.

Spermicidal products include foam, creams, gel, vaginal suppositories, and vaginal film. When a spermicide is used as the only method of contraception, the pregnancy rate is 6% in clinical studies but 26% with typical use. Spermicides are often combined with a barrier method, such as a condom or diaphragm.

Spermicides are also impregnated into other contraceptive products to enhance efficacy. The contraceptive sponge is a single-use contraceptive that is inserted into the vagina to cover the uterine cervix. The sponge contains spermicide, which disables or destroys sperm during transit from the vagina to the uterus. The sponge must be inserted prior to intercourse and should be left in place for at least 6 h after intercourse. In women who have never given birth, consistent and correct use of the contraceptive sponge has a failure rate of 1%–9%; typical use failure rates are 11%–24%. Typical failure rates are higher for women who have experienced pregnancy (24%–32%).

Side effects with spermicides are minimal.

Emergency Contraception

Emergency contraception is intended for use after unprotected intercourse, in cases where a contraceptive method was not used or when the primary contraceptive method may have failed.

Two forms of oral emergency contraception, also called morning-after pills, are currently available in the United States. A variety of products, including Plan B®, contain the progestin levonorgestrel as the active ingredient. Another option is ulipristal acetate, a progesterone receptor modulator, currently marketed as Ella®. These progestins prevent pregnancy by preventing the LH surge and, therefore, ovulation. For this reason, emergency contraceptive pills are most effective when taken within 72 h of intercourse. Emergency contraception does not interfere with fertilization or implantation, so these medications are less effective when taken more than 3 days after intercourse. Emergency contraceptives are also less effective in obese women. Levonorgestrel-containing emergency contraceptives reduce the estimated pregnancy rate by 33%. Ulipristal acetate is more effective, reducing the estimated pregnancy rate by 66%. Side effects are similar to those reported for other hormonal contraceptives and include nausea, headache, uterine cramping, unscheduled uterine bleeding, fatigue, and breast tenderness.

The copper IUD is a highly effective emergency contraceptive method. The copper IUD can be inserted up to 5 days following intercourse as an emergency method. Following insertion, the copper IUD will provide continued contraceptive action for up to 10 years unless removed.

Permanent Contraception

Permanent female contraception (also called sterilization) involves obstruction of the oviducts. Surgical tubal ligation is typically performed as a laparoscopic outpatient procedure. During surgery, the oviducts are severed or banded to prevent transit of oocytes or sperm, and major side effects are those of surgery. Nonsurgical methods involve introduction of a device inserter through the cervix, a procedure called a hysteroscopy. During the procedure, the contraceptive device is placed into the opening between each of the oviducts and the uterus. The contraceptive device creates a local inflammatory response and facilitates fibrosis, which blocks the oviduct. Complete blockage of both oviducts can take up to 3 months to be complete, so the woman should use an alternative, effective form of contraception during this period. Reversals of tubal obstruction have been reported. However, tubal obstruction by any method should be considered to be permanent. Female permanent contraception is highly effective, with a pregnancy rate of <1%.

Removal of the uterus (hysterectomy) for contraceptive purposes is not performed in the United States.

Behavioral Contraceptive Methods

The most utilized nonhormonal contraceptive method is withdrawal or removal of the penis from the vagina prior to ejaculation. While well-controlled clinical trials are lacking, this method is thought to have an overall contraceptive failure rate of approximately 19%.
Periodic abstinence, also known as natural family planning, the rhythm method, or the symptothermal method, is based on the concept that intercourse can result in pregnancy only during a few days in each menstrual cycle. Pregnancy can be avoided by (1) predicting when a woman is fertile and (2) abstaining from intercourse, using a barrier contraceptive or using withdrawal during the fertile period.

The fertile period of each menstrual cycle is defined as the days when intercourse can result in fertilization and formation of an embryo. Sperm travel from the vagina to the oviduct, where fertilization occurs. Sperm can survive in the oviduct for about 5 days, waiting for the oocyte to travel from the ovary after ovulation. The 5 days where intercourse can result in fertilization include the 4 days before ovulation and the day of ovulation.

Predicting the day of ovulation requires regular, consistent, and noninvasive monitoring of the woman's menstrual cycle. Purchased kits can be used to measure urinary LH and determine the day of the LH surge. Progesterone increases basal body temperature, so daily oral temperature measurements can be charted to determine the days of the luteal phase. Cervical mucous is watery during the follicular phase and viscous during the luteal phase. A sample of cervical mucous can be assessed for presence and consistency in order to determine if a woman is in the follicular phase or luteal phase of her menstrual cycle. Menstruation signals the first day of the follicular phase. Charting these changes on a calendar can document if a women has consistent, regular cycles of similar length. If so, then a prediction of the fertile period can be made for future menstrual cycles, with the fertile period beginning at least 3 days before the expected LH surge and lasting for a total of 5 days. During the fertile period, a woman can choose to avoid intercourse or use an alternative form of contraception to avoid pregnancy.

Few women have such predictable menstrual cycles, contributing to a high pregnancy rate of 25% for this method for contraception. However, periodic abstinence can be used successfully by highly motivated couples to increase time between pregnancies and reduce overall family size.

Summary

There are a variety of contraceptive options currently available for sexually active women. Choices for reversible contraception include highly effective hormonal methods and less effective barrier methods. IUDs and other LARCs provide effective, long-lasting, and reversible pregnancy prevention. Methods that obstruct the oviducts are highly effective and should be considered permanent. When selecting a method, effectiveness and reversibility should be balanced with other considerations, including safety, cost, and side effects.

Further Reading

Relevant Websites

Male contraception

Peter Y Liu, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; and Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute (LA BioMed), Torrance, CA, United States
© 2018 Elsevier Inc. All rights reserved.

Introduction

The Need for Contraception

Unintended pregnancies are unwanted, mistimed, or both unwanted and mistimed. Almost half of all pregnancies that occur in industrialized nations are unintended. Unintended pregnancies increase the risk for lower birth weights, poorer health outcomes, retarded development, and compromised education in the offspring, as well as postpartum depression and ongoing mental health problems in the mother. These adverse health and social consequences impact the entire family, and result in substantial societal costs that have been estimated to exceed $15 billion in a single year in the United States alone. Broadening contraceptive choice by allowing both men and women to fully share family planning responsibilities would promote important, but largely unmet individual, couple, and societal needs; reduce the number of elective terminations; and decrease overpopulation.

In the United States, 30% of couples rely solely on a male-directed method (male sterilization, condom, withdrawal). However, the proportion of all couples that are using male-directed methods varies greatly from 0% to 50% throughout the world. Given this variability, the median (rather than the average) proportion of couples using male-directed methods across over 60 nations surveyed is approximately 10% (United Nations, 2015). After excluding couples that are not using any male or female-directed contraceptive method, about 20%, and up to 80% in some countries, rely on a male-directed method. These data confirm that many couples already depend upon male-directed methods despite such methods being far from ideal. Usage would presumably be even greater if male-directed methods could be developed that were more effective, convenient, reversible, and safe.

Features of an Ideal Contraceptive

An ideal male-directed contraceptive is safe, rapidly and consistently effective (i.e., usable by all men) and rapidly and consistently reversible (i.e., reversible in all men). In contrast, the two currently available male-directed methods are not widely acceptable because vasectomies are not easily reversible and condoms are not very effective. During the last few decades, many new female-directed reversible hormonal contraceptive options including pills, patches, injections, implants, and intrauterine devices with various drug and dose combinations have been marketed. In contrast, there has not been a single reversible male-directed contraceptive developed over this same period. Currently, the only reversible male-directed method available is the condom, which was invented 400 years ago and has failure rates as high as 20% in the first year. New and effective options are needed to broaden choice for couples.

Male Hormonal Contraception

Summary

More than 2000 eugonadal men with unimpaired fertility at baseline have been exposed to over 2000 person-years of male hormonal contraception (MHC, consisting of androgens with or without progestins) to assess contraceptive efficacy (i.e., the ability to prevent pregnancies) (Table 1). These studies show the effectiveness, reversibility and short-term safety of MHC. MHC satisfies many of the requirements for an ideal contraceptive method that is male-directed. The hope is that a range of MHC treatment options will become available to fulfill differing needs and preferences of couples.

Androgen-progestin MHC treatment regimens reduce sperm output and induce a predictable degree of infertility by exploiting the negative feedback suppression of pituitary gonadotropin secretion by sex hormones. The goal of male hormonal contraceptive methods, according to expert consensus opinion, is to achieve and maintain severe oligozoospermia, defined as a sperm concentration in the ejaculate that is below 1 million/mL, in all users. If this can be consistently achieved and maintained, then contraceptive failure (i.e., pregnancy) rates of 0.6 (95% confidence interval CI 0.09–2.7) % per year can be expected (WHO Task Force on Methods for the Regulation of Male Fertility, 1996). These failure rates are comparable to those achieved with perfect use of female hormonal contraceptive methods. Even higher failure rates of 1.4 (0.4–3.7) % occur with a higher threshold of 3 million/mL. These data indicate that the degree of infertility induced can be predicted from the semen analysis, and is consistent with semen analysis being the most widely used clinical measure of spermatogenesis and male fecundity.

Mechanism of Action

Spermatogenesis is tightly regulated by the hypothalamo-pituitary-gonadal network through stimulatory feedforward and inhibitory feedback signaling (Liu and Veldhuis, 2014). The decapeptide, gonadotropin-releasing hormone (GnRH), is secreted in a pulsatile and synchronized fashion by approximately 1200 specialized neurons in the arcuate-nucleus of the mediobasal hypothalamus of the human. GnRH is secreted in minute quantities directly into a portal microvasculature system, where anatomical proximity
allows entrainment of pituitary gonadotropes to secrete luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Pulsa-
tile LH and pulsatile FSH circulate and act on distant testicular Leydig and Sertoli cells, to stimulate testosterone production and spermatogenesis, respectively. Circulating testosterone inhibits both hypothalamic GnRH, and pituitary LH and FSH secretion. The feedback inhibition of pituitary gonadotropins is through local aromatization to estradiol. Both FSH and high intratesticular levels of testosterone are required for spermatogenesis.

Male hormonal contraception exploits this negative feedback inhibition to impair spermatogenesis, in a manner that is analogous to female hormonal methods that prevent ovulation. The administration of exogenous androgens, with or without the addition of progestins, suppresses GnRH, LH, and FSH, reduces testicular testosterone concentrations and impairs spermatogenesis. In this context, exogenous progestins act to augment inhibition of the secretion of pituitary gonadotropins, so that unequivocally supraphysiological exogenous testosterone administration is no longer required. Other compounds could also be used alone or in combination to suppress pituitary gonadotropins more completely. Some of these, such as GnRH antagonists or non-pulsatile GnRH analogues that downregulate the GnRH receptor, have already been shown to reduce sperm output in humans, whereas other putative compounds that act upstream of the GnRH neuron through the kisspeptin-neurokinin B-dynorphin pathway remain to be directly tested for contraceptive efficacy. In all male hormonal contraceptive methods, testosterone or another androgen must be administered to maintain systemic testosterone exposure, in order to prevent the symptoms and consequences of unwanted hypogonadism.

Suppression of LH and FSH acutely decreases type B spermatogonia and blocks spermatogonial differentiation. A reduction in round and elongated spermatid production, and ultimately spermatooza concentrations in the ejaculate, will therefore occur, but requires several weeks due to the duration of the spermatogenic cycle. Whereas azoospermia, the complete absence of spermatooza in the ejaculate, would render fertilization impossible, this has not been consistently achievable with MHC in all users, nor has it proved necessary. Mechanistically, the physiological bases to explain why 5%–15% of men do not ever suppress sperm output to the desired goal of <1 million/mL, are unknown. It could be that some men have low basal levels of gonadotropin independent spermatogenesis. Alternatively, the administration of exogenous testosterone itself could raise intratesticular testosterone by advection or diffusion sufficiently to maintain a low level of spermatogenesis in some men. In fact, these very low concentrations of intratesticular testosterone are able to maintain spermatogenesis in rodents and non-human primates; and there is no definable dose of testosterone that would both maintain sexual function and suppress gonadotropins without also activating spermatogenesis in rodents. Indirect evidence in humans supports this contention since the use of higher effective testosterone doses as part of MHC results in a greater proportion of men maintaining a low level of spermatogenesis (i.e., less complete suppression of sperm output) (Liu et al., 2008). However, intratesticular testosterone concentrations have not been consistently different between men who respond with lower or higher sperm output while taking MHC (Roth et al., 2016). Nevertheless, using the lowest effective dose of testosterone is advisable to reduce the theoretical risk of breakthrough spermatogenesis, and decrease androgenic side effects such as acne and male pattern balding.

Table 1
Contraceptive failure rates of MHC

<table>
<thead>
<tr>
<th>References</th>
<th>Regimen</th>
<th>Enrolled (n)</th>
<th>Target sperm concentration (M/mL)</th>
<th>Documented failure to suppress by 6 months (%)</th>
<th>Median time to enter efficacy (months)</th>
<th>Maximum treatment duration (months)</th>
<th>Entered efficacy (n)</th>
<th>Sperm rebound during efficacy (%)</th>
<th>Pregancies during efficacy (%)</th>
<th>Failure rate/100 couple years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gu et al. (2009)</td>
<td>aTU</td>
<td>1045</td>
<td>1</td>
<td>43 (4)</td>
<td>3.6</td>
<td>30</td>
<td>855</td>
<td>10 (1.2)</td>
<td>9 (1.1)</td>
<td>1.1 (0.4–1.8)</td>
</tr>
<tr>
<td>WHO (1996)</td>
<td>bTE</td>
<td>399</td>
<td>3c</td>
<td><8 (2)c</td>
<td>2.2</td>
<td>18</td>
<td>349</td>
<td>4 (1.1)</td>
<td>4 (1.1)</td>
<td>1.4 (0.4–3.7)</td>
</tr>
<tr>
<td>Behre et al. (2016)</td>
<td>aTU + NET-EN</td>
<td>320</td>
<td>1</td>
<td>9 (3)</td>
<td>3</td>
<td>18</td>
<td>266</td>
<td>6 (2.3)</td>
<td>4 (1.5)</td>
<td>2.2 (0.8–5.8)</td>
</tr>
<tr>
<td>Gu et al. (2003)</td>
<td>aTU</td>
<td>308</td>
<td>3</td>
<td>9 (3)</td>
<td>2–3</td>
<td>12</td>
<td>296</td>
<td>6 (2.0)</td>
<td>1 (0.3)</td>
<td>2.3 (0.5–4.2)</td>
</tr>
<tr>
<td>WHO (1990)</td>
<td>cTE</td>
<td>271</td>
<td>0</td>
<td>68 (25)</td>
<td><6</td>
<td>18</td>
<td>157</td>
<td>11 (7.0)</td>
<td>1 (0.6)</td>
<td>0.8 (0.02–4.5)</td>
</tr>
<tr>
<td>Turner et al. (2003)</td>
<td>dTi + DMPA</td>
<td>55</td>
<td>1</td>
<td>2 (4)</td>
<td>1.8</td>
<td>18</td>
<td>51</td>
<td>0f</td>
<td>0</td>
<td>0 (0.0–8.0)</td>
</tr>
<tr>
<td>McLachlan et al. (2000)</td>
<td>eTi + various</td>
<td>36</td>
<td>1</td>
<td>8 (22)</td>
<td>Not reported</td>
<td>18</td>
<td>21</td>
<td>4 (19.0)</td>
<td>0</td>
<td>Not reported</td>
</tr>
</tbody>
</table>

a Testosterone undecanoate 500 mg/month (with 1000 mg loading dose).

b Testosterone enanthate 200 mg/week.

c Original threshold was 5 M/mL, but data shown here is for those who suppressed to no more than 3 M/mL.

*Testosterone undecanoate 1000 mg and norethisterone enanthate 200 mg every 8 weeks.

d Testosterone implant 800 mg every 4 or 6 months with depot medroxyprogesterone acetate 300 mg every 3 months.

e Four had sperm rebound and symptoms of androgen deficiency in the group receiving testosterone implants 800 mg every 6 months.

f Testosterone implant 800 mg or 1200 mg every 3 months with or without finasteride.
Acceptability of MHC by Couples

Surveys of actual self-reported behaviors show that the male partner is solely responsible for the couple’s contraceptive needs in a large proportion, indicating that women can and do trust their partners to share the responsibility to space and time pregnancies. Consistent with this finding, women surveyed concerning their attitudes to a theoretical MHC also indicate that this would be acceptable to them, provided it was a decision shared with their male partner, not with any man in general (Wang et al., 2016). At least a quarter of men, and in some cases many more, would be willing to use male hormonal contraception. These data together suggest that MHC would be widely used by men in cooperation with their female partners, if and when such methods become available. Furthermore, these surveys of a theoretical MHC were conducted in many large cities in Asia, North and South America, Europe and Africa, and indicate that MHC is acceptable by many couples from very diverse backgrounds throughout the world.

However, marked geographical variability in theoretical acceptability was apparent, and is consistent with data of actual usage of existing male-directed methods (male sterilization, condom, withdrawal) discussed earlier. Understanding the cultural, religious or other attitudes that underpin this variability may inform strategies to improve usage of male-directed methods in general. Societal changes in attitudes as well as drug development may therefore both be needed to increase usage.

Men participating in MHC studies report that intramuscular injections every 1–3 months, subcutaneous implants every 3 months, or transdermal gels applied every day are acceptable contraceptive methods; however the reports may be biased by selection for, and active participation in, a clinical trial. Reliably understanding the factors that influence acceptability of MHC may therefore require such methods to become acceptable in the first place. Surveys of men contemplating the use of a theoretical MHC product indicate greater acceptability with oral mode of delivery, and higher income and education. However, female-directed methods that require daily dosing are less reliable due to irregular compliance, compared with long-term injectable and implantable contraceptive options. Male-directed methods that also require daily dosing (such as oral or transdermal delivery) are therefore also likely to be less reliable with typical, rather than perfect use. Nevertheless, data from potential users, and actual participants in clinical trials of specific MHC, both indicate that MHC is acceptable to many men and their partners. Multiple MHC treatment options, as exists for female-directed methods, need to be developed to broaden choice.

Effectiveness of MHC

The contraceptive effectiveness of MHC is highly predictable and varies depending on the threshold sperm output achieved, and how consistently suppression to this threshold can be maintained. Mechanistically, this contrasts greatly with hormonal methods in women which either prevent, or do not prevent, ovulation during each menstrual cycle. Men have been exposed to over 3000 person years of androgens with or without progestins, administered to determine the effect on sperm output, or on contraceptive failure rates. Although androgen-progestin drug combinations account for less than one-fifth of the total exposure, many different drug combinations have already been evaluated. This is because the specific delivery, dose and drug combination influences the rate and extent of spermatogenic suppression, which must be individually quantified in order to plan for a large scale contraceptive efficacy study (Liu et al., 2008). To date, only testosterone, or combinations of testosterone with a progestin, have been evaluated to determine contraceptive failure rates (Table 1). However, two novel synthetic androgens, 7-alpha-methyl-19-nortestosterone and dimethandrolone (7alpha, 11beta-methyl-19-nortestosterone), have undergone preliminary testing of formulation and dose in humans, with suppression of sperm output as the surrogate endpoint. Both androgens are considerably more potent than testosterone, dimethandrolone also exhibits progestational activity, but cannot be aromatized, whereas 7-alpha-methyl-19-nortestosterone lacks progestational activity, is aromatized, but is resistant to 5-alpha reduction. These biochemical characteristics may allow for the development of a single oral agent with both androgenic and progestational activity (dimethandrolone), or a more favorable risk profile that spares the prostate from androgenization by preventing 5-alpha reduction (7-alpha-methyl-19-nortestosterone). Other synthetic androgens could also be developed with specific properties designed to increase effectiveness or limit adverse effects.

Weekly supraphysiological testosterone therapy is a highly effective contraceptive (i.e., prevents pregnancies) and profoundly suppresses spermatogenesis through negative feedback inhibition of gonadotropins (WHO Task Force on Methods for the Regulation of Male Fertility, 1990, 1996; Table 1). Longer-acting testosterone formulations administered alone (McLachlan et al., 2000; Gu et al., 2003, 2009) or in combination with either depot medroxyprogesterone acetate (DMPA) (Turner et al., 2003) or norethisterone enanthate (NET-EN) (Behre et al., 2016) are also highly effective (Table 1). Individual large scale studies show contraceptive failure rates of 0.8%–2.3%, with upper 95% confidence limits of 1.8%–5.8% (Table 1). However, some of these studies did not target sperm concentration to <1 million/mL, and hence may not be applicable for future MHC development.

An integrated analysis of individual participant data of all then-available studies report that 50% and 85% of men suppress sperm output to concentrations compatible with reliable contraception (<1 million/mL), by 3 and 6 months, respectively (Liu et al., 2008). However, this analysis included many exploratory MHC regimens where drug dose and frequency had not yet been optimized. More realistic estimates would be obtained by only examining contraceptive efficacy studies, which are usually extensively tested and optimized. These show that 80%–95% of men suppress sperm output to a threshold of 1 million/mL by 3 months (Table 1). The timeframe for this reduction in sperm output compares favorably with the disappearance of sperm after vasectomy.

Progestin co-administration enhances both the rate and extent of sperm output suppression by up to two-fold (Liu et al., 2008). Certain progestins are likely to be more effective in suppressing sperm output than others, due to differences in binding and
activation of progesterone and other steroid receptors. Pharmacokinetic differences are known to explain variation in anovulatory potency and the ability to support pregnancy in women. The hope is that a fully optimized androgen-progestin combination could be utilized by all men within a practical timeframe. To date however, at least 5% of men enrolled in MHC trials never suppress spermatogenesis to levels required for reliable contraception, for mechanistic reasons that are not entirely clear. Another limitation of the method is that sperm rebound, which occurs when sperm suppression below the target threshold is not maintained, is observed in approximately 2% of men. Specifically, 20 (1.7%) of 1193 men who initially suppressed sperm output to below the target of 1 million/mL experienced sperm rebound (Table 1). There have not been systematic attempts to determine the characteristics of this group of men, and the mechanisms underlying sperm rebound are not known. Sperm rebound is analogous to breakthrough ovulation that can sometimes occur in women, particularly when using lower dose hormonal contraceptive methods. In men, it cannot be solely explained by poor compliance since study personnel administered MHC in many of these studies.

It is also possible that MHC may not universally suppress sperm output adequately in all men, even after extensive drug and dose optimization. Being able to predict non-suppression for any given drug and dose combination used for MHC would then be important. Systematic analyses show that Caucasian ethnicity and higher BMI are important predictors of non-suppression, although the effect of BMI is small and may not be clinically relevant (Liu et al., 2008). Slower spermatogenic suppression occurs in Asian men, and also with older age, higher baseline testosterone and higher initial sperm concentration, but the independent effect sizes of these latter parameters are small. The large and differing effects of ethnicity on the rate and extent of spermatogenic suppression observed between Caucasian and Asian men may eventually be explained by pharmacogenetic differences, which may ultimately unveil more specific methods to identify the small number of men who do not suppress sperm output adequately.

Reversibility of MHC

An integrated analysis of individual participant data of all then-available studies demonstrated that it is realistic to expect full recovery of spermatogenesis to levels consistent with normal male fertility for all men ceasing male hormonal contraceptives (Liu et al., 2006). At the time, normal male fertility was defined by a sperm concentration of at least 20 million/mL, although sperm concentrations of only 13–15 million/mL are now known to be sufficient, based on an analysis published in 2010 (Cooper et al., 2010). Recovery of sperm output to concentrations consistent with normal male fertility occurs in more than 50% of all men after 6 months, and over 90% of all men by 12 months. The remaining men, if not all men who should recover, do so within 24 months. Older age, Asian ethnicity, lower baseline LH concentration, higher initial sperm concentration and faster initial suppression of sperm output predicted faster recovery. Amongst treatment-related factors, shorter treatment duration and the use of shorter-acting testosterone formulations were associated with faster recovery. Treatment duration had the largest clinically important effect.

Since the publication of the integrated analysis, three large studies, including two contraceptive efficacy studies (Gu et al., 2009; Behre et al., 2016), have been completed (Gu et al., 2009; Mommers et al., 2008; Behre et al., 2016). The first study was conducted in China (Gu et al., 2009), and reported a median time of 7.6 months for sperm output to recover to 20 million/mL (Gu et al., 2009). This is considerably slower than the median recovery time of 3.4 (95%CI 3.2–3.5) months calculated from all previous studies, particularly since faster recovery would have been anticipated for this Asian population (Liu et al., 2006). However, the slower recovery was likely explained by the longer treatment duration of up to 30 months, compared with 12–18 months utilized in all other studies (Table 2). The timeframe for recovery of sperm output following cessation of MHC in this study was also consistent with the previous analyses: all except 17 men had recovered by 12 months, and by 15 months one man had a sperm concentration of 13 M/mL (and was then not followed up) and the other presumably never recovered due to intercurrent epididymitis (Gu et al., 2009). The second study was conducted in Europe (Mommers et al., 2008), and 354 men were randomized to receive placebo (53 men) or various regimens of testosterone and the progestin, etonogestrel, to assess suppression of sperm output. The use of a placebo was possible because sperm output, not contraceptive efficacy (i.e., pregnancy rates) was being assessed. Men were treated for 42 or 44 weeks, and amongst those who received active therapy, the median time to recover to a sperm concentration of 20 million/mL was 3.5 months, and by 16 months all men completing follow up had recovered. These data are also compatible with the earlier integrated analysis. Remarkably, two or three men treated with placebo had sperm concentrations < 20 million/mL at every assessment during the 24 week follow-up, and up to 14 men (28% of all men treated with placebo) did not consistently maintain sperm concentrations above 20 million/mL during the recovery period. These data from men treated with placebo indicates that supposed non-recovery of sperm output documented in a small number of men treated with MCH could represent regression to the mean, the occurrence of an intercurrent partially sterilizing illness, or both.

The final study was sponsored by the World Health Organization and was conducted in Europe, Asia, South America, and Australia (Behre et al., 2016). Men were treated with a testosterone-progestin combination for up to 18 months. 266 men suppressed sperm output to < 1 million/mL, and 96 of these men were discontinued because the study was prematurely terminated (see next section on adverse events). Unlike any of the earlier contraceptive efficacy studies, normal male fertility was defined by a sperm concentration of 15 million/mL or a total sperm count of 39 million per ejaculate, since contemporaneous analyses had established this lower threshold to be compatible with normal male fertility (Cooper et al., 2010). The men treated in this study therefore had a lower initial sperm concentration compared with all previous studies. Interestingly, recovery was slightly delayed, with the median time to recovery to this lower threshold being approximately 6.5 months. This delay is consistent with the earlier integrated analysis which showed slower recovery to either a sperm concentration of either 10 or 20 million/mL, with lower initial sperm concentration. The extent of recovery was also compatible with the earlier integrated analyses since all participants, except 6, recovered by 12 months, and another 5 by 18 months. One participant did not recover even after 4 years, but sperm concentrations were not
<table>
<thead>
<tr>
<th>References</th>
<th>Pregnancies during treatment</th>
<th>Pregnancy outcome</th>
<th>Known pregnancies during and after treatment</th>
<th>Recovery of sperm output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LB</td>
<td>SA</td>
<td>IA</td>
<td>UK</td>
</tr>
<tr>
<td>aGu et al. (2009)</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bWHO (1996)</td>
<td>19</td>
<td>10</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>cBehre et al. (2016)</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>aGu et al. (2003)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bWHO (1990)</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>fTurner et al. (2003)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gMcLachlan et al. (2000)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LB, live birth; SA, spontaneous abortion; IA, induced abortions; UK, unknown; CM, congenital malformation.

*Testosterone undecanoate 500 mg/month (with 1000 mg loading dose).
†Testosterone undecanoate 1000 mg and norethisterone enanthate 200 mg every 8 weeks.
‡Testosterone implant 800 mg or 1200 mg every 3 months with or without finasteride.
reported, so it is not known whether he remained severely oligozoospermic which could suggest an intercurrent sterilizing disorder, or had values that were closer to 13–15 million/mL which could suggest regression to the mean.

Together these new data from three large trials verify the earlier analyses that concluded that it is reasonable to expect full recovery of spermatogenesis to levels consistent with normal male fertility, and that the rate of recovery is dependent upon treatment duration and initial sperm concentration. Documented non-recovery of sperm output has been reported in only three men from over 2000 men enrolled in MHC trials (Turner et al., 2003; Gu et al., 2009; Behre et al., 2016). Of these three men, an intercurrent and unrelated sterilizing process, rather than any lasting adverse effect of MHC, was more likely to be the true cause: myotonic dystrophy in one man (Turner et al., 2003) and bilateral epididymitis in another (Gu et al., 2009). In the third man, important details regarding his final sperm concentration were not reported (Behre et al., 2016). Important limitations are that few data of MHC are available for men of African or Hispanic origin, or in subfertile men. Another limitation is that systematic studies of sperm recovery after long-term treatment of eugonadal men with androgens or androgen-progestins for contraceptive or non-contraceptive purposes are not available. Case reports do however suggest that sperm quality tends to recover spontaneously within 4–12 months of cessation of high dose androgens in long-term anabolic steroid abusers.

Actual pregnancies and live births have also been observed in couples after cessation of MHC. Specifically, all couples known to be actively seeking parenthood have reportedly been able to do so, and 51 pregnancies resulting in 32 live births have been identified (Table 2). A limitation of this analysis is that many couples were likely using other forms of contraception after cessation of MHC if parenthood was still not desired, and long term follow up of subsequent fertility was not systematically obtained.

Safety of MHC

Pregnancy outcomes occurring during or after MHC treatment suggest no increase in fetal miscarriage rates or congenital malformations (Table 2). Altogether, 118 pregnancies were reported which resulted in 50 live births, 7 spontaneous abortions, 18 induced abortions, and 1 congenital malformation. Fetal outcomes from the remaining 42 pregnancies were not reported. This corresponds with spontaneous miscarriage rates of 6% (95%CI 2%–12%) assuming no miscarriages amongst pregnancies with unknown outcomes. These miscarriage rates overlap with spontaneous abortion rates of 8%–20% in the general population. The aggregate congenital malformation rate was 0.9% (95%CI 0.0%–4.6%) assuming no malformations amongst pregnancies with unknown outcomes. Accordingly, these data are also consistent with, but are insufficiently powered to exclude the possibility of an increase over the 4% congenital malformation rate in the general population.

A recent methodological advance has been to conduct a randomized placebo controlled androgen-progestin MHC trial from which short-term adverse events due to active treatment could be defined for the first time (Mommers et al., 2008). Almost all men on either active (93%) or placebo (81%) therapy self-reported at least one adverse event, which was mild in severity in almost all cases. However, men receiving active treatment complained twice as frequently than those receiving placebo for certain adverse events: 20% versus 8%, on average for mood and libidinal changes, weight gain, acne and night sweats. These complaints were statistically more prevalent in those treated with active, were generally mild but occasionally led to subject discontinuation (Mommers et al., 2008). Many factors, particularly biochemical factors, were considered clinically irrelevant. Total and high density lipoprotein cholesterol both fell by about 10%, and none of the lipid changes in any treatment or placebo group were statistically significant.

Despite or possibly because of these findings, a recent androgen-progestin MHC efficacy study was prematurely stopped due to concerns regarding mood changes, depression, pain at injection site and increased libido, even though the independent data and safety monitoring board charged with directly overseeing this study found that all criteria for continuation had been met after reviewing the same adverse event data (Behre et al., 2016). Most of these adverse events were mild in severity, only 20 men actually discontinued due to these complaints, and to the contrary, participants themselves reported high levels of satisfaction with the method. Self-reported mood changes and depression in particular, were highly variable across study sites, suggesting interaction with non-drug related factors. Furthermore, mood and mood were only self-reported, and not systematically verified using validated instruments.

In women, the mood changes that occur with estrogen-progestin contraceptives have been attributed to the progestin, and this could also be true for the mood changes reported in both of these androgen-progestin MHC studies. Activation of the gamma-aminobutyric acid type A receptor, which is believed to be important for these mood changes, is also different depending on specific progestins and how they are metabolized. Accordingly, certain progestins could have minimal or no mood problems, but this requires verification. Ultimately, postmarketing surveillance of specific androgen-progestin regimens will be required to properly assess infrequently occurring adverse events. Determining long-term adverse cardiovascular or prostate effects of MHC will also likely require phase four studies since MHC will be most used by younger men in whom the background incidence of either cardiovascular or prostate disease is very low (Piotrowska et al., 2016). It may be that some couples will be willing to accept the theoretical risk of MHC, if the benefits of such therapy in the context of all available options are well-defined. In older men with age-related partial androgen deficiency, for example, lingering concerns regarding the cardiovascular or prostate safety of testosterone therapy remain, yet many men choose to be treated.

Non-hormonal Male Contraception

In contrast to hormonal methods where large-scale multicenter pivotal trials necessary for drug registration by the Food and Drug Administration in the United States are due to start by 2018, the majority of potential non-hormonal male-directed methods are yet
to be tested in humans (Page et al., 2008). Nevertheless, promising targets in the testis, epididymis, sperm, and sperm-egg interaction that appear to be specific and necessary for spermatogenesis, and/or fertilization have been identified. Drugs that can act reversibly and solely on these targets should have few or no systemic adverse effects if these targets are truly specific to spermatogenesis. Despite promising nonclinical preliminary work, all of the few compounds tested in humans thus far have not met these criteria, thereby illustrating the challenges inherent in developing a non-hormonal contraceptive. Gossypol and triptolide, for example, resulted in irreversible infertility. The bis-(dichloroacetetyl)-diamines that have been developed thus far to inhibit aldehyde dehydrogenase 1A2, have also inhibited liver aldehyde dehydrogenase thereby causing unacceptable disulfiram-like reactions when co-administered with alcohol. Aldehyde dehydrogenase 1A2 is specific to the testis, and crucial for the conversion of retinaldehyde to retinoic acid, and blocking retinoic acid production in the testis prevents spermatogonial differentiation through suppression of STRA8. The challenge has been developing compounds that specifically inhibit the Aldehyde dehydrogenase 1A2 isoform present only in the testis. A fourth compound, miglustat, induced reversible infertility by inhibiting glycosphingolipid biosynthesis and sperm motility in mice, but miglustat did not alter spermatogenesis in humans. This illustrates that species differences in spermatogenesis exist, and further complicates the development of specific, reversible nonhormonal methods in humans.

Promising testicular targets include bromodomain testis-specific protein-1, which is critical for chromatin remodeling during spermatogenesis, and retinoic acid receptors, activation of which is required for spermatogonial differentiation. Epididymal targets include the epididymal G-protein coupled receptor HE6, which is responsible for reabsorption of tubular fluid, and therefore the sperm microenvironment. Other sperm targets include: epididymal protease inhibitor (EPPIN) which prevents binding of semenogelin 1, a semen coagulation protein, and therefore prevents impaired sperm motility, and; voltage-gated calcium-permeable ion channels (CatSperms), which are important for sperm hyperactivation and motility.

Developing drugs that act on these or other targets would eventually require scalable drug synthesis, stability, and microbial testing, and certification of good manufacturing practice standards. Academic researchers are ill-equipped to meet the regulatory hurdles required for such an undertaking, and hence the National Institute of Child Health and Development has established the male Contraceptive Clinical Trials Network to implement late phase 2 and phase 3 studies for drug registration purposes, and assist in partnering with pharmaceutical industry. Currently this network has focused on hormonal methods. However, the extensive clinical trial experience developed for male hormonal contraceptive methods will be applicable for the testing of non-hormonal approaches, once suitable phase 1 and 2 studies of compounds directed to these targets have been performed.

Summary and Conclusions

Male-directed contraceptive methods are estimated to be worth 40–200 billion dollars worldwide, assuming a market size of 10 million in United States and 50 million worldwide. Many couples already depend upon less than ideal male-directed methods, and there is large unmet need to develop better methods. Despite this, many hurdles remain. Despite this, MHC is the closest to regulatory approval from a drug registration perspective. As discussed, much progress has been made in delineating the effectiveness, reversibility and short-term safety of MHC. Remaining uncertainties include whether such methods can be universally used by all men, how to prevent, predict or monitor sperm rebound, and whether clinically relevant and diagnosable mood changes actually occur, and if it does occur, whether these can be minimized with progestins with optimal characteristics. Fully characterizing the long-term prostate and cardiovascular safety will require post-marketing surveillance, but the low incidence of these disorders in young men provides some reassurance that the absolute risk with MHC is likely to be small. No single female or male directed method will be ideal for all couples at all times, and hence the priority should be to broaden choice to reduce unintended pregnancies, and the individual, family, and societal sequelae that are associated with unintended pregnancies. Male-directed hormonal and non-hormonal methods promise to allow both partners to share equally in family planning responsibilities.

Acknowledgments

This review was supported by the National Center for Advancing Translational Sciences through UCLA CTSI Grant UL1TR000124, Contraceptive Clinical Trials Network HHSN27520130024I and R01 HL124211, and research funds from Los Angeles Biomedical Research Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The funding sources had no role in the writing of the manuscript or the decision to submit it for publication.

References

Spring 2022 – Systems Biology of Reproduction
Lecture Outline – Assisted Reproduction/Contraception
Michael K. Skinner – Biol 475/575
CUE 418, 10:35-11:50 am, Tuesday & Thursday
April 26, 2022
Week 16

Assisted Reproduction/Contraception

Primary Papers:

Discussion

Student 12: Reference 1 above
• What is the assisted reproductive technology (ART) investigated?
• What is the experimental design and technology used?
• What is the conclusion on the use of this ART technology?

Student 18: Reference 2 above
• What is spermatogonial transplantation?
• What was the experimental design?
• What applications does the technology have?

Student 20: Reference 3 above
• What is the compound and where is it from?
• What was the experimental design?
• Is this a contraceptive and what clinical issues should be investigated?

The changing prevalence of infertility.
Petraglia F, Servis G, Chagnot L
Percentage of women aged 25 through 49 years with secondary infertility, by region, 1994–2000 (according to data collected from WHO website).

Assisted Reproductive Technologies (ART)

- In Vitro Fertilization (IVF)
- Intracytoplasmic Sperm Injection (ICSI)
- Nuclear Transfer
- Embryo Transfer
- Cloning

Abstract
The history of research into artificial insemination (AI) is over two centuries old and its commercial application now spans 25 years. It is appropriate to reflect on the contribution of this powerful method of gene dispersal. AI remains as one of the most important assisted reproductive technologies. The three commissions for its application are: it is simple, economical and successful. The importance of AI will be challenged in the next few decades. The remarkable progress made in other assisted reproductive technologies does have the potential to rapidly displace AI. The challenge for any of these reproductive technologies to attain widespread use is to match AI in being simple, economical and successful. This review aims to highlight the latest advances in AI, the comparisons with natural mating and other reproductive technologies, and, whether the future of AI will be challenged. It predicts what the near horizon looks like and the role that AI will play in the overall reproductive technologies landscape.

Keywords: Sperm; Storage; Frozen semen; Liquid semen; Artificial insemination

Table 2: Summary of cold AI statistics with frozen semen from different countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of inseminations</th>
<th>Number of semen frozen</th>
<th>Test Day (h)</th>
<th>Normalization (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>100,000</td>
<td>20 x 10^6</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Belgium</td>
<td>50,000</td>
<td>15 x 10^6</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>Brazil</td>
<td>280,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Canada</td>
<td>130,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>China</td>
<td>100,000</td>
<td>15 x 10^6</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Denmark</td>
<td>50,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>France</td>
<td>40,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Germany</td>
<td>157,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Italy</td>
<td>24,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Japan</td>
<td>21,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Mexico</td>
<td>40,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Norway</td>
<td>40,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>New Zealand</td>
<td>10,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Sweden</td>
<td>30,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Switzerland</td>
<td>10,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>USA</td>
<td>100,000</td>
<td>15 x 10^6</td>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Data are based primarily on traiteds boars. In Italy, 100 boars are inseminated with fresh semen in egg yolk, this is ET.
2 Most semen samples are ET 1 with yolk-octane sera. Both semen and TRCA are used. Frozen-thawed semen was stored in a chilled state.
3 New Zealand uses 3 to 9 FP or 3 to 9 fresh semen for 24 to 48 hours in Orygynin® during their continued breeding season. The average sperm concentration for semen ranges is 50-100 million.

Enriched KEGG Pathways Day 8

A
- Nucleosome
- Parkinson’s disease
- Adrenal medulla neoplasms
- Cholecystokinin secretion
- Alzheimer’s disease
- Nervous system development
- Cardiac muscle contraction
- Adipocyte differentiation
- Manganese and other endocrine environment
- Non-alcoholic fatty liver disease
- Fatty acid biosynthesis
- Peroxisome
- Peroxisome biogenesis
- Copper metabolism
- Adipose tissue development
- GABAergic synapses
- Cyclic AMP- and cholineacetyltransferase
- Caveolin-1 signaling pathway
- Choline acetyltransferase
- Synaptic plasticity and memory
- Synaptic long-term depression
- Synaptic long-term potentiation
- Serotoninergic synapses
- Synaptic long-term depression
High-throughput phenotypic screening of the human spermatozoon

Donor samples → Automated compound screening → Data analysis

The UK’s anomalous 10-year limit on oocyte storage: time to change the law.
Bowen-Simpkins P, Wang JJ, Ahuja KK.

Abstract
There has been a growing recognition in the UK that the statutory storage limit for frozen eggs, which currently stands at 10 years, requires a review. The UK regulator, the Human Fertilization and Embryology Authority (HFEA), has recognized the problem and the Equality and Human Rights Commission is also sympathetic with the demand to change the current legislation. There is also strong desire on the part of assisted reproductive technology (ART) professionals and patients to change the current guidelines. For many women, the available alternatives of transporting their eggs to an overseas destination or having them fertilized with donor sperm and then stored as embryos is objectionable.
Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods.

ICSI

Figure 1

Microinjection by various methods:
- Deep penetration: The advantage is that this procedure cannot be applied to immobile spermatozoa.
- Partial zonadissection: The method is used to remove the zona pellucida and the sperm is then injected into the oocyte.

Figure 16.2
ICSI procedure: Removal of the sperm tail by an injection pipette, and injection of an isolated sperm head into the oocyte.
Application of microfluidic technologies to human assisted reproduction.

Smith GD, Takayama S.

Potential risks associated with ICSI

- Male infertility
- Genetic problems unlikely
- Thrombotic adverse effects via
 - Oocytes
 - Polyviory/protocline (PVP) exposure
 - Suture anormal freeidility of fertilization

Severe male infertility

- Cataract opacification, passing on germline genetic anomalies (Y deletions or expanded intranuclear repeats)

Potential risks associated with sperm source

Epididymal sperm
- Screen for cystic fibrosis in congenital absence of vas deferens
- If, additional confounding factors

Testicular sperm
- Greater potential of complicating factors
- Immature sperm
- Rare imprinting disorders
- Transmission of severe male infertility from father?
- Severe male genetic problems associated with other genetic anomalies?

Table 16.12
Comparison of Reported Outcomes for ART Procedures

<table>
<thead>
<tr>
<th>Variable</th>
<th>IVF</th>
<th>GIFT</th>
<th>ZIFT</th>
<th>ICSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of procedures</td>
<td>36,035</td>
<td>3741</td>
<td>1078</td>
<td>4032</td>
</tr>
<tr>
<td>Transfer per retrieval (%)</td>
<td>89.7</td>
<td>98.5</td>
<td>91.7</td>
<td>92.2</td>
</tr>
<tr>
<td>Pregnancy (%)</td>
<td>82.5</td>
<td>1142</td>
<td>332</td>
<td>1463</td>
</tr>
<tr>
<td>Pregnancy loss (%)</td>
<td>18.6</td>
<td>21.5</td>
<td>18.3</td>
<td>18.9</td>
</tr>
<tr>
<td>Deliveries (%)</td>
<td>6754</td>
<td>896</td>
<td>263</td>
<td>1185</td>
</tr>
<tr>
<td>Delivery per retrieval (%)</td>
<td>22.3</td>
<td>27.0</td>
<td>27.9</td>
<td>23.5</td>
</tr>
<tr>
<td>Single births (%)</td>
<td>64.5</td>
<td>63.3</td>
<td>68.8</td>
<td>64.1</td>
</tr>
<tr>
<td>Ectopic pregnancies per transfer (%)</td>
<td>0.9</td>
<td>1.2</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Birth defects per birth (%)</td>
<td>0.7</td>
<td>0.3</td>
<td>0.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Data from 1995 and compiled from 351 clinics in the United States and Canada. (Adapted from ART in 1995, 1999, with permission.)

Fig. 2. ICSI results in relation to type of sperm used (adapted from results in Boularude et al., 1998)
Thoughts on the popularity of ICSI.

Figure 1 | Principle of preimplantation genetic diagnosis. A single cell (or cell cluster) removed from each embryo of an in vitro-developing colony is subjected to a diagnostic genetic test. If it is found to be normal, it is then transferred to the uterus of the patient. The remaining embryos are discarded.
RNA-seq as a tool for evaluating human embryo competence.

Experimental overview. (A) Preimplantation human development time-course depicting our comparative analytical approach. Samples were processed from transcriptome stage embryos and assessed for morphokinetic criteria and morphology before biopsy. One trophectoderm (TE) biopsy was processed for DNA-based preimplantation genetic testing for aneuploidy (PGT-A), one was harvested for RNA-seq, and the remaining whole embryo (WE) was also processed for RNA-seq. (B) Representative image of a blastocyst. (C) Data overview table. Embryos (E1-39) for which we have morphokinetic data are shaded in green; those for which DNA-based PGT-A yielded a result are depicted in blue; and those for which we have RNA-seq of either WE or TE biopsy are labeled in black and gray, respectively.

Characterization of seminal plasma proteomic alterations associated with the IVF and rescue-ICSI pregnancy in assisted reproduction.

New perspectives on preimplantation genetic diagnosis and preimplantation genetic screening.

Table 1: Differences between the biopsy methods used for preimplantation genetic screening.

<table>
<thead>
<tr>
<th>Stage of biopsy</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blastocyst (DE)</td>
<td>No effect on subsequent embryo development</td>
<td>Risk of low viable cells from biopsy</td>
<td>N/A from KO mice</td>
</tr>
<tr>
<td>Spermatozoozo (DE)</td>
<td>Spermatozoozo (DE)</td>
<td>No effect on subsequent embryo development</td>
<td>N/A from KO mice</td>
</tr>
</tbody>
</table>

Table 2: The list of candidate indicators for single-gene defects based on information from the OMIM database.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>k 5. Bilateral/contralateral (mirror)</td>
<td>Bilateral/contralateral (mirror)</td>
<td>Bilateral/contralateral (mirror)</td>
<td>Bilateral/contralateral (mirror)</td>
<td>N/A from KO mice</td>
</tr>
</tbody>
</table>

Strategies to Identify Genetic Variants Causing Infertility

Figure 1. Infertility Variants in the ClinVar Database. Red line, cumulative pathogenic variants in the database. Gray bars, number added annually. The pie chart shows the distribution of variant types. Graphs were made using R. Abbreviation: NSG, next-generation sequencing.

The birth of Dolly the sheep in 1996 elicited a tsunami of commentaries, both in the popular media and academic journals, including responses to the prospect of human reproductive cloning. Much of the anxiety expressed over this imagined consequence of Dolly’s genesis revealed fundamental concerns about us losing our commitments to certain ethical goods, such as human dignity, or even ‘what it means to be human’. Over the last 25 years, the focus of much of the ethical debate over human biotechnology has slowly shifted towards other genetic technologies that aim to influence inheritance, such as mitochondrial replacement techniques (MRT) and heritable genome editing. Genome editing, in particular, is a technology with multiple fields of application, actual and potential, in research and innovation. This review suggests that many of the fundamental concerns about the possibility of human reproductive cloning that were precipitated by Dolly persist today in the arguments of those who oppose MRT and any use of heritable human genome editing (HHGE). Whilst it is not accepted here that an understanding of human nature and dignity alone can demonstrate the ethical unacceptability of such assisted reproductive technologies, there are themes of justice, which extend into our relationships with animals, that demand continued wide-ranging examination and public dialogue. While Dolly has cast a long shadow over such discussions, this review suggests that the general existential angst over human uses of biotechnology that she came to symbolise is neither compulsory nor a reliable guide for how to think about biotechnologies today.
What can stem cell technology offer to IVF patients?

Potential use of stem cells for fertility preservation.

A step toward making human oocytes.

Production of human oogonia-like cells in vitro by Yamashiro et al.
Human iPS cells were differentiated into human PGCLCs (hPGCLCs) and then matured into oogonia-like cells by culture together with mouse embryonic ovarian somatic cells (top). Although phenotypic and molecular characteristics were consistent with early oogenesis, the oogonia-like cells failed to enter meiosis in the 17-week culture. Whether further development toward mature oocytes can be achieved in vitro remains unknown. In humans, oogonial development (bottom panel) occurs during weeks 6 to 10 of gestation, with primordial follicles formed between week 15 and birth. The processes of folliculogenesis, oocyte maturation and ovulation occur after birth and take ~240 days. hPGCs, human primordial germ cells.
Outline of spermatogonial transplantation method and quantitative assay for SSCs. Single-cell suspension prepared from testes of transgenic mice expressing a reporter gene (e.g., β-galactosidase) by enzymatic digestion is injected into the seminiferous tubules of an infertile recipient mouse. Cells from in vitro culture or cells fractionated by FACS or MACS can be used for a donor cell population. Two months after transplantation, donor-derived spermatogenesis can be detected in the recipient testis as blue colonies. Because each colony of spermatogenesis is developed from a single SSC, the number of colonies represents the number of SSCs in the donor cell suspension. The length of each colony demonstrates the degree of SSC expansion. Modified from [199].

Abstract
The implications of scientific breakthroughs are rarely faced up to in advance of their realization. Stem cell-derived human gametes, a disruptive technology in waiting, are likely to recapitulate this historic pattern absent active intervention. Herein we call for the conduct of thoughtful ante hoc deliberations on the prospect of stem cell-derived human gametes with an eye toward minimizing potential untoward post hoc regulatory or statutory impositions.

ART and Conservation

The ART of bringing extinction to a freeze - History and future of species conservation, exemplified by rhinos

Reptile assisted reproductive technologies: can ART help conserve 300 million years of evolution by preserving extant reptile biodiversity?
Population and Contraception

World Population: Past, Present, and Future

Development: Slow down population growth.
Human fertility in relation to education, economy, religion, contraception, and family planning programs.

How Big Will the Population Grow? (1990-2150)

World Population (billions)

at 2.5 children per woman

2.06

1.7

1990 2025 2050 2075 2100 2125 2150

Estimates of Earth's Carrying Capacity, By the Date at Which the Estimate Was Made

Maximum population (billions)

10,000

1,000

100

10

1 1650 1700 1750 1800 1850 1900 1950 2000

India defuses its population bomb.
Pearce F.

Steadily shrinking families
Rural women in India tend to have more children than urban women,
CONSEQUENCES
OF EXCESSIVE POPULATION

Environmental Pollution
Global Warming
Resource Depletion
Starvation

Contraception Throughout the Ages

• 8 Colinus: Interception — the most popular contraceptive of all time, is mentioned in the book of Genesis.

• 14 B.C. Ephraim and his family, from the Negev, used a contraceptive made from a mixture of clay and animal fat. This method was effective in preventing pregnancy.

• 1000 B.C. The Egyptians used a mixture of chalk and honey, known as 'the Egyptian birth control.'

• 500 B.C. The Persians used a mixture of chalk and honey, known as 'the Persian birth control.'

• 300 B.C. The Chinese used a mixture of chalk and honey, known as 'the Chinese birth control.'

• 500 A.D. The Chinese used a mixture of chalk and honey, known as 'the Chinese birth control.'

• 1000 A.D. The Chinese used a mixture of chalk and honey, known as 'the Chinese birth control.'

• 1500 A.D. The Chinese used a mixture of chalk and honey, known as 'the Chinese birth control.'

• 1700 A.D. The Chinese used a mixture of chalk and honey, known as 'the Chinese birth control.'

Table 14.1
Modern Birth Control

<table>
<thead>
<tr>
<th>Method</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depo-Provera (injectable)</td>
<td>Long-acting progestin contraceptive</td>
</tr>
<tr>
<td>Mirena (IUD)</td>
<td>Copper intrauterine device</td>
</tr>
<tr>
<td>Norplant (implant)</td>
<td>Progestin implant</td>
</tr>
<tr>
<td>NuvaRing (transdermal)</td>
<td>Progestin ring</td>
</tr>
<tr>
<td>Essure (permanent)</td>
<td>Tubal occlusion device</td>
</tr>
<tr>
<td>LARC (long acting reversible contraception)</td>
<td>Progestin implant</td>
</tr>
</tbody>
</table>

Figure 14.4
Figure 15.6
"No-scalpel" vasectomy. The vas deferens (dotted line) is grasped by special ring forceps and the skin is pierced by special dissecting forceps (a). The forceps stretch an opening (b), and vas is lifted out and cut or clipped (c). (Adapted from Population Information Program.)

Table 15.4
Birth Control Methods in the United States, 1995

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All methods</td>
<td>64.2</td>
<td>29.8</td>
<td>63.5</td>
<td>71.1</td>
<td>72.3</td>
</tr>
<tr>
<td>Female sterilization</td>
<td>27.7</td>
<td>0.3</td>
<td>4.0</td>
<td>23.8</td>
<td>45.0</td>
</tr>
<tr>
<td>Male sterilization</td>
<td>10.9</td>
<td>0.0</td>
<td>1.1</td>
<td>7.8</td>
<td>18.4</td>
</tr>
<tr>
<td>Pill</td>
<td>26.9</td>
<td>43.8</td>
<td>52.1</td>
<td>33.3</td>
<td>8.7</td>
</tr>
<tr>
<td>IUD</td>
<td>0.8</td>
<td>0.0</td>
<td>0.3</td>
<td>1.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Condom</td>
<td>20.4</td>
<td>26.7</td>
<td>26.4</td>
<td>21.1</td>
<td>14.7</td>
</tr>
<tr>
<td>Other</td>
<td>11.4</td>
<td>19.1</td>
<td>15.5</td>
<td>10.6</td>
<td>8.3</td>
</tr>
</tbody>
</table>

The category "Other" in Table 15.4 includes the use of spermicidal jelly, foams, and sponges, all of which are by pilling or inserting sperm. Also included in this category is the rhythm method, in which intercourse is avoided during the days before and after ovulation. (Reference: National Center for Health Statistics, Health, United States, 1998, with socioeconomic status and health chapter.)
Female contraceptive
Fifty years of “the pill”: risk reduction and discovery of benefits beyond contraception, reflections, and forecast.
Chadwick KD, Burkman RT, Torjesi BM, Mahadevan B.

Abstract
Widely regarded as a revolutionary drug in its early years, “the pill” may be considered the first designer or lifestyle drug. Approximately 55% of women in the United States will use an oral contraceptive (OC) for an average of 5 years. Since the introduction of OCs in the 1960s, both health benefits and safety concerns have been attributed to their use. Widespread use of OC formulations by women throughout their reproductive life cycle gave rise to concerns about the effects of OCs on risk factors for cardiovascular disorders and cancer. In most instances, the noncontraceptive benefits of OCs outweigh the potential risks. As with many first in class drugs, lessons can be learned from its development and use. Indeed, “the pill” played a significant role in reshaping the regulatory process for new drugs during the second half of the 20th century. The birth control pill celebrates its 50th birthday this year, as women and men celebrate five decades of this revolutionary method of family planning. Recent scientific and technological advances in genomics, proteomics, new materials, and new drug delivery systems, along with a new understanding of reproductive biology, offer the promise of new, safer, and effective forms of contraception. In addition to the history of OC therapeutic advances and unintended side effects, the noncontraceptive health benefits that women experience beyond pregnancy prevention are discussed. This article summarizes a symposium presented at the 50th Anniversary of the Society of Toxicology National Meeting, held from 6 to 10 March 2011 in Washington, DC.
Table 3: Advantages of oral contraceptives (29)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Generic Drug Name</th>
<th>Typical Dose for RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovral</td>
<td>Norethindrone Acetate</td>
<td>0.05 mg/0.5 mg per pill</td>
</tr>
<tr>
<td>Ortho-Novum</td>
<td>Norethindrone Acetate</td>
<td>0.05 mg/0.5 mg per pill</td>
</tr>
<tr>
<td>Plan B One-Step</td>
<td>Levonorgestrel</td>
<td>0.75 mg per pill</td>
</tr>
</tbody>
</table>

Combined oral contraceptive use in rheumatoid arthritis for the purpose of pregnancy prevention and additional benefits: A narrative review.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Generic Drug Name</th>
<th>Typical Dose for RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enbrel</td>
<td>Etanercept</td>
<td>50 mg/week</td>
</tr>
<tr>
<td>Actemra</td>
<td>Tocilizumab</td>
<td>8 mg/kg IV infusion</td>
</tr>
</tbody>
</table>

Abstract

Non-melanoma skin cancers (NMSC) are more frequent among men, but women (especially those aged < 40 years) have experienced steeper growth in their incidence rates in recent years. Hormonal factors were hypothesized to be playing a role in modulating NMSC risk, but the studies published to date provided conflicting results. We systematically reviewed and meta-analysed the studies focusing on the association between hormone-related characteristics (use of exogenous sex hormones, and aspects of menstrual and reproductive history) and the risk of NMSC among women. We included observational and experimental studies published in PubMed and EMBASE until February 2020. We calculated summary relative risk (SRR) and 95% confidence intervals (CI) by applying random effects models with maximum likelihood estimation, and used the I² statistics to quantify the degree of heterogeneity of risk estimates across studies. Eleven independent studies encompassing a total of over 30,000 NMSC cases were included in quantitative analyses. No evidence of an increased NMSC risk emerged among ever vs. never users of oral contraceptives (SRR 1.13, 95% CI 0.88–1.45) or hormones for menopause (SRR 1.19, 95% CI 0.87–1.64). Likewise, age at menarche or at menopause and parity were not associated with NMSC risk. Heterogeneity across studies was low, and pooled results were comparable between NMSC subtypes. We found no evidence that hormonal factors play a role in the pathogenesis of NMSC among women.

Table 15.12: Modern Abortion Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Time in Gestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical abortion</td>
<td>Through week 3</td>
</tr>
<tr>
<td>Prostaglandin alone</td>
<td>Through weeks 7–8</td>
</tr>
<tr>
<td>Methotrexate/misoprostol</td>
<td>Through week 9</td>
</tr>
<tr>
<td>Misoprostol/geneconnol</td>
<td>Through week 19</td>
</tr>
<tr>
<td>Surgical abortion</td>
<td>Through weeks 7–8</td>
</tr>
<tr>
<td>Vacuum aspiration</td>
<td>Second trimester</td>
</tr>
<tr>
<td>Dilatation and evacuation</td>
<td>Second trimester</td>
</tr>
<tr>
<td>Instillation</td>
<td>Second trimester</td>
</tr>
<tr>
<td>Hysterotomy</td>
<td>Third trimester</td>
</tr>
</tbody>
</table>

Note: Misoprostol and geneconnol are prostaglandin analogs. Instillation refers to the injection of tissue-dissolving compounds into the amniotic sac.
Usage patterns and attitudes towards emergency contraception: the International Emergency Contraception Research Initiative.

Krassovics M, Viragh G.

Table 1. Mechanism of Action of Estrogen/Progesterin Contraceptives

Inhibition of ovulation by suppression of FSH and LH
Alteration of cervical mucus to inhibit sperm transport
Interference with ovum transport
Inhibition of implantation by suppression of normal endometrial development

Table 1. Historical landmarks for the development of progestin implants

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954</td>
<td>Diffusion of biologically active substances through Silastic membranes [1]</td>
</tr>
<tr>
<td>1965</td>
<td>Oral contraception by continuous low dose progestins [2]</td>
</tr>
<tr>
<td>1966</td>
<td>Diffusion of steroids through Silastic membranes [3,4]</td>
</tr>
</tbody>
</table>

Figure 15.3
Schematic illustration of subdermal capsules and their implantation in the underarm.
Long-acting injectable hormonal dosage forms for contraception.

Wu L, Janagam DR, Mandrell TD, Johnson JR, Lowe TL.

Table 2. Progesterin implants.

<table>
<thead>
<tr>
<th>Progesterin</th>
<th>Trade name</th>
<th>Units</th>
<th>Duration of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levoorgestrel</td>
<td>Norplant®</td>
<td>Six capsules</td>
<td>5 years</td>
</tr>
<tr>
<td>Levoorgestrel</td>
<td>Jadelle®</td>
<td>Two rods</td>
<td>5 years</td>
</tr>
<tr>
<td>Ethinyl estradiol</td>
<td>Implan®</td>
<td>Single rod</td>
<td>3 years</td>
</tr>
<tr>
<td>Norethisterone</td>
<td>Blister®</td>
<td>Single capsule</td>
<td>6 months</td>
</tr>
<tr>
<td>Norethisterone</td>
<td>Contracept®</td>
<td>Single rod</td>
<td>2 years</td>
</tr>
<tr>
<td>Norethisterone</td>
<td>Utroplanta®or Sumplant®</td>
<td>Single rod</td>
<td>1 year</td>
</tr>
</tbody>
</table>

Table 5. Typical first-year pregnancy and continuation rates of various methods. Legend

<table>
<thead>
<tr>
<th>Method</th>
<th>Accidental pregnancy %</th>
<th>Continuation %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condom</td>
<td>12.0</td>
<td>63</td>
</tr>
<tr>
<td>Pill</td>
<td>3.0</td>
<td>72</td>
</tr>
<tr>
<td>Copper T380</td>
<td>0.8</td>
<td>78</td>
</tr>
<tr>
<td>Norplant®</td>
<td>< 0.1</td>
<td>85</td>
</tr>
<tr>
<td>Female sterilization</td>
<td>0.4</td>
<td>99</td>
</tr>
</tbody>
</table>

Legend: From Ref. [3]
Some potential targets of interest for vectored contraception. Some, but not all, points at which antibodies, ligands, or small RNAs could interfere with fertility are indicated. Proteins or structures of particular interest are indicated in the blue boxes. Receptors for GnRH, FSH, and LH, located on target tissues are also of interest, but are not indicated. Negative feedback pathways mediated by steroid hormones are complex. They are indicated in simplified form by the black lines with a bar on the end. Antibodies and molecules targeted by Li et al. [9] and Kano et al. [10] are indicated in purple. Many targets of interest, including molecules required for embryo implantation and development, are untested. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Male Contraceptive

Most recently developed reversible male contraceptive

Condom — 17th Century
Deficiencies in Present Male Methods

- Condom
- Poor compliance
- Poor efficacy
- Coitally related

- Vasectomy
- Non-reversible

- Interrupted coitus
- High failure rate

Novel Sperm and Gonadotropin-releasing Hormone-based Recombinant Fusion Protein: Achievement of 100% Contraceptive Efficacy by Co-immunization of Male and Female Mice. Mol Reprod Dev. 2016 Dec;83(12):1048-1059.
Minhas V, Shrestha A, Wadhwa N, Singh R, Gupta SK.

A dual kisspeptin-GnRH immunogen for reproductive immunosterilization
Junco JA, Fuentes F, Millar RP.

A hormonal contraceptive for men: how close are we?
Huhtaniemi I.

![Diagram of hormonal pathways](image-url)
Development of Novel Male Contraceptives.

Nonhormonal male contraceptives (a) Gossypol, (b) H2-gamendazole, (c) JQ-1, (d) Win 18,446.

The use of testosterone as a male contraceptive.
Amory JK, Bremner W.

Table 3: Contraceptive efficacy of nonhormonal contraceptives

<table>
<thead>
<tr>
<th>Brand/medication</th>
<th>Sperm concentration (million/mL)</th>
<th>Median time to onset (weeks)</th>
<th>Inferred efficacy</th>
<th>Maximum dosage (mg/day)</th>
<th>Progesterone (mg)</th>
<th>Efficacy (per 100 menstrual cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPA 50 mg/day</td>
<td>420 (10)</td>
<td>45</td>
<td>0.55</td>
<td>20</td>
<td>0.5</td>
<td>15.5 (10.0-18.0)</td>
</tr>
<tr>
<td>TE 50 mg/week</td>
<td>32 (3)</td>
<td>18.5</td>
<td>0.83</td>
<td>80</td>
<td>0.8</td>
<td>10.0 (5.5-14.0)</td>
</tr>
<tr>
<td>Testosterone dipropionate 300 mg/week</td>
<td>32 (2)</td>
<td>15.0</td>
<td>0.76</td>
<td>40</td>
<td>0.5</td>
<td>10.0 (5.5-14.0)</td>
</tr>
<tr>
<td>Testosterone decanoate 300 mg/week</td>
<td>32 (2)</td>
<td>15.0</td>
<td>0.76</td>
<td>40</td>
<td>0.5</td>
<td>10.0 (5.5-14.0)</td>
</tr>
<tr>
<td>Testosterone enanthate 300 mg/week</td>
<td>32 (2)</td>
<td>15.0</td>
<td>0.76</td>
<td>40</td>
<td>0.5</td>
<td>10.0 (5.5-14.0)</td>
</tr>
<tr>
<td>Testosterone undecanoate 300 mg/week</td>
<td>32 (2)</td>
<td>15.0</td>
<td>0.76</td>
<td>40</td>
<td>0.5</td>
<td>10.0 (5.5-14.0)</td>
</tr>
</tbody>
</table>

Figure 1: Sperm count in individual subjects over the treatment period, including the contraceptive administration and during 26 weeks of the recovery phase. Reproduced from MacGregor et al. (1996, Journal of Clinical Endocrinology 84: 5018-5023) with permission of the Endocrine Society.
Male hormonal contraceptive - are we there yet?

Syeda SS, Sánchez G, Hong KH, Hawkinson JE, Georg GI, Blanco G.

Na,K-ATPase α4 is a testis-specific plasma membrane Na+ and K+ transporter expressed in sperm flagellum. Deletion of Na,K-ATPase α4 in male mice results in complete infertility, making it an attractive target for male contraception. Na,K-ATPase α4 is characterized by a high affinity for the cardiac glycoside ouabain. With the goal of discovering selective inhibitors of the Na,K-ATPase α4 and of sperm function, ouabain derivatives were modified at the glycone (C3) and the lactone (C17) domains. Ouabagenin analogue 25, carrying a benzyltriazole moiety at C17, is a picomolar inhibitor of Na,K-ATPase α4, with an outstanding α4 isoform selectivity profile. Moreover, compound 25 decreased sperm motility in vitro and in vivo and affected sperm membrane potential, intracellular Ca2+, pH, and hypermotility. These results proved that the new ouabagenin triazole analogue is an effective and selective inhibitor of Na,K-ATPase α4 and sperm function.

Table 1: Efficacy trial of male contraceptives

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of couples enrolled</th>
<th>Number of couples entering efficacy phase</th>
<th>Number of men failing to suppress sperm production (%)</th>
<th>Number of unstudied pregnancies (%)</th>
<th>Total number of failures (%)</th>
<th>Overall contraceptive efficiency (%) (95% CI)</th>
<th>Rate of failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO2</td>
<td>308</td>
<td>234</td>
<td>10.2 (54)</td>
<td>5.8</td>
<td>15.1 (3)</td>
<td>94.7 (62-100)</td>
<td>15.1</td>
</tr>
<tr>
<td>Geo et al.</td>
<td>1045</td>
<td>833</td>
<td>10.2 (32)</td>
<td>3.0</td>
<td>13.2 (5.2)</td>
<td>96.8 (65-100)</td>
<td>13.2</td>
</tr>
<tr>
<td>Geo et al.</td>
<td>1045</td>
<td>833</td>
<td>10.2 (32)</td>
<td>3.0</td>
<td>13.2 (5.2)</td>
<td>96.8 (65-100)</td>
<td>13.2</td>
</tr>
<tr>
<td>Turner et al.</td>
<td>51</td>
<td>51</td>
<td>10.2 (32)</td>
<td>3.0</td>
<td>13.2 (5.2)</td>
<td>96.8 (65-100)</td>
<td>13.2</td>
</tr>
<tr>
<td>Behar et al.</td>
<td>360</td>
<td>266</td>
<td>10.2 (32)</td>
<td>3.0</td>
<td>13.2 (5.2)</td>
<td>96.8 (65-100)</td>
<td>13.2</td>
</tr>
<tr>
<td>Total</td>
<td>2124</td>
<td>1607</td>
<td>10.2 (54)</td>
<td>5.8</td>
<td>15.1 (3)</td>
<td>94.7 (62-100)</td>
<td>15.1</td>
</tr>
</tbody>
</table>

© Copyright 2004 by the National Academy of Sciences
mTORC1/rps6 and p-FAK-Y407 signaling regulate spermatogenesis: Insights from studies of the adjudin pharmaceutical/toxicant model.

Blockade of GRTH/DDX25 Phosphorylation by Cyclic Peptides Provides an Avenue for Developing a Nonhormonal Male Contraceptive

The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon’s head to tail.

SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility

Highlights
• Slc22a14 deficiency results in decreased sperm motility and male infertility
• Slc22a14 ablation disrupts fatty acid β-oxidation and flavoenzyme activity
• Slc22a14 is a riboflavin transporter located at inner mitochondrial membrane in sperm
From the epididymis to the egg: participation of CRISP proteins in mammalian fertilization.
Da Ros VG, Muñoz MW, Battistone MA, Brukman NG, Carvajal G, Curci L, Gómez-Ellas MD, Cohen DB, Cuasnicu PS.

The blood-testis barrier and its implications for male contraception.
Cheng CY, Alsuk BK.

Small-molecule inhibition of BRDT for male contraception.
Matzuk MM, et al.

Vaccine for human contraception targeting sperm Izumo protein and YLP12 dodecamer peptide.
Naz RK.
Protein Sci. 2014 Jul;23(7):857-68.
Abstract

There are no non-hormonal male contraceptives currently on the market despite decades of efforts toward the development of "male pills". Here, we report that triptonide, a natural compound purified from the Chinese herb Tripterygium Wilfordii Hook F displays reversible male contraceptive effects in both mice and monkeys. Single daily oral doses of triptonide induces deformed sperm with minimal or no forward motility (close to 100% penetrance) and consequently male infertility in 3-4 and 5-6 weeks in mice and cynomolgus monkeys, respectively. Male fertility is regained in ~4-6 weeks after cessation of triptonide intake in both species. Either short- or long-term triptonide treatment causes no discernable systematic toxic side effects based on histological.
Hexavalent sperm-binding IgG antibody released from vaginal film for development of potent on-demand nonhormonal female contraception

Contraception with RISUG® and functional reversal through DMSO and NaHCO3 in male rabbits.
Ansari AS, Badar A, Balasubramanian K, Lohiya NK.

Reversibility of Vasalgel™ male contraceptive in a rabbit model.
Basic Clin Androl. 2017 Apr 5;27:8.
Waller D, Bolick D, Lissner E, Premanandan C, Gamerman G.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Baseline</th>
<th>Post reversal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Progression</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
USE OF MALE METHODS OF CONTRACEPTION WORLDWIDE.
Ross J, Hardee K.

CONSEQUENCES OF EXCESSIVE POPULATION

Environmental Pollution
Global Warming
Resource Depletion
Starvation

How Big Will the Population Grow?
(1990-2150)

World Population (billions)

at 2.5 children per woman

2.06
1.7
India defuses its population bomb.
Pearce F.

Steadily shrinking families
Rural women in India tend to have more children than urban women.
“Systems Biology of Reproduction”
Spring 2022 (Even Years) – Course Syllabus
BIOL 475/575 Level Undergraduate/Graduate (3 Credit)
SLN: (475) – 05504, (575) – 05505
Time - Tuesday and Thursday 10:35 am-11:50 am
Course Lectures in person and and on Canvas/Panopto and Discussion Sessions in person and on WSU Zoom for all campuses
Room – CUE 418
Course Director – Michael Skinner, Abelson Hall 507, 335-1524, skinner@wsu.edu
Co-Instructor – Eric Nilsson, Abelson Hall 507, 225-1835, nilsson@wsu.edu
Learning Objective -
Schedule/Lecture Outline –

<table>
<thead>
<tr>
<th>Week 1</th>
<th>January 11 & 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Biology Introduction</td>
<td></td>
</tr>
<tr>
<td>10 & 20</td>
<td>Week 2</td>
</tr>
<tr>
<td>Molecular/Cellular Reproduction Systems</td>
<td></td>
</tr>
<tr>
<td>25 & 27</td>
<td>Week 3</td>
</tr>
<tr>
<td>Sex Determination Systems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 2</th>
<th>18 & 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Reproductive Track Development & Function</td>
<td></td>
</tr>
<tr>
<td>8 & 10</td>
<td>Week 5</td>
</tr>
<tr>
<td>Female Reproductive Track Development & Function</td>
<td></td>
</tr>
<tr>
<td>15 & 17</td>
<td>Week 6</td>
</tr>
<tr>
<td>Gonadal Developmental Systems Biology</td>
<td></td>
</tr>
<tr>
<td>22 & 24</td>
<td>Week 7</td>
</tr>
<tr>
<td>Testis Systems Biology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 3</th>
<th>February 1 & 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovary Systems Biology</td>
<td></td>
</tr>
<tr>
<td>8 & 10</td>
<td>Week 9</td>
</tr>
<tr>
<td>Epigenetics and Transgenerational Gonadal Disease</td>
<td></td>
</tr>
<tr>
<td>14 – 18</td>
<td>Week 10</td>
</tr>
<tr>
<td>Spring Break</td>
<td></td>
</tr>
<tr>
<td>22 & 24</td>
<td>Week 11</td>
</tr>
<tr>
<td>Germineogenesis/Stem Cells/Cloning</td>
<td></td>
</tr>
<tr>
<td>29 & 31</td>
<td>Week 12</td>
</tr>
<tr>
<td>Hypothalamus/Pituitary Development & Function</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 4</th>
<th>March 1 & 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproductive Endocrinology Systems</td>
<td></td>
</tr>
<tr>
<td>8 & 10</td>
<td>Week 13</td>
</tr>
<tr>
<td>Fertilization & Implantation Systems</td>
<td></td>
</tr>
<tr>
<td>19 & 21</td>
<td>Week 14</td>
</tr>
<tr>
<td>Fetal Development & Birth Systems</td>
<td></td>
</tr>
<tr>
<td>26 & 28</td>
<td>Week 15</td>
</tr>
<tr>
<td>Assisted Reproduction/Contraception</td>
<td></td>
</tr>
<tr>
<td>3 & 5</td>
<td>Week 16</td>
</tr>
<tr>
<td>Exam or Grant Review</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>April 5 & 7</th>
<th>Week 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproductive Endocrinology Systems</td>
<td></td>
</tr>
<tr>
<td>12 & 14</td>
<td>Week 18</td>
</tr>
<tr>
<td>Fertilization & Implantation Systems</td>
<td></td>
</tr>
<tr>
<td>19 & 21</td>
<td>Week 19</td>
</tr>
<tr>
<td>Fetal Development & Birth Systems</td>
<td></td>
</tr>
<tr>
<td>26 & 28</td>
<td>Week 20</td>
</tr>
<tr>
<td>Assisted Reproduction/Contraception</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>May 3 & 5</th>
<th>Week 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam or Grant Review</td>
<td></td>
</tr>
</tbody>
</table>