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Abstract The mid-twentieth century saw the incorporation of Mendelian genetics
into Darwinian theories of evolution. This foundation, termed the modern evolu-
tionary synthesis, has developed into the primary current paradigm of evolutionary
biology. However, the current modern synthesis does not include a role for epige-
netics in developmental modifications or any mechanisms of non-genetic inheri-
tance. With the recent expansion of epigenetic research into non-genetic
mechanisms of adaptation and inheritance, there is a need to expand the modern
synthesis into a new extended evolutionary theory. The current chapter presents the
role of environmentally induced epigenetic transgenerational inheritance in evolu-
tionary biology.
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4.1 The Modern Synthesis

The modern evolutionary synthesis is based on the theories of evolution and natural
selection as described by Charles Darwin and Alfred Russel Wallace in the
mid-nineteenth centuries (Jablonka 2017). In these theories, adaptive evolution
occurs when four proposed postulates are met. These include: (1) variation within
a population, (2) variation is heritable, (3) competition occurs between offspring for
limited resources, and (4) the survival and reproduction of the offspring are not
random but are associated with the heritable variation (i.e., genetic inheritance)
(Darwin 1859). With these postulates of evolution by natural selection as a founda-
tion, the discoveries of Mendelian genetics, which described how traits could be
inherited as well as the discovery of the genetic materials deoxyribonucleic acid
(DNA) and ribonucleic acid, provided the molecular mechanisms of inheritance of
adaptive traits and the trajectory of adaptive evolution. The field of population
genetics formalized the study of Mendelian genetics and the implications for inher-
itance and adaptation. All of these developments eventually lead to the development
and formalization of the modern evolutionary synthesis in the twentieth century,
with the term coined by Julian Huxley in his 1942 book (Huxley 1942).

Ideas of phenotypic plasticity and non-genetic inheritance were not incorporated
into the modern synthesis. At the end of the nineteenth century, James Mark Baldwin
examined the response of daphnia to the presence of predators in their environment.
Baldwin published a paper in 1896 proposing a mechanism whereby organisms
interact with a changing environment and develop adaptive traits, which were then
passed on to their offspring (Baldwin 1896). This phenomenon was termed as the
Baldwin effects and was most often incorporated in psychological research, though
evidence has accumulated for the Baldwin effect in evolutionary biology (e.g.,
Crispo 2007). In the early nineteenth century, Paul Kammerer demonstrated in the
midwife toad, an environmentally (i.e., arid or aquatic) induced parent-of-origin
non-genetic acquired reproductive traits (Vargas et al. 2017). In the mid-nineteenth
century, Conrad Waddington pioneered investigations into the phenotypic plasticity
with experiments examining the effects of heat shock on Drosophila wing shapes in
the 1940s (Waddington 1940). Waddington found that after several generations of
exposure to heat shock, an adaptive wing shape became “canalized” in the popula-
tion, by which he meant the trait was retained in a population regardless of the
genotype or environment. These results lead Waddington to coin the term “devel-
opmental epigenetics” to describe the phenotypic response to the environment
(Waddington 1940). The initial genetic terminology used to describe effects such
as those observed by Baldwin, Kammerer, and Waddington was genetic assimila-
tion, where heritable changes occur in response to a novel environmental pressure
(Crispo 2007). Despite early evidence for these phenomena, interest soon waned in
favor of strictly genetic inheritance of traits in the absence of any non-genetic
mechanisms. When the modern synthesis was formalized, ideas of soft inheritance,
described by Ernst Mayr as “gradual change of the genetic [hereditary] material
itself, either by use or disuse, or by some internal progressive tendencies, or through



the direct effect of the environment” (Mayr 1980) were strictly left out of the modern
synthesis without a specific molecular mechanism to be considered (Jablonka 2017).
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Aside from the evidence supporting the Baldwin effect and genetic assimilation,
and epigenetic phenomenon proposed by Waddington, there are other phenomena
long accepted by the evolutionary community to serve as mechanisms of inheritance.
The first being maternal effects, which have long been documented in both plant and
animal breeding and quantitative genetics (Falconer 1996). The maternal environ-
ment can affect offspring development and fitness, which can influence adaptation
across generations (Mousseau and Fox 1998). Maternal effects on offspring fitness
are both non-genetic and heritable, so are a form of adaptive non-genetic (i.e.,
intergenerational) inheritance. Moreover, epigenetic inheritance is implicated as a
part of the parental effects inherited by offspring (Danchin et al. 2019; Skinner
2015). There has been recent interest in two additional non-genetic forms of inher-
itance. Prions are proteins which have the capacity to incorporate changes that last
over many cycles of mitosis and meiosis and thus serve as a non-genetic mechanism
of inheritance (i.e., intergenerational) (Harvey et al. 2018). Prions may even serve as
facilitators of other forms of epigenetic inheritance, for example, altered chromatin
states (Harvey et al. 2020). If prion-mediated alterations lead to adaptive phenotypic
change, this is an alternative route to non-genetic inheritance (i.e., intergenerational)
of adaptive traits. Finally, horizontal gene transfer is a common phenomenon in
bacteria and may even influence eukaryotic organism’s nutrition, protection, and
adaptation to extreme environments (Husnik and McCutcheon 2018). While hori-
zontal gene transfer does involve alterations and inheritance of genetic material, it is
outside the typical vertical inheritance described in the modern synthesis and is
therefore a candidate to be incorporated as a novel mechanism of inheritance (i.e.,
intergenerational).

The recent research and evidence for the phenomena described above has led to
the proposition of an extended evolutionary synthesis (EES) (Pigliucci 2007;
Pigliucci and Muller 2010). The EES would take the tenets of the modern synthesis
and build upon them, adding what has been demonstrated in evolvability, pheno-
typic plasticity, epigenetics and epigenetic inheritance, and evolution on adaptive
landscapes (Pigliucci 2007). The authors who originally proposed these ideas were
careful to argue that this EES would not be a “paradigm shift” as none of the new
evidence directly opposes the original modern synthesis, but instead propose a shift
from the population genetic-centered view that originally characterized the modern
synthesis (Pigliucci and Muller 2010). While this debate continues in the evolution-
ary biology community (Baedke et al. 2020; Futuyma 2017; Muller 2017), there is
sufficient evidence to suggest that non-genetic forms of inheritance are implicated in
all aspects of evolution (Adrian-Kalchhauser et al. 2020; Bonduriansky et al. 2012;
Richards 2006; Stajic and Jansen 2021; Sultan 2017). In particular, epigenetic
inheritance of environmentally influenced alterations is implicated in adaptive evo-
lutionary change (Nicoglou and Merlin 2017; Nilsson et al. 2020; Norouzitallab
et al. 2019; Skinner 2015).
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4.2 Molecular Epigenetic Mechanisms

The regulation of gene expression and genome activity requires a variety of molec-
ular epigenetic mechanisms. The most extensively studied epigenetic mechanism is
DNA methylation. DNA methylation involves the attachment of a small methyl
group to DNA which produces 5-methylcytosine (5mC). This attachment occurs
primarily at the cytosine base when it is adjacent to a guanine residue (Singer et al.
1979). Other chemical modifications of cytosine and adenine bases in DNA can
occur and are far less frequent potential mechanisms of non-genetic adaptation.

DNA is wrapped around histone proteins to form the nucleosome, and these
histone proteins can be chemically modified to alter gene expression. These histone
post-translational modifications act to facilitate downstream functions in chromatin
(Rothbart and Strahl 2014). The downstream effects of histone modifications include
changing chromatin structure, recruiting transcriptional cofactors to regulate gene
expression, and even repressing gene expression in heterochromatin regions of the
genome. The variety of forms and effects of histone modifications is extensive and
complex (Bartova et al. 2008; Taylor and Young 2021). Additional possible sources
of epigenetic variation can be found in the presence of histone variants, in the
spacing between nucleosomes and the position of chromatin in the nucleus
(Margueron and Reinberg 2010). The modulation of these components is critical
for the regulation of gene expression through determination of accessibility and
sequential recruitment of regulatory factors to the DNA sequence (Quina et al.
2006). In the male germline, the sperm histone retention is also critical for the
early embryo and involved in epigenetic inheritance (Ben Maamar et al. 2021).

The action of non-coding RNA molecules as epigenetic factors has been explored
extensively (Huang et al. 2014; Wei et al. 2017). Non-coding RNAs are small and
long, and do not code for any protein. They instead function as regulatory toward
gene expression (Kornfeld and Bruning 2014). These RNA molecules are consid-
ered epigenetic factors as they are not dependent on DNA sequence and do not rely
on a complimentary nucleotide sequence to function. Epigenetic modifications can
occur on RNAmolecules, which then affect translation and gene expression (Sibbritt
et al. 2013). Methylation of adenosine to form N6-mA is the most common modi-
fication to the internal sequence of mRNA, and this reversible modification is
associated with post-transcriptional gene expression regulation (Fu et al. 2014;
Yue et al. 2015). Sperm ncRNAs are postulated as important molecular mechanisms
that can transmit gene regulatory information across generations and in response to
environmental pressures (Sharma 2017).

Since all these epigenetic processes can be altered in the germline (i.e., sperm and
egg), following fertilization they can impact the early embryo epigenetics and
transcriptomes to influence the offspring and subsequent generations. The repeated
demonstration of epigenetically facilitated transgenerational inheritance of altered
phenotypes suggests that this molecular mechanism plays a significant role in
ecology and evolution, and should be included in evolutionary processes and theory
(Angers et al. 2020; Herman et al. 2014; Sarkies 2020; Skinner 2015).



Transgenerational inheritance has been repeatedly demonstrated in model organisms
in a laboratory setting. Further research is needed among field populations of
non-model organisms responding to natural selection pressures (Hu and Barrett
2017; Sarkies 2020; Vogt 2015). For example, observations have been provided in
Darwin finches for a role for epigenetic transgenerational inheritance and evolution
(McNew et al. 2017; Skinner et al. 2014).
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West-Eberhard proposed a process by which environmental pressures result in the
selection of novel phenotypic traits which then result in genetic alterations and
ultimately speciation (West-Eberhard 2003). This theory has been coined “genes
as follower,” and epigenetic variation is a strong candidate to explain the molecular
mechanisms at play (Banta and Richards 2018; Jablonka 2006, 2017; Vogt 2021).
Interestingly, environmentally induced epigenetic transgenerational inheritance has
been shown to increase genetic mutations in the transgenerational generations
(Skinner et al. 2015). Therefore, epigenetic inheritance promotes not only adaptive
phenotypic variations, but also genetic variation on which the modern synthesis is
based (McCarrey et al. 2016).

4.3 Epigenetic Transgenerational Inheritance

There are several different types of exposure to selection pressures, an organism can
experience that could lead to altered epigenetics and a resultant altered phenotype.
Direct exposure to any selection pressure involves the specific organism directly
experiencing the exposure (Maynard 2000). An example of direct exposure would
include a significant alteration in the seasonal temperature regime, such as that
resulting from human-mediated climate change. Multigenerational exposure
involves the organism experiencing the exposure and the germ cells that organism
carries inside them (Skinner 2008). For example, when an organism is exposed to
altered nutrition or a significant increase in temperature outside the normal seasonal
regime, their sperm or egg cells are also exposed to that shift (Nilsson et al. 2018).
These environmental pressures and exposures can alter the epigenetics to impact the
developmental trajectory of the organism and subsequent offspring development due
to the exposed germ cells, termed as intergenerational epigenetic inheritance (Skin-
ner 2015). Finally, transgenerational phenomena are those in which an organism
does not have continued direct exposure to the environmental stressor, but there is a
permanent reprogrammed germ cell epigenetic inheritance of the epigenetic-induced
phenotypic alterations resulting from the direct exposure of their ancestors, Fig. 4.1
(Anway et al. 2005; Nilsson et al. 2018; Skinner 2008). An example of environ-
mentally induced epigenetic transgenerational inheritance could involve a single
intense episode of heat shock that is experienced by an F0 generation, the F1 germ
cells and the F2 germline within the F1 generation fetus. If a phenotypic shift is
observed among the F3 generation, a generation that did not directly experience the
heat shock, there is an epigenetic transgenerational inheritance phenomenon,
Fig. 4.1 (Nilsson et al. 2018; Skinner 2008). Examples of transgenerational



inheritance in human and animal models have been reviewed (Aiken and Ozanne
2014; Jirtle and Skinner 2007; Nilsson et al. 2018).
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Fig. 4.1 Environmentally induced transgenerational epigenetic inheritance: schematic of environ-
mental exposure and affected generations for both gestating female and adult male or female. The
multigenerational direct exposures are indicated in contrast to the transgenerational generation
without direct exposure. Modified from (Nilsson et al. 2018)

The epigenetically mediated inheritance of an environmental shock or alteration
in selection pressures fits well with the original postulates of natural selection. The
alteration in selection regime may yield novel variation in the population (postulate
1) (as described by West Eberhard 2003 (West-Eberhard 2003)). The novel pheno-
types are heritable (postulate 2) (Anway et al. 2005; Bohacek and Mansuy 2015;
Holland and Rakyan 2013; Legoff et al. 2019). Competition between offspring
results in differential survival based on the phenotype of individuals (postulate 3),
and the differential fitness of phenotypes is not random, but is explained by inher-
itance of the adaptive phenotype (postulate 4) (Sarkies 2020; Skinner 2015; Sudan
et al. 2018; Weyrich et al. 2018). The alternative route to adaptation mediated by
epigenetic alterations leading to inherited phenotypes is supported as an important
avenue of evolutionary change.

It should be noted that, as a “rapid path” to adaptive change, epigenetic
transgenerational inheritance of epigenetically mediated phenotypes may not always
be adaptive (Skinner 2015). When the environment is shifting rapidly, an adaptive
response may involve phenotypic switching by epigenetic inheritance rather than by
genetic mutation (Burggren 2016; Skinner 2015). The capacity for epigenetic
changes and resulting phenotypic changes to occur rapidly and even transiently
may be the most adaptive path in some circumstances. Whether by transient pheno-
typic switching in changing environments or long-term alterations in response to
phenomena such as climate change, epigenetic transgenerational inheritance pro-
vides a pathway toward adaption.
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4.4 Examples of Epigenetic Transgenerational Inheritance
Impacts on Evolution

The role of heritable epigenetic variation induced by environmental changes has
been demonstrated in plant systems (Becker and Weigel 2012; Bossdorf et al. 2008;
Cubas et al. 1999; Hirsch et al. 2012; Richards et al. 2010). While plant species are
known to exhibit a high level of developmental plasticity in changing environments,
heritable epigenetic variation is proposed as a major mechanism influencing this
developmental plasticity and ultimately the adaptation and evolution of plant species
(Miryeganeh and Saze 2019; Sudan et al. 2018). Plant species may be more prone to
epigenetic inheritance through environmentally altered epigenetic states. This may
be a result of their modes of reproduction and the lack of a sequestered germ line
(Quadrana and Colot 2016). The plant group has served well for initial observations
of adaptive epigenetic variation and evolutionary change. Notable examples of
environmental-induced adaptive phenotypic change were documented in
Taraxacum officinale (Ferreira de Carvalho et al. 2016; Wilschut et al. 2016) and
Arabidopsis (Luo et al. 2020; Schmid et al. 2018).

Heritable epigenetic variation has been demonstrated in many animal species as
well (E. Nilsson et al. 2018). Caenorhabditis elegans is one of the most studied
animal species in the investigation of mechanisms of epigenetic inheritance
(Fabrizio et al. 2019; Greer et al. 2011; Rechavi et al. 2011). The inheritance of
epigenetic mechanisms, such as histone modifications or heritable small RNAs, can
alter adaptive ancestral response among C. elegans (Rechavi and Lev 2017).

Empirical tests of the proposed idea that epigenetic mechanisms can contribute to
environmental adaptation and evolution have been found in clonal laboratory line-
ages, monoclonal invasive animal species, and adaptive radiations (Vogt 2017).
Natural animal populations have been found in general to contain higher epigenetic
variation than genetic variation. The invasive house sparrow (Passer domesticus)
exemplifies this pattern (Liebl et al. 2013). This example also demonstrates a pattern
among invasive animal species whereby the higher amount of epigenetic variation is
proposed as a mechanism by which rapid phenotypic change and adaptive evolution
are facilitated by the enhanced epigenetic variation (Carneiro and Lyko 2020; Vogt
2017). Animal lineages that are not reliant on genetic variation, such as clonal
lineages, are also prime candidates for the investigation of adaptation through
environmentally induced epigenetic variation. The asexual clonal snail
Potamopyrgus antipodarum is a widespread invasive species in the North America.
Adaptive phenotypic variation in these invasive populations was found to be asso-
ciated with epigenetic variation, providing support for the proposed mechanism of
adaptation through environmentally induced epigenetic variation (Thorson et al.
2017, 2019). Chrosomus eos-neogaeus is a hybrid clonal fish, which inhabits both
the predictable (lakes) and unpredictable (intermittent streams) environments. Sig-
nificant differentiation in epigenetic phenotype has been documented in this hybrid
(Massicotte and Angers 2012), and this variation is associated with the divergent
environments (Leung et al. 2016). The invasive house sparrow populations exhibit



morphological variation which is associated with epigenetic variation between sub-
populations in the Middle East (Riyahi et al. 2017) and among distinct introductions
in Australia (Sheldon et al. 2018). These successful invasive species, which exhibit
significant epigenetic variation, provide natural empirical investigations into the
potential for environmentally induced epigenetic variation and inheritance to act as
a source of adaptive phenotypic variation.
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Adaptive radiations provide additional empirical examples of epigenetically
mediated evolutionary change. Epigenetic changes were found to be more common
than genetic changes among five closely related species of Darwin’s finches (Skinner
et al. 2014). Moreover, epigenetic variation was correlated with urban and rural
populations of two of the Darwin finch species, suggesting environmentally induced
epigenetic inheritance in this adaptive radiation (McNew et al. 2017). The examples
of Chrosomus eos-neogaeus, Passer domesticus, and Darwin’s finches support the
role of epigenetic variation particularly among population with depleted genetic
variation which can include invaders, founding populations, clonal lineages, and
adaptive radiations (Vogt 2017). From these natural empirical examples, strong
support for the proposed “soft inheritance” hypotheses (i.e., epigenetic inheritance)
has been developed.

Laboratory populations have also shown significant evidence of induced epige-
netic change and transgenerational inheritance of altered phenotypes. The evidence
for epigenetic transgenerational inheritance of environmentally induced epigenetic
changes in mammalian species has been reviewed (Legoff et al. 2019). Laboratory
lineages of Rattus norvegicus have demonstrated numerous cases of epigenetic
transgenerational inheritance of altered phenotype induced by an environmental
perturbation and accompanied by epigenetic alterations and epigenetic
transgenerational inheritance (Anway et al. 2005; Nilsson et al. 2018; Nilsson and
Skinner 2015). Laboratory manipulations and environmental exposure experiments
provide important support for the proposed mechanism of epigenetic inheritance and
phenotypic change. Other human-mediated alterations to selection regimes include
captive breeding programs and hatcheries. Hatchery and wild populations of Steel-
head trout (Oncorhynchus mykiss) exhibit extensive phenotypic differences in
growth and maturation rates. When examined for epigenetic differences, significant
differential methylation was found in somatic and germ cells of these hatchery and
wild populations (Nilsson et al. 2021).

4.5 Conclusion: Integration of Epigenetic
Transgenerational Inheritance and Evolutionary
Biology

Overall, the evidence for a functional role of epigenetic variation and the various
mechanisms of epigenetic variation in all organisms investigated, such as plants
(Chang et al. 2020; Hauser et al. 2011; Lamke and Baurle 2017) and animals is



compelling (Nilsson et al. ; Skvortsova et al. ; van Otterdijk and Michels
; Xu and Xie ). With a proposed epigenetic mechanism for non-genetic

inheritance, there is significant support for the previously discarded ideas of “soft
inheritance” (i.e., epigenetic inheritance) from the late nineteenth and early twentieth
centuries (Skinner ). Epigenetic inheritance has been described as a redemption
of the ideas of Jean Baptiste Lamarck, who was the first to suggest the inheritance of
acquired characteristics (Nilsson et al. ; Skinner ; Wang et al. ),
Fig. . This new evidence suggests that a revision of the ideas set forth during
the establishment of the modern synthesis is required. The impacts of epigenetic
transgenerational inheritance and epigenetic variation on the evolutionary and
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Fig. 4.2 Schematic of the unified theory of evolution. No dominance is suggested by the appear-
ance of specific circles (e.g., epimutations versus genetics) such that all are equally important
components. Modified from (Skinner 2015)



adaptive trajectory of species are supported as relevant and crucial (Jablonka 2017;
Skinner 2015). The four postulates of natural selection are supported by the evidence
of epigenetic inheritance and phenotypic change, such that alteration of the modern
synthesis need to focus on the integration of the non-genetic and genetic forms of
inheritance involved in phenotypic variation, adaptative, and evolution.
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