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Network biology bridges the gaps between
quantitative genetics and multi-omics to map complex
diseases
Si Wu1, Dijun Chen2 and Michael P. Snyder1
Abstract
With advances in high-throughput sequencing technologies,
quantitative genetics approaches have provided insights into
genetic basis of many complex diseases. Emerging in-depth
multi-omics profiling technologies have created exciting op-
portunities for systematically investigating intricate interaction
networks with different layers of biological molecules underly-
ing disease etiology. Herein, we summarized two main cate-
gories of biological networks: evidence-based and statistically
inferred. These different types of molecular networks comple-
ment each other at both bulk and single-cell levels. We also
review three main strategies to incorporate quantitative ge-
netics results with multi-omics data by network analysis: (a)
network propagation, (b) functional module-based methods,
(c) comparative/dynamic networks. These strategies not only
aid in elucidating molecular mechanisms of complex diseases
but can guide the search for therapeutic targets.
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Introduction
Unlike single-gene diseases, most diseases are complex,
that is, caused by a combination of several genetic al-
terations [1]. The genetics of complex diseases are
difficult to study for several reasons. First, the individual
effect of each mutation might be small and thus hard to
www.sciencedirect.com
identify [2]. Second, complex diseases often exhibit
considerable variation of disease phenotypes [3]. Third,
external factors such as environment, diet, and lifestyle
interplay with genetic factors, which further compli-
cates their study [4].

The Human Genome Project, completed in 2003 [5],
provided new avenues for defining the genetic archi-
tecture of human diseases. Recent advances in high-
throughput sequencing in addition to early studies
using array-based single nucleotide variant (SNV)
mapping methods have fueled exceptional growth in
quantitative genetics [6]. Quantitative trait locus
(QTL) linkage mapping and genome-wide association
studies (GWAS) have discovered associations between
genetic variations and complex disease traits [7,8]. To

complement GWAS that are mostly restricted to one or a
small set of diseases, phenome-wide association studies
(PheWAS) have been emerged to identify novel genetic
associations across a broad spectrum of phenotypes
[9,10]. However, the resolution of many QTL mapping
studies remains poor, rarely leading to identification of
single causal genes [11], and the amount of heritable
variation explained by GWAS is often surprisingly low
[12]. Intricate interactions between genetic variants
and gene products, and geneeenvironment interaction
have been suggested to explain the so-called “missing

heritability” [13]. Nonetheless, these caveats make it
difficult to translate results into meaningful clinical
applications [14]. Additional approaches for translating
genetic mapping information into biological discovery
are therefore needed.

Classical reductionism, where single causal genes are
used to explain disease etiology, is being increasingly
challenged, especially with a growing body of evidence
indicating the importance of searching beyond the
genome, towards interactions between compo-

nentsdthe interactome [15]. Research studies are
increasingly generating and analyzing multiple omics
datasets [16], offering better opportunities to elucidate
causative changes that lead to disease or to treatment
targets. This development accelerates the emergence
of a new paradigmdnetwork biologydcombining
graph theory, systems biology, and statistical analysis
[1]. Advances in graph theory (BOX 1) enable the
Current Opinion in Chemical Biology 2022, 66:102101
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Box 1. Basic network properties in graph theory.

Directed vs undirected networks: If the edge connecting two vertices indicates a two-way relationship and can be traversed in both directions,
it is in an undirected network. Examples of such networks include PPI networks and gene co-expression networks. If connections between
vertices are directional, it is a directed network such as gene regulatory networks, where a gene expression is regulated by a given transcription
factor, and the direction usually goes from the transcription factor to the gene. Directed networks are usually more informative than undi-
rected networks.

Degree and degree distribution: The number of edges that one node has is called degree. In random networks, most nodes have a similar
number of edges, and their degree distribution follows the Poisson distribution. In contrast, many real-world networks, including most biological
networks, are scale-free. This means that their degree distribution follows a power law, as most of the nodes have few links and only a few nodes
are densely connected.

Hubs: Hub nodes have the number of links that greatly exceeds the average in a network. In biological networks, hubs tend to be located at the
functional center of the interactome, and they are essential genes expressed in multiple tissues. Nevertheless, not all essential genes are
disease genes, and disease genes are usually located at the functional periphery of the interactome and tend to be tissue specific.

Betweenness: The extent to which a node participates in the shortest paths connecting other nodes. Nodes with high betweenness, known as
“bottlenecks”, can be extremely influential in a network in the sense that they are located in critical junctions between hubs and can therefore
represent bridges that allow groups of nodes to cross talk to each other.

Closeness: A measure of the average length of the shortest paths from one node to other nodes, which indicates important nodes that can
communicate quickly with other nodes of the network.

Network efficiency: The average inverse shortest path length over all pairs of nodes. It quantifies the efficiency of information exchange across
the whole network.

Clustering coefficient: Averaging the local clustering-coefficients of all nodes. It is a measure of the degree to which nodes in a network tend to
cluster together.

Community: A group of nodes that are more densely connected internally than with the rest of the network, and usually represent the
functionally similar molecules in biological networks. A wide array of community detection algorithms has been developed such as fast greedy,
matrix–eigenvector-based method, edge-betweenness-based, multi-level modularity optimization algorithm.
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accurate prediction of novel disease markers based on
their topological properties [17] and the usage of
topographic measures such as network density and

clustering coefficient as biomarkers of disease state
[18]. Since complex diseases usually develop gradually
over time, longitudinal multi-omics data with coordi-
nated sets of all layers can provide more comprehensive
pathologic landscapes.
Types of biological networks
Biological networks can either be evidence-based or
statistically inferred [19] (Figure 1). The former rely on
experimental data aggregated in public databases and/or
derived from high throughput technologies; the latter

are constructed based on interactions calculated
using statistics.

Evidence-based molecular networks
proteineprotein interaction (PPI) networks, metabolic
networks, regulatory networks, and drugetarget networks
fall into this category. In PPI networks, nodes are gene-
coding proteins connected to each other by physical
binding interactions [20]. Large experimental projects,
Current Opinion in Chemical Biology 2022, 66:102101 www.sciencedirect.com
including, but not limited to, yeast two-hybrid assays, as
well as immunoprecipitation and/or tandem affinity puri-
fication coupled to mass spectrometry, have been under-
taken in recent years, yielding approximately 53,000
binary human PPIs [21]. Mosca et al. [22] proposed
Interactome3D, a resource for 3D structural annotation at
atomic resolution for over 12,000 PPIs in eight model or-

ganisms. Later the same group presented dSysMap, a tool
to map disease-related mutations onto 3D PPI inter-
actomes [23]. Both studies have advanced the PPI filed,
filling in the gap between systemic and reductionist ap-
proaches. Metabolic networks are collections of
biochemical reactions between metabolites as well as
between metabolites and enzymes, with KEGG (https://
www.genome.jp/kegg/) and BiGG (http://bigg.ucsd.edu/)
the twomost widely used databases. Regulatory networks
contain directed links that represent how one gene acti-
vates other genes, resulting inmore accurate inferences on

causal relationships between transcription factors and
genes or kinases and their substrates (post-translational
modifications) [24]. Important regulatory databases
include the ChIP-chip- and ChIP-seq- derived ENCODE
(https://www.encodeproject.org/), RegulomeDB (https://
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Figure 1

Comprehensive network analysis based on multi-omics data. Multi-omics data (genomics, epigenomics, transcriptomics, proteomics, metabolomics, and
phenomics) are collected. Multi-omics data enable us to construct different types of biological networks (PPI networks, gene regulatory networks,
metabolic networks, drug– target networks, co-expression networks, and more) at bulk and single cell levels. The complex interactions in these networks
not only reflect genetic alterations, but also external factors such as environment, diet, lifestyle, drug administration, etc. These factors interact with each
other and can be integrated for further downstream network analysis (e.g., network propagation, discovery of key nodes and functional modules, network
comparisons) to generate a comprehensive molecular landscape of complex diseases, as well as to evaluate drug effects.

Networks link quantitative genetics and omics Wu et al. 3
regulomedb.org/regulome-search/), UniPROBE (http://
thebrain.bwh.harvard.edu/uniprobe/) and JASPAR

(http://jaspar.genereg.net/) databases, proteineDNA
interaction databases such as TRANSFAC (https://
genexplain.com/transfac/), EdgeExpressDB (https://fan
tom.gsc.riken.jp/), MSigDB (https://www.gsea-msigdb.
org/gsea/msigdb/), and B-cell interactome (http://califa
no.c2b2.columbia.edu/b-cell-interactome), as well as da-
tabases for post-translational modifications (Phos-
pho.ELM (http://phospho.elm.eu.org/), PhosphoSite
(https://www.phosphosite.org), PHOSIDA (http://phosi
da/index.aspx), NetPhorest (http://www.netphorest.info/
index.shtml), and CBS (http://www.cbs.dtu.dk/services/

)). With many of the databases still incomplete, the reg-
ulatory networks are themselves immature [25]. Lastly,
drugetarget networks [26] are mainly constructed based
on public databases such as DrugBank (https://go.
drugbank.com/) and SNAP (https://snap.stanford.edu/).
These different interactions can be directly assembled
into biological networks. A major limitation of evidence-
based networks is their reliance on public databases,
which remain incomplete and noisy (i.e., false positives).
This has led to the development of many statistical
inference approaches.
www.sciencedirect.com
Statistically inferred networks
These networks include gene co-expression networks
and genetic networks. Co-expression networks are based
on the “guilt-by-association” principle, whereby genes

with similar expression profiles likely have similar
functions. Genetic networks are built to investigate how
the impact of one dysregulated gene spreads along the
links throughout the entire molecular network to in-
fluence specific disease phenotypes [27]. Some studies
have used different molecular layers to construct het-
erogeneous networks, such as geneemetabolite net-
works [28] and protein�metabolite networks [29].
There are three methods to calculate the metric used to
build edges in statistically inferred networks [30]: (a)
correlation-based methods construct an adjacency

matrix by calculating the correlations (Pearson or
Spearman correlations) or the partial correlations be-
tween pairs of molecules. These methods are primarily
used to obtain linear correlations among variables; (b)
mutual information-based methods measure the mutual
dependence between each pair of molecules based on
their profiles. These methods can capture both linear
and non-linear relationships but can be computationally
Current Opinion in Chemical Biology 2022, 66:102101
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expensive; () tree-based methods decompose the con-
struction of a regulatory network with p genes into p
different regression problems. In each of the regression,
the expression pattern of the target gene is predicted
from the expression patterns of all the other genes
(input genes) using tree-based ensemble methods. The
importance of an input gene in the prediction of the
target gene expression pattern is taken as an indication

of a putative regulatory link. These methods are non-
parametric and can be applied to high-dimensionality
data, demonstrating high accuracy [19].

These different types of networks complement each
other and provide distinct insights into cellular inter-
action mechanisms (Figure 1). They are mainly based on
bulk omics data, which are typically limited to the un-
derstanding at the organism level [31]. The recent
emergence of single-cell multi-omics technologies is
able to accelerate the investigation of cellular hetero-

geneity [32], allowing the construction of cell-type-
specific molecular networks associated with certain
Figure 2

Three main network analysis strategies are proposed to bridge over quantitat
module-based method; (c) Comparative/dynamic networks.

Current Opinion in Chemical Biology 2022, 66:102101
complex diseases. Single-cell omics networks include
GCN (gene co-expression networks), GRN (gene reg-
ulatory networks), MGRN (methylation-associated
gene regulatory networks), and CGN (cis-regulatory
gene interaction networks) [33]. The integration of
these networks has been applied in complex diseases
such as leukemia [34], breast cancer [35], and mela-
noma [36]. Comparing single-cell omics networks be-

tween different cell populations allows us to identify
cell-developmental trajectories that may reflect cell
lineages, disease progression, and to explore rare cell
populations potentially associated with complex dis-
eases [37].

Strategies to bridge over quantitative
genetics and multi-omics
How can we incorporate the obtained associations be-
tween phenotypes and genotypes from quantitative
genetics results to the two types of biological networks?
The following three general strategies provide several
insightful examples (Figure 2).
ive genetics and multi-omics. (a) Network propagation; (b) Functional

www.sciencedirect.com
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Strategy 1: use QTL candidate genes as seed to
propagate
If GWAS loci or QTL genes for diseases are available, we
can use them as anchors for inferring causality. One
straightforward way is to search for neighbor genes
directly connected to the causal genes in the interaction
networks [38]. However, this approach may bring in a
high number of suggestive candidate interactions,
especially in large biological networks, making follow-up
indiscriminate experimental validation prohibitive.

Another implementation of this strategy is to combine
both genotypic results (causal genes from quantitative
genetics approaches) with phenotypic data (omics data
showing disease effects) by leveraging network topo-
logical properties. Genotypic variation is considered the
source of perturbations, and molecules with phenotypic
changes are considered as the targets of the perturba-
tions. The shortest path connecting causal genes with
targets is often thought to infer causality [39]. The in-
termediate vertices on this shortest path are likely the
key components of the perturbed pathways. Several

studies have applied this method to identify the
affected pathways/modules from seed genes to their
targets [40,41]. If multiple causal genes act as seeds,
then the Steiner tree-based method is widely used,
where key elements are identified by minimizing the
total edge cost [42]. Bechet et al. employed this method
to successfully predict the functional role of an
uncharacterized protein COS8 in sphingolipid biosyn-
thesis and TOR signaling [43]. Tuncbag et al. [44]
expanded this application to the Steiner Forest and
developed a web-based tool “SteinerNet” to discover

hidden components in dysregulated pathways by inte-
grating omics data. However, shortest path-based
methods have several drawbacks [45]: (a) they do not
incorporate other molecular layer data, such as gene-
expression data; (b) they assume that the shortest
path contains the most informative pathways with the
key components, which is not always true; (c) they
ignore the possibility of multiple shortest paths from
seed genes to target genes, especially in large and
complicated networks.

To address these limitations, flow-based methods for
finding the most possible dysregulated paths were
developed [45], where the current in an electronic cir-
cuit is mimicked and the fraction of flowdthe proba-
bility of the biological information propagates through a
given node or edgedis calculated based on probabilistic
theory. This method is superior for incorporating addi-
tional data to retrieve information-propagation pathways
with more confidence. Kim et al. [46] applied this
method and incorporated it with eQTL, successfully
narrowing down the causal genes and underlying

dysregulated pathways, and identifying several hub
nodes that are well-documented as important regulators
www.sciencedirect.com
in glioma. This strategy largely alleviates the common
issue in quantitative genetics approaches that mapped
loci may still contain dozens of candidate causal genes
with false positives.

Strategy 2: map QTL candidate genes into functional
modules
The causal genes from QTL mapping can be placed into
a molecular network, and then searched for network
modules enriched with the altered genes. This method
can increase statistical power to identify a subset of
genes in the enriched modules that may not show sig-
nificant signals in either GWAS or QTL mapping, but
still play important roles within modules by mediating
interactions between causal disease genes and other
associated components. This approach can partly over-
come the main shortcomings of quantitative genetics

that rare germline variations are difficult to discover and
distinguish from noises due to their rarity. The module-
based strategy may identify this accumulation effect.
Several benchmark studies have successfully integrated
genetics results with network modeling, and thereby
identified key modules that contribute to diseases [47e
49]. For instance, Marbach et al. [50] collected geno-
mics, epigenomics, and transcriptomics data and
constructed 394 cell-type- and tissue-specific gene
regulatory networks. They then overlaid the GWAS re-
sults, including variants that do not pass GWAS signifi-

cance, onto these gene regulatory networks, and
identified cell-type- or tissue-specific modules that are
enriched for genetic variants in human diseases.

Strategy 3: comparative network analysis
Biological networks undergo dynamic rewiring in
response to different disease states, disease development
stages, environmental stresses, drug treatment, or
through evolutionary time [51]. There are two main
branches in the comparative network analysis strategy.
The first focuses on conserved modules over the time or
different status, underlying preserved core functions
[51]. This approach has been widely applied in evolution
analysis across different species for prediction of novel

gene function [52] andmechanisms of drug action [53]. A
different branch focuses on differential network struc-
tures by comparing networks across different conditions.
Once the different networks are constructed, one can
search for loss and gain of correlations with the seed genes
(e.g., QTL causal genes) in different disease states to
identify dysregulated genes. Another way is to compare
the topological structure (BOX1) in different networks,
as the topological rewiring can trigger changes in specific
disease-associated modules. In one interesting study,
gene co-expression networks of normal and prostate-

cancer samples were compared. The authors detected
prostate-cancer-specific modules involved in RAD50 and
telomeric repeat-binding factor 2 [54]. Comparative
network approach can be carried out on physical networks
Current Opinion in Chemical Biology 2022, 66:102101
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(e.g., PPI, proteineDNA networks) [55], as well as
functional networks (e.g., co-expression networks,
metabolic networks) [56],which can shed light ondisease
progression mechanisms and drug responses.

Leveraging the advantages of network analysis, we can
integrate quantitative genetics results with rich multi-
omics resources to potentially address many important

questions in complex diseases. The four broad categories
of these questions that may be answered by the three
strategies are summarized in Supplementary Table 1.
Conclusion
Network biology provides an ideal tool to link quanti-
tative genetics and multi-omics data and will likely play
a major role in disease-biomarker identification and
novel-therapy discovery in the next decade. This para-
digm is highly tailored and suitable for complex diseases
with highly heterogeneous molecular basis and ones that
can be influenced by intricate factors (e.g., environ-
ment, diet, drug administration) simultaneously. The
explosive advancements in sequencing and mass spec-
trometry technologies, as well as the flourishing devel-
opment of novel network-modeling algorithms, have

paved ways for the next generation of precision medi-
cine. That said, network approaches are not free of
limitations, which include incomplete interactome da-
tabases due to inherent detection limitations of high-
throughput experiments, lack of ground truth for the
validation of constructed molecular networks, and their
common focus on static conditions, thereby overlooking
the dynamic changes of molecular interactions [51].
Despite these limitations, network biology, a revolu-
tionary approach, bridges over quantitative genetics
approaches and multi-omics technologies, encompass-
ing multiple data types, algorithms, as well as conditions

and timepoints at growing scale and depth. The inte-
gration of single-cell multi-omics networks provides
more opportunities to demystify molecular mechanisms
of complex diseases in individual cells, as well as guide
clinical therapeutical strategy in personalized medicine.
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A novel framework called “diseaseQUEST” by combining both
computational and experimental efforts was proposed to predict
candidate genes for human diseases. The main parts that constitute
the computational section are the incorporation of tissue-specific
functional networks with quantitative genetics data.
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the mRNA X and mRNA Y corresponding to
protein X and protein Y, respectively. Although
protein X and protein Y are coordinated for all
four motifs in Fig. 3, this is not the case for their
mRNA levels. This can be explained by the dis-
parate time scales of mRNA and protein. Fast-
degrading mRNA may exhibit fluctuations with
a broad frequency bandwidth. Conversely, slow
degradation of proteins filters out fast fluctua-
tions but keeps slow fluctuations. Constitutively
expressed mRNA X has both fast and slow fluc-
tuations, but protein X only transmits the slow
fluctuations downstream. The result is that the
dynamics of mRNA X and mRNA Y are dom-
inated by uncorrelated fast fluctuations, which
overshadow their correlated slow fluctuations. On
the other hand, protein X and protein Y only
contain the better-correlated slow fluctuations.
That is, two mRNA species can be mostly un-
correlated with one another, yet produce protein
in a coordinated fashion. Gandhi et al. (18) ob-
served such a circumstance in budding yeast,
when they found very little correlation between
pairs of transcripts that encode coordinated pro-
teins of the same protein complex, including pro-
teasome and RNA polymerase II subunits. They
even found correlation lacking in two alleles of
the same gene. In a related study, Taniguchi et al.
(27) analyzed more than 1000 genes in E. coli
and measured both mRNA and protein copy
numbers in single cells. They found that for most
genes, even the numbers of mRNA and protein
molecules were uncorrelated. These studies sug-
gest that understanding of regulatory phenomena
requires one to consider regulation at both the
mRNA and the protein level.

From these studies, it is now clear that var-
iability in single-cell measurements contains a
wealth of information that can reveal new in-
sights into the regulatory phenomena of specific
genes and the dynamic interplay of entire gene
networks. As modern imaging techniques begin
to beat the diffraction limitations of light (28) and
flow cytometers become affordable for nearly
any laboratory bench (29), we find ourselves in
the midst of an explosion in single-cell research.
With the advent of single-cell sequencing (30, 31),
it might be possible to determine the full tran-
scriptome of many single cells in the near future
and to determine the full expression distributions
and correlations for all genes in the genome. We
expect that the approaches described in this re-
view, which have been pioneered with the model
microbial systems, will be readily applied tomam-
malian cells and tissues (32, 33).
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REVIEW

Computational Approaches
to Developmental Patterning
Luis G. Morelli,1,2,3 Koichiro Uriu,1,4 Saúl Ares,2,5,6 Andrew C. Oates1*

Computational approaches are breaking new ground in understanding how embryos form. Here,
we discuss recent studies that couple precise measurements in the embryo with appropriately
matched modeling and computational methods to investigate classic embryonic patterning
strategies. We include signaling gradients, activator-inhibitor systems, and coupled oscillators,
as well as emerging paradigms such as tissue deformation. Parallel progress in theory and
experiment will play an increasingly central role in deciphering developmental patterning.

Animal and plant patterns amaze and per-
plex scientists and lay people alike. But
how are the dynamic and beautiful pat-

terns of developing embryos generated? Used
appropriately, theoretical techniques can assist
in the understanding of developmental processes
(1–5). There is considerable art in this, and the
key to success is an open dialogue between exper-

imentalist and theorist. The first step in this dia-
logue is to formulate a theoretical description of
the process of interest that captures the properties
and interactions of the most relevant variables
of the system at a level of detail that is both use-
ful and tractable. Once formulated, the second
step is to analyze the theoretical model. If the
model is sufficiently tractable, it may be possible

to understand its behavior with “pencil-and-
paper” analysis and compare this analytical solu-
tion directly with experimental data. Very often,
however, the number of variables and the com-
plexity of their interactions preclude this ap-
proach, and the behavior ofmodelsmust be solved
or simulated by using computers in order to be
understood and compared with data. This com-
bined approach, which we refer to as computa-
tional biology, has become popular recently with
the availability of powerful computers and in-
creasingly sophisticated numerical algorithms.
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In this Review, we hope to introduce scientists
familiar with computational methods (geeks) to a
selected set of interesting developmental problems
(Fig. 1) and to illustrate to developmental biologists
(nerds) a selected set of powerful tools.We focus on
recent studies investigating four developmental
patterning strategies: (i) gradients of signaling mol-
ecules released from localized source cells that
guide global patterns across target cell populations
(Fig. 1A). This external control contrasts with self-
organizing strategies within the cell population that
use local interactions, such as (ii) activator-inhibitor
mechanisms (Fig. 1B) and (iii) the synchronization
of cellular oscillations (Fig. 1C). (iv) Mechanical
deformations can also change the pattern of a cel-
lular population (Fig. 1D). Although models are
often useful in explaining and predicting develop-
mental phenomena, the eventual fate of a given
model is to be provenwrong and thenmodified or
replaced, as illustrated in the companion article on
cell polarity by Mogilner and colleagues on page
175 of this special issue. Perhaps the greatest impact
of computational approaches in developmental
biology right now is to force hypotheses to be pre-
cisely stated and to stimulate corresponding new
quantitative experiments to test them.

Patterning with Signaling Gradients
Morphogens are diffusible signaling molecules
that can activate target genes in a concentration-
dependent manner. During development, mor-
phogen gradients are established across tissues,
diffusing away from localized sources (Fig. 1A). It
has been proposed that cells read morphogen
levels to determine their position within the tissue
and differentiate accordingly (6), and there is good
evidence that morphogen gradients can direct
cell differentiation in target cells. How these gra-
dients are formed, and whether they are sufficient
to control differentiation in very precise domains,
are open questions that have benefited from com-
putational approaches.

An important model system for studying these
questions is the early embryo of the fruit fly Dro-
sophila, in part because its geometry and symmetry
simplify description and quantitation (Fig. 2A).
One of the maternally deposited cues that breaks
the symmetry along the embryo’s long axis is bicoid
mRNA, which is present only in the anterior pole.
Bicoid protein is translated and transported (7),
creating within an hour an exponentially decreas-
ing concentration gradient over several hundred
micrometers along the embryo’s axis. This gradient
directs the formation of precise domains of four
target genes—among them hunchback—that es-
tablish the first segments of the future fly body (Fig.
2A).Given the stochastic nature of gene expression,
discussed in the companion article by Munsky
and colleagues on page 183 of this special issue,
morphogen concentration is expected to fluctuate,
both over developmental time and from one indi-
vidual to another. The stunning precision in the
position of the boundaries of the segmented out-
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Fig. 1. Patterning strategies. (A) Signaling gradients supply global positional information. Horizontal
axis is position within target tissue. Morphogen-producing cells are green; cells in tissue take identities
(blue, white, and red) according to morphogen concentration. (B) Activator-inhibitor systems incorporate
local positive and negative feedbacks to generate pattern. Distinct cell types are in red and blue. (C)
Synchronization of genetic oscillators allows a tissue to generate a coherent temporal rhythm for pat-
terning. In these snapshots, the phase of each oscillating cell is given by its color, which changes over
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put pattern that is found despite these fluctua-
tions puzzles both nerds and geeks. The field has
wrestled with the issue of whether this precision
can be achieved through theBicoid gradient alone,
or whether other mechanisms are required.

Contributing to this debate, recent papers by
Manu et al. (8, 9) formulated the interactions be-
tween four target genes downstream of the ma-
ternal gradients in the early embryo using a gene
regulatory network (GRN) model, in which each
variable represents the quantity of a molecular spe-
cies (Fig. 2B). One of the limitations of GRNmod-
els is that great experimental effort is often required
to estimate relevant values of the model’s many
parameters in the embryo. Parameters for thisDro-
sophila segmentation model were obtained com-
putationally by finding those combinations that
best reproduced a time series of quantitative spatial
gene expression data from the embryo. The model
hinted that cross-regulatory interactions between
target genes in the GRN reduce the variability in
the position of their expression domains.

One problem in understanding a model is that
as the parameters vary, the general dynamic be-
havior of the system can change dramatically.
These changes are called bifurcations, and using
powerful tools from dynamical systems theory (10),
Manu et al. (9) performed a bifurcation analysis of
the model to identify the fundamental behaviors
that the system can display over a given set of real-
istic parameter values. Themodel predicts that cells

in the anterior of the embryo select a stable state
of the dynamics, and the concentrations of targets
change as Bicoid levels drop. In the posterior of
the embryo, the system never reaches a stable state
because gastrulation happens first. Describing the
simple behaviors of a complex regulatory network
in this compact way is appealing because it makes
similarities to other regulatory systems clearer and
also makes falsifiable predictions about distinctive
behaviors that can be experimentally tested.

Fluctuations in gene product levels generate
molecular noise that limits the precision of sig-
naling gradients and also degrades the targets’
outputs. This problem can be formulated precise-
ly by using the tools and concepts from information
theory—originally used in engineering—which
quantifies the flow of information through com-
munication channels. A key concept is the mutual
information between two variables, such as, for
example, Bicoid andHunchback levels. An elegant
computation by Tkačik and Walczak used exist-
ing precise measurements of morphogen levels
(11) to estimate the mutual information between
Bicoid and Hunchback (12). On the basis of their
result, they argued that if similar results hold for
the other target genes under Bicoid control, the
combined information conveyed by the four genes
would be enough so that each of the roughly 100
rows of nuclei could unambiguously determine its
position along theDrosophila embryo. To test this
hypothesis, combined high-quality spatial expres-

sion data for the other target genes in the system
will be necessary. Thus, information theory is emerg-
ing as a potentially powerful tool to quantify inf-
ormation transmission in developmental GRNs.
As yet, it is unclear whether the bicoid gradient is
sufficiently precise to instruct the precise bound-
aries of its target gene domains, or whether other
mechanisms are necessary, but computational biol-
ogy has a central role in this discussion.

Patterning with Activator-Inhibitor Systems
Cells in a morphogen gradient use the local level
of an externally provided signal to produce pat-
terns (Fig. 1A). However, patterns such as spots
and stripes can arise spontaneously from entirely
local interactions. In 1952, Alan Turing proposed
a reaction-diffusion (RD) mechanism to explain
spontaneous pattern formation without signaling
gradients (13). Specifically, he considered two
diffusing chemical components, an activator and
an inhibitor (Figs. 1B and 3A). By self-activation,
the activator can locally increase its concentration
(Fig. 3A). The activator in that region produces
the inhibitor, which suppresses the activator in
surrounding space because of faster diffusion. As
a result, local peaks of activator self-organize from
the almost homogeneous starting state, leading to
the spontaneous formation of spatial patterns, such
as stripes and spots in a two-dimensional (2D)
space (so-called Turing patterns) (Fig. 1B).

Subsequently, RD systems have been con-
sidered to play important roles in spontaneous
pattern formation (14, 15). Although spatial struc-
tures very similar to simulated Turing patterns
have been observed in development, until recent-
ly there was scant evidence showing that the
Turing mechanism causes these structures. In-
deed, conceptually elegant RD models of the
Drosophila segmentation process introduced above
proved to be entirely wrong (16), and this failure
may even have left some developmental biologists
wary of further theoretical efforts. However, iden-
tification of interaction rules and key molecular
components in several putative RD systems (17, 18)
now suggests the potential of a long-awaited ex-
perimental verification of these ideas.

Skin pattern formation in fish has long been
a candidate for patterning by use of the Turing
mechanism (19). To identify key interaction rules
in the system, Nakamasu et al. studied stripe for-
mation in zebrafish skin (20). These black and
yellow stripes are self-organized over 3 weeks by
local interactions between black and yellow pig-
ment cells, which fulfill the condition for Turing
patterns (Fig. 3B). To confirm that the experi-
mentally observed interactions between pigment
cells can generate stripes, the authors first used
deterministic partial differential equations to mod-
el cellular dynamics. However, because the width
of each stripe in zebrafish is only ~10 cells,
Nakamasu et al. pointed out that stochastic effects
caused by smaller cell numbers might prevent
stable stripe formation. In that situation, it would
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Fig. 3. Patterning with activator-inhibitor systems. (A) Local activation and lateral inhibition generates
spatially heterogeneous patterns. (B) Interactions between black and yellow pigment cells produce Turing
patterns in zebrafish skin. Mutual inhibition between them functions as self-activation for the yellow cells.
Each yellow cell activates distant black cells. Therefore, inhibition of the yellow cell by the black cell works
as a lateral inhibition. (C) Different modeling approaches to spontaneous pattern formation.

100100100101110101001

www.sciencemag.org SCIENCE VOL 336 13 APRIL 2012 189

SPECIALSECTION

 o
n 

D
ec

em
be

r 
21

, 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://science.sciencemag.org/


be a better formulation to explicitly
describe stochastic behaviors of each
singlepigment cell, suchasbirth,move-
ment, and cell death. The authors de-
veloped a cellular automaton-based
model (Fig. 3C) that includes the ob-
served pigment cell interactions to
study the robustness of stripe patterns
against stochastic effects. Although
such detailed models usually include
several parameters not measured ex-
perimentally, simulations of the cell-
basedmodel produced patterns similar
to those obtained by the deterministic
model and observed on the zebrafish
skin. Combining investigations of the
molecular and cellular basis of the
cellular-level interaction rules (21) with
further theoretical studies should reveal
whether this is indeed a Turing system.

Gradient patterning strategies can
also be formulated as RD systems be-
cause gradients can arise from diffu-
sion ofmorphogens, and the pattern emerges due to
reactions that involve these morphogens. However,
the different length-scales involved in activator-
inhibitor systems give rise to qualitatively different
patterns, which are local in nature. This is an ex-
ample of how very different developmental pattern-
ing strategies can be described by using similar
model formulations.

Patterning with Genetic Oscillations
The growing body axis of all vertebrate embryos is
rhythmically and sequentially subdivided into seg-
ments. For example, in the zebrafish embryo the
multicellular segments are ~50 mm long and form
with a periodicity of 30min. Inspired by such clock-
like regularity, Cooke and Zeeman proposed the
Clock and Wavefront model in 1976 (22). In this
model, a biological clock ticks at the posterior of the
elongating embryo, and the distance advanced by a
wavefront along the embryonic axis during a cycle
of the clock sets the length of a forming segment.
More than 20 years later, the model was revived
with the discovery of genetic oscillations in the chick
embryo (23). This segmentation clock appears to be
a tissue-level rhythmic pattern generator (24), in
which a population of progenitor cells behave as
coupled oscillators, self-organizing a collective
rhythm throughmutual synchronization (Fig. 1C).

A clue to the existence of such a synchronized
cell population came from zebrafish mutants that
disruptDelta-Notch intercellular signaling, inwhich
coherent oscillations and segmental patterning
are gradually lost (25). The current hypothesis is
that in the wild-type embryo, Delta ligands under
the control of a single-cell oscillator activateNotch
receptors in the membrane of neighboring cells,
and these receptors coordinate oscillating gene
expression in the receiving cell (Fig. 4A). With-
out Delta-Notch signaling, the single cells’ oscil-
lations gradually lose synchrony. The plausibility

of this synchronization hypothesis has been studied
by using GRN models showing that the Delta-
Notch mechanism described above could keep
neighboring cells oscillating in synchrony (26, 27).

Given the previously mentioned difficulty of
determining GRN parameters from embryos (28),
an alternative and complementary model formu-
lation is to use an effective theorywith variables that
represent processes for which there is a particular
interest or a possibility of experimental compar-
ison. For the segmentation clock, this approach has
been applied to investigate the synchronization hy-
pothesis by using theories based on coupled phase
oscillators (Fig. 4B). In a phase oscillatormodel, the
variables corresponding to oscillating molecular
species are substituted by a single variable: the phase
of the oscillation cycle, which advances in timewith
a given intrinsic frequency. The effect of Delta-
Notch signaling is captured by a coupling function
that speeds up or slows down a cellular oscillator
depending on the phase of neighboring cells. Phase
oscillator models do not offer direct insight about
dynamics of individual molecular species, but their
simplicity allows powerful insights about system-
level dynamics from paper-and-pencil analysis.
Furthermore, they allow a direct fit to experimental
data relying on a few coarse-grained parameters
such as the period of the oscillations (29).

Using a phase oscillator model, the synchroni-
zation problem of the segmentation clock was for-
mulated as a competition between noise and the
intercellular coupling that keeps cells in synchrony
(30). Together with quantitative experimental dis-
ruptions of Notch signaling in zebrafish, the mod-
el allowed estimation of the noise level and coupling
strength relevant for the tissue-level synchrony of
the clock. Coupling involves the new synthesis of
Delta ligand every cycle (Fig. 4A), and to repre-
sent the anticipated duration of the ligand-receptor
mechanism, Morelli et al. (29) included explicit

time delays in the coupling function of a phase os-
cillator model. This delayed coupling theory made
the prediction that changing the coupling strength
could change the clock period and motivated the
study of the dynamics of Notch mutants. Quanti-
tative time-lapse measurements of segmentation
period and analysis of clock gene-expression pat-
terns in mutants matched the theoretical predictions
and so identified the first candidates for segmen-
tation clock period mutants (31).

Although these studies have revealed some
surprising insights into the segmentation clock’s
dynamics, most quantitative data used to test
models have come from static images (28, 31),
and the desynchronization of the clock has not
been directly observed. The advent of new tech-
niques to observe cyclic gene expression in vivo
(32) will allow key assumptions of the existing
models to be directly tested.

Patterning with Mechanical Deformations
We complete our roster of patterning mechanisms
with a recently discovered case driven by tissue
deformations. An apparently simple behavior for an
epithelial sheet is to elongate along one axis while
shrinking along the orthogonal axis. During Dro-
sophila development, the wing blade epithelium
stretches into the familiar elongatewing shape, and
each of the hairs protruding from the wing cells
points distally—an example of planar cell polarity
(PCP) patterning (Fig. 5A). Although proximo-
distal gradients of PCP pathway components have
been observed, they are not sufficient to produce
the final wing hair polarity (33). Examination of
cell shapes and trajectories from time-lapse movies
shows that sharp contraction of the neighboring
hinge region exerts anisotropic tension on the wing
blade (34). Over a period of 15 hours, the blade
deforms with a shear gradient arising from the cel-
lular flow in the tissue.

Fig. 4. Patterning with genetic oscillations. (A) Cyclic gene expression oscillates in individual cells because of a
negative feedback loop, and oscillations are coupled to neighbor cells through the Notch pathway. (B) The mutual
effects of cellular oscillators can be described by models of coupled phase oscillators.
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Aigouy et al. explored the role of tissue shear
in aligning the axis of cellular polarity with the
proximo-distal axis of the wing blade by formu-
lating a 2D vertex model of epithelial cell shape
(Fig. 5B) (35), incorporating an effective descrip-
tion of the local recruitment of complementary PCP
molecules to apposing cell boundaries (34). This
new model predicts that polarity is reoriented by
local rotation and cell flow–induced shear. Simu-
lations show that shear associated with oriented cell
division, proximo-distal cell elongation, and cell re-
arrangement also contribute to the alignment of cell
polarity with the long axis of the wing. Future work
can investigate how the 3D baso-lateral surfaces of
the epithelial cells in the wing affect this description,
and how the PCP protein complexes involved dy-
namically reorganize during cellular rearrangement.
Thus, remarkably the final planar cell polarity of the
completed wingmay be a direct consequence of the
externally applied stresses responsible for its exten-
sion, via simple physical rules such as those that
determine molecular polarity in liquid crystals (36).

In this Review, we have mainly discussed
chemical aspects of pattern formation as separate
from downstream mechanics of morphogenesis
(37, 38). Turing already wondered whether a closer
linkage might be at work (13), and it seems timely
to reconsider development as having integrated
mechanochemical aspects (39). For example, mo-
tivated by recent findings on cell cortex dynamics
in the nematode Caenorhabditis (40), Bois et al.
studied pattern formation in an active fluid inwhich

mechanical contraction causes the flow of reactive
chemical species (41). This theoretical analysis
showed that an active fluid extends the parameter
space in which classical Turing systems generate
spatial patterns. To what extent continuous feed-
back between chemical and mechanical processes
also underlies tissue-level phenomena in develop-
ment is not yet clear, but it may be widespread.

Outlook
With the wide range of approaches in use, how
should the developmental biologist select the ap-
propriate modeling and computational methods?
And where should the computational scientist dig
for interesting problems in the vast field of develop-
mental biology? Previous reviews have given mul-
tiple examples and advice (1–5). Here, we argue
that the first step is key: The level of description
and model type should be matched to the best
available data. The data should be quantitative, ac-
curate, and precise, and the model should make
falsifiable predictions. Although some researchers
are fluent in both domains, most often a successful
computational approach to developmental biol-
ogy will involve a long-term dialogue between ex-
perts across disciplinary boundaries. As advances
in imaging and molecular methods increase ex-
perimental resolution and complexity, correspond-
ing theoretical and computational developments
will be required to assemble the puzzle. This co-
dependence should generate a wealth of new op-
portunities for geeks and nerds alike.
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Many complex behaviors in biological systems emerge from large populations of
interacting molecules or cells, generating functions that go beyond the capabilities of
the individual parts. Such collective phenomena are of great interest to bioengineers due
to their robustness and scalability. However, engineering emergent collective functions
is difficult because they arise as a consequence of complex multi-level feedback,
which often spans many length-scales. Here, we present a perspective on how some
of these challenges could be overcome by using multi-agent modeling as a design
framework within synthetic biology. Using case studies covering the construction of
synthetic ecologies to biological computation and synthetic cellularity, we show how
multi-agent modeling can capture the core features of complex multi-scale systems
and provide novel insights into the underlying mechanisms which guide emergent
functionalities across scales. The ability to unravel design rules underpinning these
behaviors offers a means to take synthetic biology beyond single molecules or cells
and toward the creation of systems with functions that can only emerge from collectives
at multiple scales.

Keywords: synthetic biology, multi-agent modeling, systems biology, emergence, multi-scale, bioengineering,
consortia, collectives

INTRODUCTION

Many living organisms have evolved traits to exploit the capabilities that emerge from large
interacting populations of molecules or cells, which go beyond those of the individual elements.
From bacteria forming biofilms to fight antibiotic treatments to synchronizing their behaviors
through quorum sensing during disease, emergent collective behaviors are pervasive in biology.
Likewise, the engineering of emergent collective behaviors could offer an intriguing path to artificial
biosystems with improved reliability, robustness and scalability. However, current approaches
to biological design are ill-equipped for this task as they tend to focus on a single level of
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organization and ignore potential feedbacks between different
aspects/levels of a system. A common example is the design of
transcriptional gene regulatory networks where it is assumed
that the function of the entire system can be understood solely
by the steady state input-output transcriptional response of
genetic devices (Nielsen et al., 2016). While this simplification
is useful and powerful in some cases, if the genes regulated
link to metabolic processes there is a chance that feedback
via metabolism could break circuit function. Focusing
purely on transcriptional networks makes it impossible to
capture such behaviors.

In physics, great strides have been made through techniques
from statistical mechanics to understand emergent phenomena.
These include the Ising model used to capture magnetic phase
transitions (Taroni, 2015) and the application of renormalization
to understand how physical and biological constraints might
underpin scaling laws that guide evolution (West et al., 2002;
Kempes et al., 2019). There has also been growing interest
over the past few decades in the field of complexity theory
(Nicolis and Prigogine, 1989) and whether laws might exist
that govern self-organization and emergence across diverse
types of complex system composed of many interacting parts
(Prigogine and Nicolis, 1985; Ashby, 1991; Goldstein, 1999;
West et al., 2002).

An approach to capture and explore the emergent features
of complex systems is multi-agent modeling (also termed
agent-based or individual-based modeling) (Hellweger et al.,
2016). This considers key components of a system as explicit
entities/agents and allows for large and diverse interacting
populations of these (Figure 1A). Specifically, a multi-agent
model consists of autonomous agents that represent the
lowest level components of the system. Common types of
agent in biological systems include molecules, cells and whole
multicellular organisms. Each agent is assigned a specific set
of rules governing how it interacts with other agents and the
local environment. The way these rules are modeled is flexible
with the option to use basic finite state-machines, Boolean
logic governing stimuli-response relationships, or more complex
representations like differential equation models (e.g., capturing
the biochemical reaction networks within a cell). Populations
of these agents are then placed in a simulated environment
that encompasses physical processes of relevance to the system.
In biology, this might include the diffusion of chemicals, the
flow of fluids, and the mechanical forces that cells can exert on
one another. Again, the way that these environmental processes
are modeled can vary, resulting in a final model that could
potentially combine stochastic, deterministic, dynamic, discrete
and continuous representations for different aspects of a system.
The integration of such diverse modeling approaches allows
for the most appropriate form of representation to be used
for each aspect and helps simplify the specification of the
multi-scale system, but often comes at the cost of reduced
analytical tractability. Even so, multi-scale modeling has been
shown capable of discovering some of the core ingredients
needed for collective behaviors to emerge (Hellweger et al.,
2016; Gorochowski and Richardson, 2017), but its use to date in
synthetic biology has been limited (Gorochowski, 2016).

Here, we aim to highlight some of the key areas of synthetic
biology where multi-agent modeling offers a unique way to
tackle longstanding problems (Figure 1B). While the examples
we cover are diverse, they all share a core characteristic: the
emergence of behaviors in the systems cannot be explained by
looking solely at their basic parts in isolation. This essence
makes such systems special yet difficult to engineer via traditional
means. We propose to extend bioengineering methods to
encompass principles gleaned from multi-agent models and
use them to guide the design of synthetic biological systems
displaying emergent phenomena. We end by discussing some
of the practical challenges when using multi-agent modeling
in synthetic biology and future directions for the marriage
of these fields.

UNDERSTANDING THE EMERGENCE OF
LIFE

When considering emergent phenomena, the quintessential
example is the emergence of life. Putting aside the difficulty
of defining precisely what life is, the ability of living systems
to self-replicate and create order/information out of chaos is
an inspiration for many engineers. Bottom-up synthetic biology
attempts to build chemical systems that display life-like behaviors
using a minimal set of components. The hope is that these
simplified systems might help us understand how life emerged
from first principles.

One attempt to reach this goal has been via the synthesis of
artificial cells (protocells) with life-like properties. This requires
the ability to bridge length scales by harnessing molecular self-
assembly to create micron-sized compartments (Bayley et al.,
2008; Li et al., 2014) and the intricate interactions between
molecules and enzymes to form biochemical reaction networks
(Hasty et al., 2002). The incorporation of these reaction networks
within protocells has also been demonstrated (Adamala et al.,
2017; Joesaar et al., 2019) and although chemically simple,
such systems display an array of dynamical behaviors including
pattern formation (Niederholtmeyer et al., 2015; Zadorin et al.,
2017) and replication via controlled growth and division (Chen
et al., 2004). By combining these systems with additional chemical
modules and parts, this may offer a route to creating other key
behaviors of living systems.

Building on these capabilities, functionalities can be scaled
further by constructing systems composed of populations of
protocells or through interacting natural and artificial cellular
communities (Lentini et al., 2014; Adamala et al., 2017; Tang
et al., 2018). While such extensions offer a promising platform
for probing emergent behaviors using simple self-contained
chemical units, it is difficult to know what parameters to
engineer into these systems and the level of complexity required
to drive a desired collective behavior. This is where multi-
agent modeling, in combination with more traditional models
of chemical reaction systems, could lead to a quantitative
understanding of the key elements needed for the emergence of
life-like behaviors. In particular, multi-agent models would allow
for the rapid exploration of potential systems using physically
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FIGURE 1 | Multi-agent modeling can support the design of emergent collective functions in synthetic biology. (A) Key components of a multi-agent model.
Populations of autonomous agents following user-prescribed rules are placed in a virtual environment that simulates relevant physical processes (e.g., physical
collisions, chemical diffusion, movement, and fluid flows). Simulations of multi-agent models can be used to derive design principles that capture the basic
ingredients (e.g., specific patterns of interactions) needed for a particular emergent behavior. (B) Potential applications of multi-agent modeling within synthetic
biology and the underlying agents (bottom, dashed boxes) used to generate specific emergent collective behaviors: (top left) exploring how to create life-like
behaviors from basic chemical components with sender protocells (blue) able to spatially propagate a signal to receiver protocells and bacteria (gray when inactive,
red when active) using a small diffusive chemical (small blue dots); (top middle) understanding the developmental programs used during morphogenesis as a step
toward the creation of synthetic multi-cellular life; (top right) improving scale-up of microbial fermentations by accounting for heterogeneity across a bioreactor and
designing engineered microbes able to robustly function under these conditions.

realistic parameters until the right combination of parts was
found that resulted in a desired emergent functionality.

Historically, mathematical models developed using
differential equations have proved effective for understanding
the dynamics of minimal chemical systems (Rovinskii and
Zhabotinskii, 1984) and are widely and successfully used
for modeling all types of biological system (Ellner and
Guckenheimer, 2011; Raue et al., 2013). Furthermore, the
application of bifurcation analysis to these dynamical models
enables the rigorous characterization of emergent phenomena
such as bi-stability, symmetry breaking, non-linear oscillations,
chaos, and pattern formation (Kuznetsov, 2004). However,
while it is possible to use partial differential equations (PDEs)
to capture spatial aspects of a system, the high levels of
heterogeneity in the complex environments of many biological
system (e.g., cellular tissues) and the ability of both agents and
the rules to change over time, can make practical use of PDEs
a challenge (Hellweger et al., 2016; Perez-Carrasco et al., 2016;
Glen et al., 2019).

In comparison, multi-agent modeling is able to explicitly
capture such variation and consider simplified rules to express
internal chemical reactions altering specific characteristics
of each component. Due to the chemical simplicity and
programmability of minimal protocells, this abstraction is a good
fit, allowing iterative refinement of model and experimental
system. For example, due to the limited number of possible
chemical reactions present in a minimal system, comprehensive
direct measurements can be made to create highly predictive

rules for how a protocell’s chemical state will change over
time. These can then drive simulations of accurate protocell
behaviors in a multi-agent model to explore the specific
combination of reactions required for the emergence of
higher population-level functionalities. This two-way cycle of
development would be difficult, if not impossible, when using
natural cells where complex evolutionary baggage masks those
features essential for emergence.

DISTRIBUTED COMPUTATION DURING
DEVELOPMENT

Living cells continually monitor their environment and adapt
their physiology in order to survive. This requires the processing
of information gathered from sensors to make suitable changes
to gene expression. Synthetic biology enables us to reprogram
cells by writing our own genetic programs to exploit the
cells’ computational capabilities in new ways (Greco et al.,
2019; Grozinger et al., 2019). So far, the majority of research
in biological computation has revolved around the concept
of genetic circuits and attempted to repurpose tools and
methodologies from electronic circuit design (Nielsen et al., 2016;
Gorochowski et al., 2017) and automatic verification (Dunn et al.,
2014). While this approach has enabled the automated design
of cellular programs able to perform basic logic, much of the
information processing in native biological systems is distributed,
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relying on collective decision making (e.g., quorum sensing) and
interactions between large numbers of cells.

This feature is most evident in developmental biology where
robust genetic programs must ensure that a complex multi-
cellular organism emerges from a single cell. Cell growth,
differentiation, migration and self-organization are coordinated
by a developmental program with dynamics at both the intra-
and inter-cellular levels. These enable the generation of precise
deterministic patterns from stochastic underlying processes
(Glen et al., 2019). In contrast to simple logic circuits, the
complexity of the molecular interactions and mechanical forces
underpinning these processes motivate the use of multi-agent
modeling to better understand how developmental programs
work in morphogenetic systems. In particular, multi-agent
models are able to capture the role of cellular heterogeneity,
proliferation and morphology, mechanical and environmental
cues, movement of cells as well as the integration of multiple
processes at diverse scales and the feedback between these
(Montes-Olivas et al., 2019). Such models have helped deepen
our understanding of early mammalian embryogenesis (Godwin
et al., 2017), as well as the formation of vascular networks (Perfahl
et al., 2017) and other complex structures and organs, including
the skin, lung (Stopka et al., 2019), kidney (Lambert et al., 2018),
and brain (Caffrey et al., 2014).

Although such work has provided insights into the
computational architecture of native developmental programs,
it has been difficult to apply this information to the creation
of de novo morphogenetic systems because of a limited toolkit
of parts available to build such systems. Synthetic biology may
help solve this issue by facilitating the engineering of simplified
multi-cellular systems (Velazquez et al., 2018) that implement
developmental programs encompassing distributed feedback
regulation (Ausländer and Fussenegger, 2016) and cell-to-cell
communication (Bacchus et al., 2012), to better understand
how these factors can be used to contribute to emergent
self-organization (Morsut et al., 2016).

COLLECTIVE PHENOMENA DRIVING
DISEASE

Many of the challenges treating diseases result from the
malfunction of emergent multi-cellular properties, be it
carcinogenesis (Deisboeck and Couzin, 2009; Ward et al., 2020),
viral infection (Jacob et al., 2004), bacterial biofilm formation
(Wu et al., 2020) or microbiome imbalances (Shreiner et al., 2015;
Kumar et al., 2019). Multi-agent modeling of these conditions has
helped demystify how the collective behavior of large numbers
of diverse cells and their interactions with each other and their
environment can lead to negative clinical outcomes.

Cancer is a complex multi-scale disease that includes
environmental factors, genetic mutations and clonal selection,
and complex interactions with the immune and vascular system.
As a result, computational models of cancer need to account
for many of these factors considering the heterogeneity and
interactions of single cells, yet contain sufficient numbers of
them to predict emergent phenomena at a tumor scale (Metzcar

et al., 2019). Using this approach, multi-agent models have been
used to help understand metastasis (Waclaw et al., 2015) and
show that cancer cells with stem cell-like properties can be a key
determinant in cancer progression with fatal consequences (Scott
et al., 2016, 2019).

Beyond understanding the emergence of some diseases, multi-
agent models can also identify novel ways of fixing their
dynamics by considering how to disrupt cellular behaviors,
and their interactions in space and time (Waclaw et al., 2015;
Gallaher et al., 2018). Treatments themselves can even be
designed to have collective emergent properties. For example,
bacteria have already been engineered to use quorum sensing
to trigger their delivery of drugs (Din et al., 2016) or they
can be controlled using magnetic fields to penetrate cancerous
tissue (Schuerle et al., 2019). Other collective behaviors used in
cancer nanomedicine include self-assembly of nanoparticles to
anchor imaging agents in tumors, disassembly of nanoparticles
to increase tissue penetration, nanoparticles that compute the
state of a tumor, nanoparticle-based remodeling of tumor
environments to improve secondary nanoparticle transport,
or nanoparticle signaling of tumor location to amplify the
accumulation of nanoparticles in tumors (Hauert et al., 2013;
Hauert and Bhatia, 2014).

The emergent properties inherent in many diseases, and
the potential to harness such behaviors for new treatments,
highlight the need for multi-scale modeling tools. Moreover, with
the rapidly expanding field of “systems medicine,” integrated
modeling pipelines able to predict multi-scale disease dynamics
and assess novel synthetic biology treatments via large-scale
simulation and machine learning are positioned to revolutionize
many areas of medicine (Stillman et al., 2020).

CHALLENGES IN SCALING-UP
BIOTECHNOLOGY

The ability for synthetic biology to reprogram cellular
metabolisms offers an opportunity to convert cheap substrates
(or even waste) into valuable chemicals and materials via
microbial fermentation (Nielsen and Keasling, 2016). To make
this economically viable, large bioreactors are often used.
However, while our use of fermentation stems back millennia
(McGovern et al., 2004), we still struggle to reliably scale-up
many processes from shake flasks in the lab to industrial-sized
bioreactors (Lee and Kim, 2015).

A major reason for this problem is the increasing difficulty
and power consumption of mixing or aerating reactors as
their volume increases, causing pockets to form where nutrient
concentration, temperature, oxygen, pH and other factors differ
(Alvarez et al., 2005). As a microbe travels through the bioreactor,
it becomes exposed to a wide variety of environments, each
causing changes in its physiology. Because the path of each
cell is unique, a population of cells will display a wide variety
of physiological states. This differs from lab-scale experiments
where environments are well-mixed and homogeneous, and
causes predictions made from these conditions to significantly
deviate from those observed during scale-up.
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Capturing the combined environmental and cellular
variability present in a large bioreactor is difficult using standard
differential-equation models. In contrast, multi-agent models are
able to explicitly capture and link gene regulation, metabolism,
and the cells’ local environment (Nieß et al., 2017; Haringa
et al., 2018), as well as differences between individual cells and
how cells change over time (González-Cabaleiro et al., 2017). In
particular, hybrid models in which continuous descriptions of
complex physical processes like fluid flows have been coupled
with multi-agent models to allow for the efficient simulation
of these systems. This approach can accurately predict the
emergence of population heterogeneity and overall production
rates and help guide bioreactor design to further improve yields
(Haringa et al., 2018). Some attempts have also been made to use
control engineering principles to design cellular systems able to
adapt to fluctuating environments (Hsiao et al., 2018). To date,
these attempts have mostly focused on the basic genetic parts and
regulatory motifs (e.g., negative feedback) needed to implement
control algorithms (Ceroni et al., 2018; Aoki et al., 2019; Pedone
et al., 2019; Bartoli et al., 2020). Moving forward, multi-agent
models offer a means to make simulations of these systems more
realistic by accurately capturing how individual cells and their
complex environment change over time.

Another challenge faced during large-scale fermentation is
the opportunity for mutants to arise or unwanted microbes
to contaminate a process and out-compete their engineered
counterparts (Kazamia et al., 2012; Louca and Doebeli, 2016).
Multi-agent models of these complex environments and local
competition when multiple types of organism are present, could
help support the development of evolutionarily stable strategies
(ESSs) that prevent the replacement of an engineered population
by competitors (Schuster et al., 2010).

ENGINEERING SYNTHETIC ECOLOGIES

At an even larger organizational level, synthetic biologists
have begun to explore how to engineer interactions between
communities to enable the future construction of synthetic
ecologies (Ben Said and Or, 2017). With climate change, pollution
and many other factors leading to the degradation of ecological
systems, understanding how these systems emerge and function
is crucial. Such knowledge would allow for effective restoration
strategies (Solé et al., 2015) and potentially offer means to
terraform other planets like Mars for future human inhabitation
(Conde-Pueyo et al., 2020).

These applications require an understanding of how diverse
organisms interact to create stable communities (Widder et al.,
2016). This is difficult because the interactions that take place
at the level of a population are governed by choices made
by single organisms (Kreft et al., 2017). By using multi-agent
modeling to rapidly test combinations of cell types, behaviors
and interactions, and synthetic biology tools to engineer real-
world microbial communities, it might become possible to design
and test hypotheses regarding the principles for robust ecosystem
design. For example, multi-agent modeling has been used to help
understand how signaling and mutual cooperation can stabilize

microbial communities (Kerényi et al., 2013). Furthermore, from
a synthetic biology perspective many of the tools needed to
engineer these systems already exist, e.g., biological parts able to
implement cooperation (Shou et al., 2007), signaling (Bacchus
et al., 2012), targeted death (Fedorec et al., 2019), and collective
decision making (e.g., quorum sensing).

Beyond engineering interactions between organisms, spatial
structure can also play a crucial role in the functionalities of
microbial communities. Multi-agent modeling has demonstrated
the significant impact that spatio-temporal organization can have
on soil microbes and the success of auxotrophic interactions
(Jiang et al., 2018). Such interactions are particularly important
for engineering minimal functional synthetic communities as
plant seed treatments and for vertical farming under defined
conditions. In this context, whether or not a single cell or
division of labor is the evolutionarily stable solution depends on
the metabolic flux through the system, with high flux favoring
division of labor (Kreft et al., 2020). Extending this modeling
approach further to consider the thermodynamics of microbial
growth and redox biochemistry could help ensure that resultant
systems are ecologically and evolutionarily stable (Zerfaß et al.,
2018). Alternatively, external control of the environment could be
used to forcibly maintain a desired community structure (Treloar
et al., 2020). In all cases, a combination of multi-agent modeling
and engineerable biological systems provides a unique means to
unravel how these complex systems function.

External feedback control has been proposed as another
approach to control of cellular communities. By employing real-
time single cell measurements (e.g., by time-lapse microscopy or
flow-cytometry) and experimental systems able to send control
signals to the cells via optogenetics (Toettcher et al., 2011) or
chemical release in microfluidics (Menolascina et al., 2014),
a computer can monitor and signal to a population of cells
in order to maintain a desired behavior (e.g., the expression
rate of a protein). More recently, it has been proposed to
implement these control algorithms directly into cells, with the
key aim of distributing tasks among different strains (Fiore
et al., 2017; McCardell et al., 2017). Multi-agent modeling can be
instrumental in the design of robust feedback mechanisms across
multicellular populations, as it can reveal non-obvious effects of
cell density, proliferation dynamics and spatial constraints on the
effectiveness of control actions (Fiore et al., 2017).

DISCUSSION

We have shown how multi-agent models can be applied to many
areas of synthetic biology. The core features of these models
provide insight into some of the basic building blocks and
mechanisms needed for collective behaviors to emerge and, we
believe, may offer a means to support the future predictive design
of collective behaviors.

A major hurdle to the widespread use of multi-agent
modeling is the need to define and simulate complex models
(Grimm et al., 2006). Although computational frameworks
have been available since the 1980s to support this process,
it is only during the past decade that tools have been

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 June 2020 | Volume 8 | Article 705

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00705 June 25, 2020 Time: 17:26 # 6

Gorochowski et al. Engineering Biosystems With Collective Functions

tailored for synthetic biology applications and reached
sufficient performance (Gorochowski et al., 2012; Oishi
and Klavins, 2014; Goñi-Moreno and Amos, 2015). More
recently, the effective use of highly parallel computing
resources has expanded the complexity of biological models
that can be simulated (Rudge et al., 2012; Naylor et al.,
2017; Li et al., 2019; Cooper et al., 2020). Automated
coarse-graining of representations enable faster simulation
without impacting on the accuracy of predictions (Graham
et al., 2017), while advanced tools allow verification,
validation and uncertainty quantification for such simulations
(Richardson et al., 2020).

Improved simulations do not only speed up the time to
an answer but may open up opportunities to create new
types of computational design environments. For example,
high-performance models coupled to virtual reality allow for
multiple researchers to interactively manipulate a system and
immediately observe the outcomes of their design decisions.
Such capabilities have already begun to be used for molecular
design (O’Connor et al., 2018) and when coupled to machine
learning, offer a unique setting in which to explore complex
high-dimensional datasets that are common in biology. They
also allow for essential features to be distilled that can then be
used to guide predictive design. Furthermore, hybrid approaches
become possible where computational models dynamically
augment an experimental setup by controlling physical features
such as light (Rubio Denniss et al., 2019) or magnetism
(Carlsen et al., 2014). If agents within the experimental
system are responsive to these stimuli, then various forms of
interaction can be externally programmed and rapidly explored
to better understand the necessary conditions for a particular
collective behavior to emerge. Once a desired set of rules
for the interactions is found, the agents can be modified
to implement these autonomously, removing the need for
external control.

As synthetic biology moves beyond simple parts and circuits,
and toward large-scale/multicellular systems, the available
repertoire of design tools must also expand to support new
requirements. Multi-agent modeling is perfectly placed to
help make this leap and usher in new biological design
methods focused on the engineering of emergent collective
behaviors. Not only will this allow functionalities to span length
scales, but it will also provide a way to engineer across the

organizational levels of life through hierarchical composition of
multi-scale models, from basic molecules and cells through to
entire ecosystems.
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