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Synthesizing Systems Biology Knowledge from Omics Using
Genome-Scale Models

Sanjeev Dahal, James T. Yurkovich, Hao Xu, Bernhard O. Palsson, and Laurence Yang*

Omic technologies have enabled the complete readout of the molecular state
of a cell at different biological scales. In principle, the combination of multiple
omic data types can provide an integrated view of the entire biological system.
This integration requires appropriate models in a systems biology approach.
Here, genome-scale models (GEMs) are focused upon as one computational
systems biology approach for interpreting and integrating multi-omic data.
GEMs convert the reactions (related to metabolism, transcription, and
translation) that occur in an organism to a mathematical formulation that can
be modeled using optimization principles. A variety of genome-scale modeling
methods used to interpret multiple omic data types, including genomics,
transcriptomics, proteomics, metabolomics, and meta-omics are reviewed.
The ability to interpret omics in the context of biological systems has yielded
important findings for human health, environmental biotechnology, bioenergy,
and metabolic engineering. The authors find that concurrent with
advancements in omic technologies, genome-scale modeling methods are
also expanding to enable better interpretation of omic data. Therefore,
continued synthesis of valuable knowledge, through the integration of omic
data with GEMs, are expected.

1. Introduction

Omic technologies aim tomeasure themolecular composition of
a cell in its entirety. These measurements profile the functional
potential (genomics) and activity (transcriptomics, proteomics,
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metabolomics) of an organism at the
systems scale. These entities (genome,
transcriptome, proteome, metabolome)
are interrelated through expression,
metabolism, signaling, and regulation.
Understanding and interpreting each of
these omic data types individually and
combined could help unravel the mech-
anistic intricacies of biological systems.
However, the interconnectedness among
these different levels of function within
a biological system poses significant
challenges for studying the underlying
mechanisms and relationships.
Each individual omic data type only

describes part of the larger system.
Therefore, integrative omic platforms are
being developed. For instance, proteoge-
nomics (proteomics with genomics/
transcriptomics) can address genetic
polymorphisms,[1] improve the de-
tection of novel genes or identify
misannotated open reading frames
(ORFs),[2] and address the “missing
protein problem,” which refers to pre-
dicted proteins that are not detected in

proteomic data.[3] Likewise, metabolomics has been combined
with other omic platforms to demonstrate the environmental
effects on post-translational modification (PTM) rates,[4] to un-
derstand the regulation of metabolite levels[5] and to elucidate
complex interactions between the host, commensal bacteria, and
pathogens.[6] These diverse datasets can yield a comprehensive
understanding of biological mechanisms when they are contex-
tualized and unified into a systems view of biology.
Systems biology is an interdisciplinary field that aims to pre-

dict the behavior of biological systems (i.e., phenotype) by con-
sidering interactions among biological parts in the context of
the whole system. One approach to predicting system behav-
ior is computational modeling such as genome-scale modeling.
Genome-scalemodels (GEMs) have been used to analyze individ-
ual and multi-omic data sets.[7] GEMs can be analyzed using var-
ious methods including COnstraint-Based Reconstruction and
Analysis (COBRA) methods (Figure 1).[8]

In general, for COBRA analysis, first the molecular composi-
tion of an organism can be represented as a network of interac-
tions in which nodes represent specific entity (e.g., metabolites)
and edges represent the interaction between these entities (such
as substrate-product conversion). To implement modeling using
COBRA framework, these networks are converted to stoichiomet-
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ric matrix (S-matrix) in which rows represent molecular entities
and columns represent their interactions. Then, the S-matrix can
be analyzed using mathematical optimization as formulated in
the COBRA framework.[8] In this approach, the steady state of
an organism can be solved by optimizing an objective function
(Z). Without adding constraints to this optimization problem, we
can get infinite number of solutions (fluxes) that can satisfy the
steady-state assumption. Therefore, the optimization problem is
subjected to certain constraints which are: Sv = 0 (mass balance
constraints), and l≤ vi ≤ u (flux bounds). Here, vi is the flux vector
and l, u are the lower and upper bounds of the flux of the ith reac-
tion. Hence, by optimizing Z, one can approximate the flux state
of an organism, and identify molecular interactions that lead to
such state.
GEMs were traditionally used to model the metabolic state

of an organism (metabolic or M-model). In recent years, how-
ever, GEMs have also been utilized to compute the metabolic
and proteomic state of an organism (metabolism and macro-
molecular expression or ME-model). Since ME-models deal with
metabolism and proteome allocation, additional constraints in-
cluding coupling constraints and biomass dilution constraints
are added (check ref. [9] for more information). In this article,
we review how modeling in systems biology has yielded new in-
sights from omic data, and how GEMs can be used to interpret
large-scale data. Modeling platforms in systems biology can inte-
grate multiple omics and synthesize knowledge. Such modeling
platforms include kinetic modeling (stochastic or deterministic),
Boolean formalisms, Bayesian approaches, and COBRA.[8b] We
focus on the use of COBRAmethods in which steady state of a bi-
ological system are modeled by optimizing an objective function
subjected to constraints including thermodynamic, stoichiomet-
ric, and enzymatic ones.We highlight recent advances in COBRA
that were made to integrate multi-omic data types. We organize
our review by the omic data types analyzed and COBRAmethods
used (Figure 2).

2. From Annotated Genome Sequences to
Genome-Scale Models of Cell Metabolism

The genome encodes the functional capabilities of an organism.
Genomics is the study of the whole genome of an organism.
Since the first genome sequence of humanmitochondria in 1981,
there has been a steady increase in the publications that con-
tribute to this field[10] (Figure 3). With the explosion of sequenced
genomes, tools in comparative genomics have been developed
to annotate sequences of previously uncharacterized genomes to
unveil their functional potential.[11] With the advent of next gen-
eration sequencing technologies, sequencing genomes has be-
come relatively quick, easy, and cheap.[12] However, even though
we can sequence an organism, we still do not understand the full
functional potential of organisms.[13]

A GEM is a modeling approach for mathematically describing
all possible functions that are encoded by the genome, and their
interactions, within the context of the full interaction network.
For reconstruction of the network of an organism, genomic
data and proper annotation are crucial in order to represent the
correct interaction between variousmolecular entities. Following
the reconstruction, COBRA methods can be utilized to analyze
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Figure 1. A) Building genome-scale models (GEMs) and integrating them with various omic data types as constraints. Genome-scale models are
systems representations of interactions occurring between different molecular components (e.g., metabolites, proteins). These models are built using
the annotated genomes of respective organisms. Other omic data can also be used to refine GEMs. B) GEMs need to be constrained to obtain biologically
relevant information. General/environmental constraints such as mass balance constraints and flux bounds can be added to GEMs. B-I) For ME-models,
additional constraints such as coupling constraints and biomass dilution constraints need to be applied.[9] B-II) Transcriptional regulatory networks
(TRNs) combined with transcriptome data can also be used to constrain a GEM to create integrated regulatory genome-scale model. It should be
noted that gene expression thresholds are applied in this case as well. B-III) Likewise, multiple omic data (transcriptomic, proteomic, and metabolomic)
can be utilized to constrain the model using various approaches. The integration of data leads to new optimization problems (e.g., minimization of
inconsistency between fluxes and expression states, maximization of total sum of fluxes through core reactions, etc.) subjected to their own sets of
constraints including mass balance and flux constraints. C) The resulting models can be simulated to investigate the genotype-phenotype-environment
relationship in the biological system being studied.

the state of the network to identify and predict important
features of the organism such as genotype-phenotype-
environment relationships, including growth rate, metabolite
exchange rates, and gene essentiality.[14] GEMs have also been
useful in predicting and analyzing the end result of adaptive
evolution.[15] At present, GEMs have been manually recon-
structed for at least 183 organisms,[16] and methods are being
developed to model microbial communities.[17]

2.1. Using Omic Data to Refine the Genome-Scale Models

Three broad approaches exist to improve GEMs by utilizing omic
data. First and foremost, omic data can be directly compared with
the flux distribution derived by simulating GEMs to identify any

discrepancies between the predicted and experimental data. For
instance, one can compare exometabolome with modeling result
to determine how accurately the model can predict the secretion
profile of an organism under given media condition.
Next, omic data can be used as additional flux constraints on

the GEMs to create context- and tissue-specific models[7a,7b,18]

(Figure 1). For such purpose, numerous methods have been de-
veloped which can be divided into three subcategories—1) use
omic data to either indicate presence or absence of enzymes
or put relative constraints on enzyme activities (GIMME,[19]

GIM3E,[20] REMI[21]), 2) use expression datasets to create context-
specific models without prior knowledge of objective function
(e.g., iMAT,[22] INIT[23]), and 3) prune non-functional reactions
(as extracted from the expression data) to create tissue-specific
models (e.g., MBA,[24] mCADRE,[25] CORDA[26]). One inherent
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Figure 2. Graphical overview of synthesizing knowledge using omic data and genome-scale models.

Figure 3. Web of science publications for various omic technologies.

issue with these approaches is that suchmodels can only describe
the regulation of metabolism for which the data is integrated into
the model.
For predictive models, integrated regulatory metabolic mod-

els need to be built. Methods such as probabilistic regulation
of metabolism (PROM)[27] exist that can integrate expression
datasets (normally transcriptomes) with a transcriptional reg-
ulatory network (TRN) and superimpose the information onto
a GEM to create an integrated model. In such method, the
maximum allowable fluxes of reactions catalyzed by particular
enzymes are constrained by the probability of the expression
of respective genes given the expression state of a controlling
transcription factor (TF). Such TF expression is calculated from
the expression datasets across multiple conditions. The rules
of TF-target enzyme interaction are governed by the struc-
ture of TRN. Since PROM requires a pre-constructed TRN, in

recent times, integrated deduced regulation and metabolism
(IDREAM) has been developed. IDREAM can create a TRN
followed by integration of TRN with GEM and high-throughput
expression data (using PROM framework) to create integrated
models.[28]

In the next few sections, we will discuss individual omic data
types and novel methods that are being introduced to integrate
and improve the predictive capabilities of GEMs.

3. Using Transcriptomics to Build Context-Specific
Models

Transcriptomics is the quantitative study of all expressed RNA
in an organism. Transcriptomic technologies have advanced
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from the use of microarrays (i.e., methods involving use of
probes to detect specific markers) to exploiting next generation
sequencing in the form of RNA-sequencing (RNA-seq). RNA-
seq has become more popular because of the ease and avail-
ability of advanced sequencing machines.[29] Multiple RNA-Seq
algorithms are available with varying degree of accuracy and
precision.[30]

Transcriptomics can be used to refine GEMs by integrating the
data into model constraints. In this approach, transcriptomics
is analyzed by specialized algorithms to create context-specific
models by determining the subset of genes that are expressed in
a specific cell type, cell line, or tissues.[31] These context-specific
models accurately capture tissue specific genotype-phenotype re-
lationships, including gene essentiality.[31] Multiple algorithms
are available for building context-specific models, each making
different assumptions. Opdam et al.[31] compared six algorithms
and showed that the choice of algorithm (and assumptions) had
the greatest impact on the model’s accuracy of gene essentiality
predictions.[31] Once constructed appropriately, context-specific
models have yielded important insights into themetabolic mech-
anisms underlying human diseases.
Gatto et al.[32] constructed context-specific models for 917 pri-

mary tumor samples across 13 cancer types, using RNA-Seq and
the tINIT algorithm.[33] The models indicated that although can-
cers can differ in gene expression, their metabolic capabilities
are largely similar. Furthermore, cancermetabolic networks over-
lapped largely with matched normal tissues, suggesting that the
metabolic reprogramming—a hallmark of cancer—may reflect
cancer cell plasticity to varying conditions. The study also iden-
tified a smaller set of 18 metabolic reactions that are present in
all the cancers included in the study but without housekeeping
functions (such as growth, energy generation, and metabolism)
present in normal tissues.[32]

4. Integrating Metabolomics with Genome-Scale
Models

Metabolomic technologies quantify the small molecules (molec-
ular mass < 1500 Da) involved in energy metabolism (“metabo-
lites”), representing the most direct way to profile a cell’s
biochemical activity.[34] Metabolites are involved in the regula-
tion of expression, metabolism, and function of DNA, RNA,
and proteins.[35] Research using metabolomic approaches has
increased over the past decade (Figure 3) as studies involving
identification of disease biomarkers[36] and other important
applications[34a,35] have risen. To identify and quantify metabo-
lites, methods such as nuclear magnetic resonance and mass
spectrometry (MS) are used. In MS, targeted (hypothesis-
driven), untargeted (discovery-based), and recently introduced
pseudo-targeted approaches are available.[34b,37] Identification of
a metabolite through its spectral signature is crucial to under-
standing its biological role. However, this approach is limited
by the number of available spectra in the available databases.[38]

Therefore, multiple methods have been developed for predict-
ing metabolites of which machine learning methods appear
promising.[39] Furthermore, a metabolite’s function depends on
its context-specific interactions with other biological entities.
Various computational methods including pathway mapping

and network modeling,[40] and GEMs are addressing this
need.
Multiple recent studies have used GEMs to integrate

metabolomic data. In a recent study, the authors analyzed
metabolomic data using GEMs of hepatocytes and identified
dopa decarboxylase (DDC) as one of the major cancer-causing
enzymes. Following this discovery, authors used the library
of integrated network-based cellular signatures program to
identify possible drugs that could inhibit expression of DDC.[41]

In another study, time-course metabolomic data from hu-
man red blood cells (RBCs) stored at different temperatures was
analyzed using an RBCGEM. The analysis revealed temperature-
dependent metabolic states of RBCs in storage conditions.[42]

Recently, a new COBRA method called unsteady-state flux
balance analysis (uFBA) has been developed to integrate time-
course metabolomic data with GEMs to study the metabolism
of RBCs stored in blood bags. The uFBA method predicted
that stored RBCs metabolize citric acid cycle intermediates to
regenerate key cofactors. These predictions were experimentally
confirmed using 13C-metabolic flux analysis.[43]

5. Measuring and Predicting Proteome Allocation
Using ME-Models

The proteome represents the functional state of a cell. Proteomics
is the quantitative study of all expressed proteins in an organism.
Out of several methods used in proteomics, mass spectrometry
(MS) is one of the most common platforms. MS can be used
in tandem (MS/MS) to provide additional information about a
given peptide,[44] and it can be coupled with chromatographic
methods to reduce sample complexity and to improve quantifica-
tion accuracy.[45] Furthermore, it allowsmultiple properties of the
proteome—such as expression, interactions, and modification—
to be studied.[46]

Depending on the goal of a study, either targeted or untargeted
proteomic approaches can be applied, and sometimes combined
for improved analysis.[47] In untargeted proteomics, all possible
proteins expressed from a sample are detected and quantified
without a priori knowledge. On the other hand, a targeted
platform is used to detect specific proteins especially when the
desired proteins are known to be present in low abundance
a priori.[48] Therefore, targeted approaches are more precise
but have lower coverage than untargeted methods.[47] For data
acquisition using tandem mass spectrometry (MS/MS), two
modes exist—data-dependent acquisition (DDA) mode and data-
independent acquisition (DIA) mode. In DDA, a subset of the
most abundant precursor ions that exceed a predefined intensity
threshold are selected from the firstMS scan to the nextMS scan.
For targeted proteomics, alternative approaches called multiple
reaction monitoring and parallel reaction monitoring which se-
lect precursor ions for a small set of predetermined peptides for
subsequent MS scan are used.[49] DIA, on the other hand, relies
on successive isolation and subsequent fragmentation of pep-
tides within a defined mass-to-charge (m/z) window throughout
the entire m/z range.[50] SWATH-MS is a DIAmethod combined
with targeted proteomic analysis, and provides good coverage
with comparable accuracy and reproducibility.[51] Both DDA
and DIA approaches have their advantages and disadvantages
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related to sensitivity, dynamic range, accuracy, flexibility, and
ease of use.[49,51,52] Finally, for quantification of proteins in a
given sample, either relative or absolute quantification meth-
ods can be used (please refer to Calderón-Celis et al.[53] for
review).
GEMs of metabolism and macromolecular expression (ME-

models)[7c,9b,54] directly predict protein expression and proteome
allocation (i.e., the relative mass or mole fractions of expressed
proteins in a cell). These predictions are validated directly us-
ing proteomics, or indirectly using transcriptomics. ME-models
predict fluxes for reactions spanning metabolism, transcription,
translation, protein modifications, translocation,[55] and protein
folding.[56] ME models compute up to 85% protein mass in
Escherichia coli.[57] ME models are now available for three or-
ganisms: Thermotoga maritima,[58] E. coli,[54a,54b] and Clostridium
ljungdahlii.[59] Proteomic data has been used to calibrate a ME-
model of E. coli, decreasing prediction errors of growth rate and
metabolic fluxes by 69% and 14%,[54c] and to validate proteomes
predicted by a ME-model updated with machine learning-based
enzyme turnover rates.
Recently, ME-models were extended to predict cellular

response to three stresses: thermal (FoldME),[56] oxidative
(OxidizeME),[57] and acid (AcidifyME).[60] By mechanistically re-
constructing key molecular responses to each stress, the models
successfully predicted phenotypic response (change in growth
rate) and differential expression in various growth conditions
(i.e., media, supplements, etc.) and stress intensities. Thesemod-
els have been used to explain biologicalmechanisms by interpret-
ing omics.
A ME-model accounting for the proteostasis network,

FoldME,[56] was used to study the global effects caused by
the protein stability of dihydrofolate reductase. The experimen-
tal (transcriptomic data) and predicted data were quantitatively
correlated for the major clusters of orthologous groups. Further
analysis using the ME-model suggested that protein destabi-
lizing mutations can lead to chaperone-mediated strategy of
systems-level proteome reallocation including downregulation
of coenzyme biosynthetic pathways.[56]

In another study, a ME-model accounting for the effect of re-
active oxygen species (ROS) on metalloproteins, OxidizeME,[57]

was used to explain why the growth rate of E. coli was lim-
ited when using naphthoquinone (NQ) instead of ubiquinone
(UQ) in the electron transport system (ETS).[15b] NQ autoxi-
dizes more readily than ubiquinone (UQ), generating superox-
ide in the periplasm. OxidizeME showed that the metabolic and
protein expression cost of detoxifying periplasmic superoxide
strongly decreased growth rate. The reduced ETS efficiency due
to electron leakage from NQ toward superoxide generation de-
creased growth rate further; however, the cost of detoxification
was demonstrated to be the primary reason for reduced growth
rate.
A modeling approach called metabolism and macromolecular

mechanisms (MM) was developed recently for human RBCs.[61]

Unlike ME-models, the reactions related to transcription and
translation are not present in RBC-MM. In RBC-MM, proteomic
data were used to constrain enzyme abundances, which con-
strained the reaction fluxes. This model simulates metabolism,
hemoglobin binding, and the formation and detoxification of
ROS.[61]

6. Integrating Multi-Omic Data with Genome-Scale
Models

Studies are now combining multi-omic platforms with GEMs
to study complex interactions that occur at the molecular level
within organisms. In a recent study, metabolomics combined
with proteomics was integrated in GEM of E. coli to identify path-
way engineering strategies to improve biofuel production.[62] A
ME-model was recently used to analyze multi-omic (genomic,
transcriptomic, ribosomal profiling, proteomic, and fluxomic)
data to discover two biological regularities associated with en-
zyme turnover rates and translation in E. coli.[7c] Likewise, a labo-
ratory rat GEMwas integratedwith transcriptomic,metabolomic,
and fluxomic data to identify plasma metabolites that are associ-
ated with acetaminophen-induced liver injury.[63]

7. Using Meta-Omic Data to Build and Refine
Microbial Community Models

Meta-omic technologies (metagenomics, metatranscriptomics,
and metaproteomics) measure the molecular makeup of an en-
tire sample, which can include unculturable organisms. This
area has grown steadily since the mid-2000s (Figure 3). Metage-
nomics provides tools to analyze genomic DNA to determine the
abundance of all detectable organisms present in a sample.[64] In
metatranscriptomics, RNA is sequenced and analyzed to reveal
the functionally active members in a microbial community.[65]

Metaproteomics provides platform for the analysis of proteins
expressed by the organisms in a given sample.[66] Meta-omic ap-
proaches have been applied to environmental (including marine
and soil communities),[67] waste management,[68] and clinical
samples.[69] These platforms are crucial for generating and ana-
lyzing data to understand the dynamics within a community and
to study biological systems in nature.
Multiple recent studies have integrated meta-omic data with

GEMs to study microbial communities in finer detail. Compu-
tational tools have been developed to automatically reconstruct
microbial community models using meta-omics. For example,
human gut microbiome models can be efficiently reconstructed
using metagenomics through the microbiome modeling
toolbox.[17b] Another method, MICOM (MIcrobial COMmunity),
was developed to build personalized metabolic models for the
human gut microbiomes of 186 people using their individ-
ual metagenomic samples. The models revealed that changes
in microbiome composition and diet have highly personalized
effects.[70] Meta-omics in combination with GEMs have also been
applied to environmental samples. For example, meta-genomics
and meta-proteomics were used to build GEMs of two microbial
communities in polyaromatic hydrocarbon contaminated soil.[71]

8. Models Provide a Systems Context for Protein
Structures

Structural genomics aims to determine all 3D structures of
proteins expressed from an organism’s genome, and this field
has yielded over 150 000 structures in the Protein Data Bank
(PDB).[72] Recent studies have shown that this increasingly
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abundant data types can be integrated into GEMs. This inte-
gration has expanded the scope of mechanisms and biologi-
cal questions addressable by computational systems biology. In
particular, all three of the recent ME-models that account for
stress functions in E. coli use 3D structures to perform key
computations.[56,57,60]

In the FoldME[56] model that predicts E. coli’s thermal stress
response, a key feature is to predict protein thermostability. This
task required fitting thermodynamic contributions from each
type of amino acid using 3D structures of E. coli proteins avail-
able fromPDB. TheOxidizeME[57] model that predicts E. coli’s re-
sponse to oxidative stress required a method to predict metal co-
factor damage for approximately 43metalloproteins. Since exper-
imental measurements for every metalloprotein were not avail-
able, the probability of metal cofactor damage was computed
using protein 3D structural properties. A key feature of the
AcidifyME[60] model is to compute (periplasmic) protein stabil-
ity as a function of pH. This task required applying the multi-
conformation continuum electrostatics method to 3D protein
structures. In all of the studies above, the availability of high-
quality 3D structures was necessary to predict systems-level re-
sponse to macromolecule properties that change in response to
physical and chemical stimuli.

9. Using Machine Learning to Improve
Structure-Function Predictions and to Enhance the
Predictive Accuracy of GEMs

One gap between structural proteome and cell phenotype is that
functional alterations due to the variations in protein structure
are still expensive or difficult to predict. More efficient structure-
function prediction models, which predict functions of a protein
based on its structure, would enable routine computation of
mutation effects on function and properties (e.g., solubility,
stability, activity, etc.) of proteins in the whole-cell context.
Machine learning (ML) has been successfully used in the com-

puter vision and the natural language processing field. Recently,
there has been a significant interest in applying machine ML in
the research of protein structure-function prediction.[73] Moti-
vated by the expensive and time-consuming experimental protein
functions annotations and aiming to improve the traditional
computational approaches, a variety of machine learning meth-
ods have been developed to predict protein functions.[73e] The
traditional approaches (relying on sequence similarity) might not
produce accurate predictions because some proteins might have
similar function even with low sequence similarity.[73e] MLmeth-
ods have improved the prediction performance of such in silico
methods that make prediction solely based on the amino acid se-
quence similarity between proteins by focusing on protein struc-
ture itself.[74] Other ML methods focus on predicting the proper-
ties of proteins based on more comprehensive features, like pro-
tein 3D structure and biological process information.[73a] Current
state-of-the-art ML methods for protein structure-function pre-
diction formulate the problem as a supervised classification task.
The use of additional information such as the hierarchical struc-
ture of gene ontology and protein-protein interactions have been
proved helpful to improve prediction capability.[73a,73c–e] However,

developing theseMLmethods is challenging because real biologi-
cal data tend to be incomplete, noisy, biased andmulti-modal.[73e]

Nonetheless, continued development of ML techniques to ad-
dress these data limitations and, more directly, increase the
availability of data for ML analysis will make ML a promising
approach for predicting protein function from structures.[73a,73c]

ML has already been used to improve GEM predictions, by
predicting catalytic turnover rates in E. coli from a diverse set
of features.[75] These features included network context, protein
structure, biochemistry, and assay conditions. The study identi-
fied important features for turnover rate prediction: structural
(active site depth, active site solvent accessibility, active site expo-
sure), network context (predicted reaction fluxes, reflecting evo-
lutionary selection pressure on turnover rate), and the number of
reactions an enzyme promiscuously catalyzes. Using these ML-
predicted turnover rates improved the accuracy of GEM predic-
tions: by 20–34%.[75]

10. Using GEMs to Delineate the Network-Level
Effects of Post-Translational Modifications

Proteoforms are proteins expressed from one gene but al-
tered through PTMs and that may possess different functions
from each other.[76] There are more than 200 types of PTMs
recorded in various databases.[77] For proteoform detection, top-
down MS-based proteomic approaches which require intact pro-
tein separation through methods including serial size exclu-
sion chromatography[78] and capillary zone electrophoresis[79]

have been considered. To have a comprehensive understanding
of a biological system, knowledge of global effects of PTMs is
essential.
There have been some modeling efforts that have examined

the network-level effect of PTMs. Brunk et al.[80] identified im-
portant branch point enzymes in the metabolic network using a
GEM. The authors then integrated the GEM predictions, multi-
plex automated genome editing, and molecular dynamic simula-
tions to elucidate the mechanisms by which PTMs can affect the
protein activity and overall cellular fitness. The authors demon-
strated that PTMs can modulate protein interactions (in serine
hydroxymethyltransferase), impact substrate binding (transal-
dolase) and regulate catalytic residues (enolase). These mech-
anistic insights elucidated how specific PTMs regulate cellular
function at multiple biological scales, from individual enzymes
to pathway usage and, ultimately, cellular phenotypes.

11. Conclusions and Future Perspectives

Advancements in omic technologies continue to extend our abil-
ity to read out the complete molecular makeup of a cell un-
der various conditions of relevance to health, engineering, and
knowledge expansion. Each omic technology measures a specific
molecular category (RNA, protein, metabolite, etc.) as the cell is
“taken apart” and analyzed. Computational systems biology pro-
vides a platform to “put together” these disparate data sets and
to synthesize knowledge. Literature indicates that this pipeline
of measure–model–synthesize is yielding knowledge with con-
sistency and improving accuracy. However, we are also gaining
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more appreciation of the complexities associated with integrat-
ing multi-omics. Specifically, as the types of omic data types in-
crease, so do the number of interactions wemust consider across
the different biological layers. Systems biologymodels, including
the GEMs that we focused on here, help to navigate complexity
by consolidating existing knowledge to provide context for data.
Not all omic types can be interpreted with equal fidelity and reso-
lution, however. Hence, mechanism-elucidatingmodels are used
routinely to study metabolic processes using multi-omics, while
gene regulation, epigenetics, and signaling require more data-
driven or statistical modeling approaches to study system-level
phenomena. Furthermore, while structural proteomics has be-
come invaluable for genome-scale modeling in recent years, we
require more efficient algorithms to compute the functional ef-
fects of genetic and structural perturbations. Recent advances in
machine learning in this area show promise. With better predic-
tions and availability of more data, the predictive power of GEMs
will continue to rise making GEMs incredibly powerful tools in
decoding biological systems.
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Cellular differentiation in composition, organization 
and function represents one of the major innovations 
of multicellular life. Determining the molecular mecha-
nisms that govern how cells differentiate in their state is 
thus a long- standing focus in stem cell and developmen-
tal biology1. A comprehensive record of changes in cell 
states as tissues and organs develop can give insights into 
the molecular mechanisms and order of events by which 
cells choose their terminal identities during embryo-
genesis or regeneration. It can provide clues as to how 
to manipulate cell fates in vivo, to predict the origins of 
developmental pathologies and cancer, and to re- create 
cell differentiation processes in vitro.

Recent advances in single- cell transcriptomics pro-
vide a powerful approach to mapping differentiation 
dynamics by densely sampling cells at different stages. 
These sampled cells together can be used to construct a 
continuum of cell states, or a ‘landscape’, a term histori-
cally inspired by Waddington’s metaphorical epigenetic 
landscape2. In this Review, we refer to such depictions 
as state manifolds, to reflect both their underlying 
high- dimensional nature and their routine representa-
tion as low- dimensional Euclidean surfaces or graphs. 
State manifolds can provide high- resolution descrip-
tions of cell trajectories as they transition between states 
during cell differentiation.

While they are powerful, state manifolds and 
state trajectories offer population- level views of dif-
ferentiation, without directly revealing the long- term 
dynamic relationships between individual cells or 
between cells and their progeny. The gold standard 
for linking cell states across periods of time is instead 
through prospective lineage tracing: the practice of label-
ling an individual cell at an early time point in order to 
track the state of its clonal progeny at a later time point. 

Traditionally reliant on microscopy, lineage- tracing 
approaches have recently evolved to allow the tracking of 
cell clones via sequencing of inherited DNA sequences, 
or ‘barcodes’. The migration to sequencing platforms 
has brought several advantages to lineage- tracing 
efforts: massive throughput, multiplexing and com-
patibility with other sequencing- based measurements  
(for example, RNA sequencing (RNA- seq)).

Recently, we and others have developed approaches 
to carry out single- cell omic- scale profiling while simul-
taneously reporting lineage information. These meth-
ods offer an opportunity to integrate complementary 
information about both cell lineage and cell state into 
synthesized views of differentiation dynamics. In this 
Review, we survey the currently available strategies for 
single- cell state manifold reconstruction and lineage 
barcoding, as well as omics methods for combining lin-
eage and state measurements in the same cells. Both the 
range of single- cell trajectory construction methods and 
their assumptions have been reviewed extensively else-
where3,4, as have foundational molecular strategies for 
lineage barcoding5,6. Here we aim to draw general lessons 
from reoccurring conflicts that have emerged between 
state and fate analyses, and we discuss biological results 
obtained from first applications of combining the two 
methods. As this is an emerging field, we also discuss 
current limitations and potential technical pitfalls in 
their application. Finally, we speculate on the emerging 
concepts that might arise.

Inferring cell histories from state manifolds
In measuring the instantaneous state of a cell, one might 
imagine collecting information on the copy number of 
every molecular species within a cell, their interactions 
and spatial organization, the position of the cell in its 

Cell differentiation
The process by which 
uncommitted progenitor cells 
are specified and transform 
into functional (and typically 
postmitotic) cells that carry  
out the specialized tasks of  
a particular tissue or organ.

Landscape
An informal term for a state 
manifold, typically used in 
developmental biology to 
represent the ensemble  
of cell states during their 
differentiation.
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parent tissue, and its physical and regulatory interac-
tions with other cells. Such a level of information is, of 
course, impractical. Working definitions of cell state 
capture only a subset of these attributes and vary dra-
matically between studies. In the following sections, 
we describe how cell state designations have evolved 
from relatively simple observations to quantitative 
high- dimensional and high- throughput omics meas-
urements. We describe the introduction of cell state 
manifolds as a relatively recent analytic strategy with 
important advantages and limitations when inferring 
cell state relationships.

Defining cell states
A century ago, cells could only be reproducibly defined 
by simple characteristics: spatial position, morphology, 
histochemical staining, or basic biochemical or bio-
physical properties, such as cell density or dye uptake. 
Accordingly, much of the classical nomenclature asso-
ciated with cell states (for example, basophilic) reflects 
these assays. With the advent of molecular biology, cells 
could be identified more quantitatively by the expres-
sion of selected marker genes, through immunocytom-
etry, RNA analysis or the expression of transgenes. The 
nomenclature of cell state expanded accordingly into 
marker- based phenotypes (for example, CD34+). The 
types of measurable determinants of cell identity con-
tinue to expand, including epigenetic state (for example, 
DNA accessibility and conformation, protein–DNA 
binding, DNA methylation or histone modifications), 
post- translational protein modifications, protein 
localization and the metabolic profile of cells.

At present, the most mature technology for 
genome- scale mapping of cell states is through meas-
urements of the whole transcriptome (single- cell 
RNA- seq (scRNA- seq)), which can now be carried 
out rapidly and at low cost, in nanolitre- scale drop-
lets7,8, in microfluidic wells9, or using combinatorial 
split- pool approaches10. Transcriptomes contain infor-
mation about multiple aspects of cell identity (for 
example, cell cycle phase, metabolic state, cell- specific 
and tissue- specific molecular signatures, and spatially 
restricted marker genes). These diverse features may 
or may not be interrelated, but they reinforce a mod-
ern view of cell states as multidimensional vectors11,12. 
Beyond scRNA- seq, recent breakthroughs in single- cell 
methods capture chromatin accessibility13,14, methy-
lomes15, proteomes16 and metabolic signatures17, as 
well as multimodal measurements from the same single 
cells (for example, mRNA and protein18–20 or mRNA 
and DNA21,22). These measurements incorporate even 
further dimensions into routine measurements of cell 
state. Additionally, some highly multiplexed profiling  
of cell states is now possible in situ, thus complement-
ing cell- intrinsic state information with detailed infor-
mation on a cell’s local environment and position in 
tissues23–27. Overall, these innovations set up the coming 
decade to be an exciting time for stem cell and devel-
opmental biology, as well as for tissue physiology in 
general. These new methods are clarifying the changes 
that occur in cells during development and, ultimately, 
the mechanisms governing cell behaviour.

Mapping state manifolds
Large single- cell datasets are now being routinely col-
lected to catalogue the distribution and differentiation 
of cell states in both embryonic and adult tissues, as 
well as in disease. Recent examples encompassing entire 
organ systems include the haematopoietic system28,29, 
lung30,31, kidney32,33, heart34, gut endoderm35, somitic 
mesoderm36, nervous system37 and neural crest38. 
Additionally, whole- organism datasets have been gen-
erated for Caenorhabditis elegans39,40, Nematostella 
vectensis41, Hydra42, annelids43 and planarians44–46. 
Furthermore, time series data for whole embryos 
have been mapped for zebrafish47,48, Xenopus laevis49, 
mouse50,51, Drosophila melanogaster52 and ascidians53. 
These datasets have revealed novel cell states, and they 
associate all states with detailed molecular signatures 
that extend well beyond the previous classifications 
based on marker genes alone. They also have revealed 
cells in developmental transitions involving thousands 
of genes, which change expression at progressive times 
and between tissues.

Analyses of these and other single- cell data involve 
several stereotypical steps to predict differentiation 
dynamics (Fig. 1). First, single- cell datasets noisily sam-
ple cells in different states (Fig. 1A). The challenge of data 
analysis is then to infer the continuum manifold of states 
from these measurements (Fig. 1B). These manifolds 
must be constructed, visualized and then used either 
to predict dynamics directly from cell states or else to 
represent the measured dynamic information (Fig. 1C).  
In this section we briefly introduce these steps.

To infer continuum state manifolds, most methods 
applied to single- cell data to date have been graph- based: 
they begin by representing individual cells as nodes, 
which are then connected by edges that reflect pairwise 
gene expression similarities (Fig. 1B). Graph- based analy-
ses are useful because they convert a set of isolated meas-
urements (single- cell transcriptomes) into a connected 
structure (the graph), which can then be analysed using 
a rich set of pre- existing mathematical methods.

To then visualize state manifolds, several algorithms 
are used that attempt to preserve the structure of the 
original cell graph when it is plotted in just two or three 
dimensions (such as uniform manifold approximation 
and projection (UMAP)54, SPRING55 and ForceAtlas2 
(reF.56)). Two- dimensional representations are popular 
and do capture meaningful biological trends. However, 
they can be misleading, as they distort high- dimensional 
structures upon ‘flattening’ them, and in some cases 
algorithms force tree- like visual layouts that may further 
distort the original structure48,57,58. Any 2D and 3D visu-
alizations should serve only as aids for representing the 
results of more powerful forms of data analysis.

Independently of visualization, a multitude of algo-
rithms propose to predict cell state dynamics and/or 
differentiation hierarchies directly from a manifold 
(Fig. 1C). These tools for dynamic inference have been 
reviewed extensively elsewhere3 and include methods for 
extracting from the manifold its bare- bones structure, 
or topology59; organizing cells into trajectories57,58,60–63 
along an axis (often called pseudotime); and predicting 
the future fate of cells on the basis of their state28,64–68. 

State manifolds
Approximate representations 
of high- dimensional cell  
states (for example, the 
whole- animal embryonic cell 
state atlas Tabula Muris) as 
lower- dimensional shapes.

State trajectories
The paths taken by individual 
cells or clones of cells through 
a state manifold.

Prospective lineage tracing
A lineage- tracing experiment 
that introduces a label for 
marking cells in a specified 
state.

Barcodes
Units of DNA with a large 
number of sequence 
possibilities, such as those 
used to uniquely label  
cells and their progeny.

Cell lineage
A representation of a series of 
mitotic events that trace back 
to a single founder cell.

Cell state
A designation of cell identity 
(defined with respect to a 
particular measurement) that 
can be used to classify or 
quantify physical or molecular 
differences between cells (for 
example, ‘basophilic’, ‘KrT4+’, 
‘columnar’, ‘rNA- Seq cluster 4’).
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To improve these efforts at dynamic inference, some 
recent studies have succeeded in inferring the instanta-
neous dynamics of states on the basis of measurements 
of nascent mRNA abundance, the ratio of spliced to 
unspliced mRNA (for example, rNA velocity), protein 
translation or mRNA turnover by metabolite label-
ling69–73. Temporal information can also be integrated 
into state manifolds when cells are sampled at time inter-
vals47,48,67 (Fig. 1C). In total, the result of these methods 
is to order cells along a continuum74,75, which in turn 
allows for studying changes in the average, variance and 
correlation of gene expression across the graph, and for 
inferring tree- like structures from graphs57,58,60,76 that 
organize cells or cell clusters77,78 into a putative hierarchy.

Limitations of state manifolds for dynamic inference
The representation of cell states as continuous mani-
folds offers a compelling approach to reconstructing 
dynamic processes. However, state manifolds average 
over many individual cells and so lose information on 
individual dynamics. The missing information includes 
cell division or death rates, the reversibility of states, 

and persistent differences between clones, all of which 
can quantitatively or qualitatively alter the dynamics 
predicted from snapshot measurements64. The dynam-
ics predicted from cell state snapshots should thus be 
considered hypotheses. In this respect, the tree- like hier-
archies of cell states sharply contrast with those obtained 
by bona fide lineage analysis (Fig. 2a), in which tree edges 
link cells with an empirical developmental relationship. 
On a state manifold, branch- points may be hypothetical: 
cell division may or may not occur at a branch- point, 
and sister cells from each division may both progress 
along one branch of a manifold, rather than explor-
ing all branches. By contrast, in lineage trees, each 
branch- point strictly corresponds to a division event. 
State trajectories need not even be strictly tree- like, 
whereas lineage hierarchies are always strictly branching 
trees. Therefore, although the population- level structure 
could trace the dynamic sequence of molecular states 
experienced by single cells (Fig. 2a,b), several specific rea-
sons could obscure or mislead researchers’ understand-
ing of the underlying dynamics and/or fate relationships 
(Box 1; Fig. 2b–h).
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diffusion pseudotime; NASC- seq, new transcriptome alkylation- dependent 
single- cell RNA sequencing; PAGA , partition- based graph abstraction;  
PBA , population balance analysis; PHATE, potential of heat diffusion for 
affinity- based trajectory embedding; scSLAM- seq, single- cell 
thiol-(SH)- linked alkylation of RNA for metabolic labelling sequencing; 
SPRING, a force- layout embedding of single- cell data; STITCH, a method 
for combining time series of single- cell data; UMAP, uniform manifold 
approximation and projection; URD, a simulated diffusion- based 
computational approach named after the Norse mythological figure; 
Waddington- OT, Waddington optimal transport.

RNA velocity
The rate of change in mrNA 
transcript abundance —  
more specifically, a set of 
computational techniques for 
calculating these rates across 
all genes from measurements 
of spliced and unspliced 
transcript abundances.
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Inferring cell histories in lineage tracing
Unlike the state of a cell, the lineage history of a cell 
can be defined without the operational simplification 
that comes from reducing the dimensionality of thou-
sands of measurements. By ‘lineage’, we refer to the 
collective history of cell divisions, as well as the birth, 
division and death times of a cell’s ancestors and clonal 
relatives. Lineages can be depicted as detailed trees of 
mitotic events (Fig. 2a) or, alternatively, as clonal units 
derived from a common progenitor cell. Lineage meas-
urements, however, do not inherently contain informa-
tion about the states of the cells they comprise, and as 

such they are typically combined with other measure-
ments (for example, cell position, morphology or gene 
expression). In the following sections, we describe classic 
temporal and clonal analysis paradigms for defining cell 
lineage, referring the reader elsewhere for more com-
plete reviews5,6. These paradigms have evolved from 
their roots in imaging- based studies to the recent use of 
DNA- barcoding- based systems in the post- genomics era.

Lineage- tracing paradigms
Currently there are two major paradigms for defining 
cell lineages. One major category of approaches, pro-
spective lineage tracing, attempts to establish lineage 
relationships forwards in time from cells of a defined 
starting state. Fate mapping, the practice of associating 
the position of a cell in the early embryo with the ulti-
mate positions and fates of that cell’s descendants, is a 
form of prospective lineage tracing79. Methods based on 
CRE or FLIP recombinases, which facilitate permanent 
genetic labelling of progenitor cells based on the activity 
of a transgenic promoter, can also be used to learn pro-
spective state relationships80. Prospective lineage tracing 
requires that some level of state information be known 
about a starting cell population, and generally the goal is 
to correlate this state information with future cell states. 
By contrast, phylogenetic lineage reconstruction meth-
ods seek to map the history of lineage relationships with 
respect to the cell states queried at a single end point 
in time. With these methods, state and lineage features 
are generally only measured at the end of the experi-
ment, and lineage relationships are mapped backward  
in time in order to infer fate decisions that occurred 
either early or late. An inherent advantage of phylo genetic 
approaches is that analyses can be performed retro-
spectively (that is, without the need for experimental 
labelling) by analysing endogenous, naturally occurring 
genetic polymorphisms81 — these label- free implemen-
tations of phylogenetic lineage analyses are thus also 
known as retrospective lineage tracing. Such approaches, 
therefore, can be applied to human patient samples and 
in other cases in which experimental intervention is not  
possible. Many additional methods perform similar phylo-
genetic reconstruction of end states but do so by track-
ing experimental labels rather than endogenous labels.  
In practice, when experimental labels are specifically intro-
duced into cells of a particular state, the lineage- tracing 
experiments combine both prospective and phylogenetic 
paradigms — for example, by reconstructing lineage 
phylogenies within a specific tissue.

Clonal versus population tracing
Labelling of cells for prospective lineage tracing can be 
performed at clonal resolution (such as by delivering 
complex barcode libraries) or, alternatively, by docu-
menting the collective fate of a population of cells (such 
as by delivering a common label to the cell population). 
Population lineage- tracing experiments are generally 
easier to perform, but they leave open the possibility of 
internal heterogeneity of the labelled population and/or 
inclusion of off- target cells. The collective activity of a 
bulk cell population (for example, unfractionated bone 
marrow) can easily be misinterpreted as representing the 

Box 1 | How do cells traverse single- cell landscapes?

Single- cell data can be organized into a continuum ‘landscape’ (or ‘manifold’) of cell 
states, representing cells in progressive states of differentiation. However, these 
landscapes do not directly clarify how cells or clonal lineages explore these states, or 
how they choose their trajectory at branch- points. Cells in similar states could show the 
same dynamic progression and remain uncommitted until they reach a branch- point 
(Fig. 2b). Dynamic behaviours on a landscape can also be unpredictable (Fig. 2c–h) and 
can deviate from the global averages inferred from many single- cell measurements. 
These complications may arise from hidden variables, gaps in manifolds and stochastic 
dynamics, as detailed here.

Hidden variables
Although single- cell technologies aspire to measure cell state comprehensively, they 
may still miss important cellular properties that are informative as to fate. Such hidden 
variables may be regulatory molecules that are altogether missing from the state 
measurement (for example, epigenetic, spatial or post- translational state features  
that are not captured by single- cell RNA sequencing). They could also be obscured by 
measurement noise or by ad hoc operational decisions in data processing, such as 
choices of normalization or dimensionality reduction strategies and of which genes  
to include in manifold construction. Because cells often participate in multiple  
dynamic processes, different data- processing choices can emphasize certain biological 
processes (for example, cell cycle, cell migration or stress) over others and can allow 
constructing manifolds with qualitatively different structures from the same data. 
Transcriptional signatures of the cell cycle, for example, can overshadow other state 
differences between unrelated cell types.

Failure to resolve hidden variables can lead to the appearance of ‘delayed state 
divergence’ on a state manifold (Fig. 2c), obscuring the true point at which fate 
specification occurs. Independent clonal trajectories can also appear to ‘converge’ 
temporarily on identical or nearly identical states during the differentiation process 
(Fig. 2d). In these cases, the distinct ontogeny of the cells cannot be deduced from state 
information alone. Clones or tissue domains in different stages of differentiation may 
also form a continuum of states that implies a false trajectory (Fig. 2e). Additionally, state 
manifolds may imply ‘false multipotency’ and/or ‘false branch- points’ by superimposing 
cells with different fate potentials (Fig. 2f). Some of these problems can be identified  
by visualizing the state manifold, but this is only possible if the visualization methods 
used do not force cells to occupy a tree- like hierarchy. lineage tracing is essential  
to identifying and resolving lineage restrictions downstream from a point of state 
convergence (Fig. 2d,e); not even short- term dynamic information (for example,  
RNA velocity; see the main text) is informative in these situations.

Gaps
learning differentiation trajectories works best for systems with a strong flux of cells 
and coverage of multiple time points. When very few cells differentiate at any moment 
in time (for example, adult neural stem cells) or transitional time points are missing, 
analyses become more difficult and are prone to creating artefacts. Thus, gaps in the 
manifold, which may arise from uneven or under- sampling of cell states, can result in 
apparent discontinuities between clonally related cells (Fig. 2g).

Stochastic dynamics
even when manifolds faithfully depict the average clonal dynamics, they cannot 
provide information about distinct dynamic behaviours of cells that appear similar in 
state, such as stochastic fluctuations about the average or participation in local cycles 
(Fig. 2h). Collectively resolving the scenarios above would require the ability to track 
cell state dynamics over both short and long timescales.

Clonal analysis
A lineage- tracing experiment 
that involves marking an 
individual cell, followed by 
state analysis of that founder 
cell’s clonal descendants.

Retrospective lineage 
tracing
A lineage- tracing experiment 
based on phylogenetic 
reconstruction of endogenous 
genetic polymorphisms (that is, 
no experimental intervention).
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output of a single, multifunctional cell type, even when 
labelled cells could be restricted in their fate potential82. 
Such errors can be resolved by increasing the preci-
sion of the labelling process to limit any underlying 
cellular heterogeneity, or by utilizing single- cell line-
age methods to track clonal relationships83. Given that 
even genomics- era state measurements (for exam-
ple, scRNA- seq) can occasionally fail to fully resolve 
lineage- restricted groups of cells47,84–86 (Fig. 2c–h), clonal 
analysis is still the most robust method for establishing 
the distribution of lineage outputs of a cell population. 
Once identified, stereotyped clone behaviours can be 
used to screen for prospective cell state markers that 
might correlate with and/or predict different lineage 
outcomes.

Imaging- based methods for lineage tracing
Prospective lineage- tracing experiments date back to the 
19th century and initially relied on direct observations via 
live microscopy to track blastomere divisions in trans-
parent invertebrate embryos, in particular in annelids1 
and ascidians87. Ascidian lineage trees were annotated 
according to the spatial position of each cell, and owing 
to determinate cleavage patterns and early fate restriction, 
this relatively simple level of state information was found 
to be sufficient to predict future cell fates. A similar 
direct- observation strategy was applied nearly a century 
later to the nematode C. elegans, again taking advan-
tage of the small size, transparency and determinate 
embryonic cleavage patterns of this species88.

Embryos of more complex species (for example, 
vertebrates) often contain many more cells, and cell 
divisions are generally indeterminate and more difficult 
to observe directly. Lineage tracing thus expanded to 
include a wide range of additional approaches, includ-
ing the injection of tracer dyes, cell transplantation and 
in vivo genetic recombination methods. The history  
and applications of these pre- genomic methods have 
been reviewed extensively elsewhere80. More recent 
advances in in toto confocal and light- sheet micros-
copy have reinvigorated modern versions of the direct- 
observation approach, enabling the tracking of indi-
vidual cell division patterns in complex vertebrates 
such as zebrafish and mouse, together with transgenic 
reporters89,90. One feature common to in toto imaging 
and nearly all pre- genomics methods for live lineage 
tracing is a reliance on transgenic fluorescent reporters 
to measure cell state. Thus, these approaches are spec-
trally limited to relatively few measurements of cell state. 
Partially countering this limitation, the spatial position 
of cells and their morphology provide information that 
may be correlated to molecular state91. Furthermore, 
recent spatial transcriptomics methods overcome the 
spectral limit by allowing genome- scale measurements 
in fixed samples in situ. Using such methods subsequent 
to live imaging or in combination with lineage tracing 
allows for combining state information with lineage and 
position information in one experiment92. However, 
such experiments remain extremely challenging, and 
highly multiplexed spatial transcriptomics methods are 
still generally restricted to the analysis of tissue sections, 
which may fail to capture all cells in each clone.

Lineage tracing by barcode- sequencing
Recently, high- throughput sequencing has opened up 
a new generation of lineage- tracing approaches. These 
new methods use DNA sequence barcodes to encode 
clonal information (Fig. 3). Although the number of dis-
tinct clones that can be simultaneously queried using 
 fluorescent reporters is intrinsically limited, DNA 
sequence complexity scales exponentially with the length 
and multiplicity of the engineered barcodes, which is 
theoretically sufficient to allow a record of every single 
division event in an organism. The recorded informa-
tion is read out retrospectively using high- throughput 
sequencing and can be readily combined with other 
sequencing- based omics measurements.

The use of DNA barcodes to reconstruct lineage 
relationships initially relied on the identification of 
unique retroviral integration sites and utilized Southern 
blot or PCR assays to reveal barcode identity93,94. In the 
post- genomics sequencing era there has been a burst of 
innovation in the creation and deployment of far more 
complex DNA barcodes for lineage tracing (TABle 1).  
A foundational concept for these methods is to use changes 
in targeted, whole- genome or mitochondrial- genome 
sequencing data to construct lineage phylogenies95–97. 
Targeted barcoding- based methods generally fall into 
three thematic categories: first, transgenic integration 
of exogenous DNA sequences (Fig. 3Aa); second, in vivo 
recombination of transgenic DNA cassettes (Fig. 3Ab); 
and third, in vivo editing of transgenic DNA targets 
by CRISPR–Cas9 (Fig. 3Ac). In all of these approaches,  
a DNA- barcoding event permanently alters the genome 
of an individual cell, the descendants of which inherit 
the barcode and can be distinguished as a clonal unit 
(Fig. 3Ba). Importantly, DNA barcodes can be recorded 
and measured at high throughput, enabling that interro-
gation of hundreds or thousands of distinct clonal units 
in parallel. In addition, these modalities can be adapted 
for cumulative barcoding, which marks successive/nested 
clonal units and facilitates phylogenetic reconstruction of 
cell lineage trees (Fig. 3Bb).

The first generation of methods and the logic for 
sequencing- based lineage tracing have been reviewed 
extensively elsewhere5,6. It is instructive to review the 
most recent developments, particularly in CRISPR-  
editing- based barcoding schemes. This family of meth-
ods utilizes a cumulative barcoding strategy to reveal 
lineage hierarchies that terminate at a single end point 
in time, typically by introducing three transgenic 
components: CRISPR–Cas9 DNA endonuclease, an 
array of DNA target sites, and a panel of single guide 
RNAs (sgRNAs) or homing guide RNAs (hgRNAs). 
These components generate high- diversity, ‘evolving’ 
DNA barcodes within cells by taking advantage of 
cumulative variability in target sites that results from 
CRISPR–Cas9 activity. The first methods to demon-
strate this principle were genome editing of synthetic 
target arrays for lineage tracing (GESTALT)98 and 
homing CRISPR99,100. More recent innovations include 
the engineering of lineage barcodes into transcribed 
regions of constitutively expressed or inducible reporter 
genes, enabling their sequences to be read from mRNA 
in whole- transcriptome scRNA- seq experiments 

Hidden variables
Molecular or environmental 
properties of a cell that 
correlate with — or could be 
used to predict — a cell fate 
decision, which are obscured 
from a state manifold.

Direct observations
lineage- tracing experiments 
that rely on in vivo live imaging 
of cells as they divide.

Determinate
in the context of developmental 
processes, when the relationship 
between lineage and molecular 
state is tightly controlled at 
each cell division event and is 
invariant between individuals.

Indeterminate
in the context of developmental 
processes, when the relationship 
between lineage and molecular 
state can vary greatly between 
individuals and between  
cell clones.

Lineage phylogenies
Trees of lineage relationships 
constructed from end point 
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(Fig. 4A). This innovation was first demonstrated by the 
single- cell GESTALT (scGESTALT)101, lineage tracing 
by nuclease- activated editing of ubiquitous sequences 
(LINNAEUS)102 and ScarTrace86 techniques and has 
become a standard feature in subsequent methods. 
Other common innovations include the use of barcode 
arrays, which increase the number of barcoding possibil-
ities, as well as the use of inducible promoters and inte-
grated fluorescent reporters to both control and monitor 
the barcoding process in real time (Fig. 4B).

Performance, trade- offs and further innovations
DNA- barcoding technologies show considerable poten-
tial as future tools for lineage tracing. As this is a rapidly 
evolving field, the published methods are likely to be 
revised substantially in the coming years. For this reason, 
we do not recommend any single published method at 
present over others. It is helpful instead to appreciate the 
limitations that are likely to be resolved, as well as some 
methodological improvements that are already emerging.

DNA- damage- induced toxicity. Most CRISPR–Cas9 bar-
coding methods rely on random insertions and deletions 
introduced during the process of double- strand break 
repair by non- homologous end joining (NHEJ). Recently, 
CRISPR–Cas9 activity has been shown to cause cell death 
in human induced pluripotent stem cells (iPSCs)103 and 
cell lines104, and also it can result in developmental delay 
in mouse embryos85, raising potential concerns about 
maintaining continuous endonuclease activity. The 
extent and effect of potential off- target double- strand 
breaks also remains generally unaddressed. Going for-
ward, it will therefore be important to validate that these 
systems do not perturb the developmental dynamics that 
they are being used to interrogate.

The alternatives to CRISPR–Cas9- based methods 
may not face the same concern of excessive DNA damage. 
One alternative is TracerSeq47, a method for clonal bar-
coding demonstrated in zebrafish. TracerSeq makes use 
of ongoing transposase activity to successively integrate 
a pool of predefined barcodes, delivered as an injected 
plasmid library into embryos. The progressive integra-
tion of plasmids into the genome provides a heritable 
label of clones and sub- clones without inducing unre-
paired double- strand breaks, yet it does require injection 
or electroporation. Other alternatives that similarly avoid 
double- strand breaks use genetic recombination105,106 
(for example, PolyLox), CRISPR- associated transpo-
sase systems (CAST and Vibrio cholerae Tn6677)107,108 
and base- editing enzymes109,110. Base- editing enzymes, 
however, can have substantial off- target effects that could 
perturb biological function111–113.

Barcode detection. Failure to detect edited barcode 
sequences (for example, due to measurement drop- outs) 
can skew inferred lineage relationships (Fig. 3Cb). Such 
errors arise, for example, from low or noisy levels of bar-
code reporter expression or from endogenous silencing 
of integrated transgenes or lentiviral constructs114. We do 
not at present know the precise barcode detection rates 
of existing methods, but the extent of such errors for any 
barcoding method can be estimated in principle through 

control experiments in which lineage relationships can 
be independently verified115. At a minimum, studies 
using DNA barcodes should assess the per- cell barcode 
detection rate, and may need to consider taking steps to 
improve experimental detection (for example, introduc-
ing strong RNA polymerase II promoters that drive the 
transcription of mRNA- based barcodes).

Assay calibration. Because lineage tracing and single- cell 
omics assays can take weeks to analyse and are expen-
sive, it is desirable to be able to assess the efficiency of 
barcoding before detection. In integration- based sys-
tems, the expression of barcode- linked fluorescent pro-
teins can report on the level and specificity of barcoding 
activity in live specimens. Some CRISPR–Cas9 systems 
(for example, LINNAEUS and ScarTrace) target DNA 
editing to the coding region of a fluorescent transgene, 
such that loss of fluorescence can be used to monitor 
the barcoding process. Such live- reporting schemes for 
barcode generation provide a simple means for sample 
validation before sequencing.

Barcode diversity. Failures to resolve unique clones (that 
is, barcode homoplasy or type I errors) occur when cells 
inherit identical barcode sequences despite having no 
true lineage relationship (Fig. 3Cc). To avoid such errors, 
lineage- tracing methods should generate far more 
barcodes than the number of clones to be analysed.  
In CRISPR–Cas9 systems, the barcode diversities gen-
erated by Cas9 that are quoted in different studies have 
varied considerably. The true barcode diversity obtained 
in such systems, however, is likely to be overestimated, in  
part, because certain errors in double- strand break repair 
re- occur frequently102. In addition, the generation of 
multiple DNA double- strand breaks in close proximity 
leads to the excision of intervening sequences, resulting 
in the loss of previously generated edits101. Finally, the 

Drop-outs
Type ii errors that are  
common in single- cell  
omics experiments in which 
transcripts, lineage barcodes 
or other features present  
in cells fail to be detected.

Barcode homoplasy
A type i error in which identical 
DNA sequence barcodes  
are randomly recovered from 
cells with no close lineage 
relationship.

Fig. 3 | Methods and logic for lineage barcoding 
experiments. A | Three major paradigms for introducing 
unique DNA barcodes into cells: by integration of a 
high- diversity library of DNA barcodes using a transposase 
(part Aa), by random recombination of an array of 
recombinase target sites (part Ab) and by the accumulation 
of random errors, insertions and deletions during CRISPR–
Cas9 editing of genomic target sites (part Ac). B | DNA 
barcoding can be applied in a single, instantaneous pulse, 
enabling the parallel tracking of many distinct cell clones 
(part Ba). When applied continuously , DNA barcodes can 
repeatedly label a dividing cell clone at sequential levels  
of its lineage hierarchy (part Bb). C | Challenges in lineage 
reconstruction from cumulative barcoding. The upper 
diagrams depict hypothetical barcode integration events 
in a cell lineage. Arrows denote the accumulation of  
novel barcodes, with each colour indicating a unique DNA 
barcode sequence. Hypothetical lineage correlation heat 
maps and trees depict the anticipated results of lineage 
reconstruction. Lineage phylogenies can be accurately 
reconstructed from single- cell correlations of the detected 
barcode labels (part Ca), whereby early versus late clones 
are distinguished on the basis of the number of cells that 
contain the associated barcode. Errors in barcoding or 
barcode detection can skew the accuracy of phylogenetic 
inferences (parts Cb and Cc). sgRNA , single- guide RNA.
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activity of DNA repair machinery may differ between 
organisms, tissues and/or species.

To minimize the negative effects of barcode homo-
plasy, it is possible to utilize biological replicates to 
empirically identify high- frequency barcodes and 
exclude them from downstream analyses85,102. However, 

the presence of species- specific and tissue- specific dif-
ferences in barcode diversity argues that diversity should 
be evaluated in each experimental system to which the 
methods are applied. An additional innovation for 
increasing Cas9- edit barcode diversity includes the use 
of terminal deoxynucleotidyl transferase (TdT) as an 
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additional transgenic component expressed at the time 
of barcoding115. In the presence of double- strand breaks, 
TdT was demonstrated to catalyse the random incor-
poration of nucleotides at the DNA cut site, resulting 
in an increased frequency of insertion- based edits over 
deletion- based edits.

It is also possible to expand barcode diversity by 
increasing the number of barcoding events per cell, 
although this strategy can carry experimental trade- offs. 
In CRISPR–Cas9 systems, barcode diversity can be 
increased through the parallel editing of several trans-
genic DNA target sites arranged in tandem or distrib-
uted throughout the genome (Fig. 4B). Tandem barcode 
arrays (Fig. 4Ba) face a practical limit, as they form 
repeat- rich sequences that are problematic substrates 
for both molecular cloning and most modern single- cell 
sequencing pipelines. Most of the recent methods there-
fore use distributed barcode arrays (Fig. 4Bb), which 
greatly reduce the number of nucleotides that must be 
sequenced in order to recover the barcode identity and 
also provide the advantage of being far less susceptible 
to internal deletions and information loss47,84,85,100,116. 
Distributed arrays can resolve otherwise identical DNA 
target sites through the use of an additional layer of 
integration barcodes that are specific to each transgenic 
insertion site. Distributed arrays are thus inherently 
scalable and can increase the barcode- space complex-
ity while avoiding the need for long sequencing reads. 
However, they too face a limitation, in that a failure to 
detect some barcodes (type II errors) may lead to partial 
barcode recovery for many cells. Additionally, distrib-
uted arrays may be lost during outbreeding of trans-
genic animals and/or through endogenous silencing of  
transgenic or lentiviral constructs.

Barcode diversity may be less of a challenge for 
integration- based or recombination systems. Integration-  
based systems use high- diversity, uniform barcode 
libraries that are both simple to recover by sequencing 

and straightforward to interpret. TracerSeq barcodes, for 
example, are sampled evenly from a large sequence space 
(20- nucleotide sequences, yielding ~1012 possible vari-
ants), greatly simplifying computational analyses and the 
assignment of cells to clones47. Furthermore, increasing 
the integration rate expands combinatorial diversity by 
allowing more than one barcode to label each cell114,116. 
A drawback to the use of defined barcode libraries is 
that they require the introduction of exogenous trans-
genic DNA libraries into cells through injection, viral 
transduction or electroporation/lipofection, which lim-
its their experimental possibilities47,114. In recombination 
systems, the number of barcode possibilities increases 
with the number of recombination sites. In the PolyLox 
system, 9 loxP sites yields >1.8 million Cre recombi-
nation possibilities105; this diversity could be further 
increased by adding more sites.

Barcoding precision. A critical requirement for any 
lineage- barcoding experiment is the need to capture a 
minimum of two cells (ideally, many more) per clone. 
This requirement argues strongly for the need to label 
small numbers of cells in a defined tissue of interest, 
in order to ensure adequate sampling of their resulting 
progeny. In addition, the interpretation of clonal- tracing 
experiments depends strongly on precisely controlling 
the time interval in which cells are labelled. To date, 
published methods have not yet been optimized to 
achieve both tissue and temporal specificity in barcod-
ing. Targeting clonal labelling to specific tissues can be 
facilitated by expressing components of the barcoding 
machinery under the control of tissue- specific promot-
ers. Achieving temporal specificity is a more complex 
challenge. For CRISPR–Cas9- based methods, an open 
problem is that of target site ‘exhaustion’, in which all 
editing is completed early in the developmental period of 
interest. We expect the practical challenges of targeting 
clonal labelling to be resolved in the coming years.

Table 1 | Sequencing- based technologies for lineage tracing

Technology DNA- editing 
system

Barcode type Barcode 
length 
(bp)

Uniform 
barcode 
frequency?

Frequent 
barcode 
homoplasy?

Barcode 
as 
mRNA

Barcode 
generation

Species In vivo? Refs

TracerSeq Tol2 Integration 20 Yes No Yes Continuous Zebrafish Yes 47

LARRY Retrovirus Integration 28 Yes No Yes Single- step Mouse Yes 84

CellTag Retrovirus Integration 8 Yes No Yes Multi- step Human No 114,116

PolyLox Cre–loxP Recombination 2,152 No Yes No Continuous Mouse Yes 105,106

GESTALT Cas9 INDEL 266 No Yes No Continuous Zebrafish Yes 98

scGESTALT Cas9 INDEL 363 No Yes Yes Continuous Zebrafish Yes 101,119

ScarTrace Cas9 INDEL 249 No Yes Yes Continuous Zebrafish Yes 86

LINNAEUS Cas9 INDEL 75 No Yes Yes Continuous Zebrafish Yes 102

MARC1 Cas9 INDEL + integration 240 No Yes No Continuous, 
evolvable

Mouse Yes 99,100

Chan et al. Cas9 INDEL + integration 350 No Yes Yes Continuous Mouse Yes 85

CHYRON Cas9 + TdT INDEL (with insertion 
favoured over deletion)

100 No Minimal No Continuous Human No 115

A summary of lineage- tracing methods that make use of sequencing DNA barcodes. CHYRON, cell history recording by ordered insertion; GESTALT, genome editing 
of synthetic target arrays for lineage tracing; INDEL , insertion or deletion; LARRY, lineage and RNA recovery; LINNAEUS, lineage tracing by nuclease- activated 
editing of ubiquitous sequences; MARC1, mouse for actively recording cells 1; scGESTALT, single- cell GESTALT; TdT, terminal deoxynucleotidyl transferase.
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Fig. 4 | Reading and writing transgenic DNA barcodes. A | DNA barcodes 
can be encoded exclusively in genomic DNA (left) or expressed as mRNA , to 
allow detection concurrent with single- cell RNA sequencing. Reliable 
detection of barcode sequences requires amplification. For DNA barcodes 
this is achieved by PCR or in vitro transcription, whereas mRNA- based 
barcodes are endogenously amplified via RNA polymerase II (Pol II) 
transcription and can be detected as part of each single- cell transcriptome. 
B | Transgenic strategies for storing and transcribing DNA barcodes. The 
schematics show the diversity of DNA arrays used to store lineage 
information for each method. The arrays can be grouped according to 
whether they store lineage information at a single genomic locus using a 

tandem array (part Ba) or whether they store lineage information at multiple 
genomic loci using distributed arrays (part Bb). Right- angled black arrows 
indicate promoters used to drive barcode expression for detection by RNA 
sequencing in a subset of methods. The methods differ in whether they 
utilize recombination (PolyLox), barcode library integration using a lentivirus 
or transposase (TracerSeq, LARRY, CellTagging) or CRISPR–Cas9 targeting 
of single guide RNA (sgRNA) arrays (all remaining methods). GESTALT, 
genome editing of synthetic target arrays for lineage tracing; hgRNA , 
homing guide RNA; LARRY, lineage and RNA recovery; LINNAEUS, lineage 
tracing by nuclease- activated editing of ubiquitous sequences; MARC1, 
mouse for actively recording cells 1; scGESTALT, single- cell GESTALT.

Applications of lineage tracing on state manifolds
Lineage- tracing methods can now integrate high-  
dimensional state information with clonal and phylo-
genetic barcoding. In doing so, they greatly increase the 
number of clones that can be tracked, and they establish 
clonal composition without requiring prior knowledge 

of the marker genes. Both of these advantages should 
greatly reduce transgene- centric observation biases. 
However, omics lineage- tracing experiments demand 
novel experimental designs and controls, as compared 
with traditional methods. These methods also demand 
far more computational support than do traditional 
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methods, owing to the high- dimensional nature of omics 
measurements, the difficulty of studying thousands of 
lineage trees that may be heterogeneous, and the unique 
nature of noise in these methods compared with pre-
vious approaches. We next survey three general exper-
imental strategies that recently have been utilized to 
map how lineages unfold on state manifolds. We review 
outstanding challenges encountered in the computa-
tional analysis of state–lineage relationships, as well as 
potential pitfalls in experimental design.

Prospective lineage tracing on state manifolds
Prospective lineage tracing is still most commonly 
deployed by marking cells of a defined state at an early 
time point and establishing their collective cellular 
products at a later time. This approach has its roots in 
classical fate- mapping and genetic- labelling methods, 
which are implemented at either bulk or single- cell res-
olution. A modern version of this approach combines a 
sequencing- readable DNA recombination event as the 
genetic label, cell sorting and downstream analysis by 
scRNA- seq or some other high- resolution genome- scale 
measurement (Fig. 5Aa). Such approaches can provide 
detailed state resolution for the resulting cell popula-
tions, but prospective lineage labels are still compara-
tively low- resolution when they rely on the promoter 
activity of a single gene.

In an instructive example, Rajagopal and colleagues30 
made use of the classical genetic recombination- based 
lineage- tracing method to label cells, followed by 

scRNA- seq to analyse the fates of the labelled cells. This 
‘pulse- seq’ method was applied to study the fate of basal 
cells in airway epithelium labelled at a defined time 
using a conditional CreER recombinase expressed from 
the Krt5 locus, which activates permanent and heritable 
expression of a fluorescent reporter gene. At later time 
points, scRNA- seq established that Krt5–CreER- marked 
basal cells regenerated all epithelial cell types of the air-
way. Crucially, this approach did not require knowledge 
of the markers for any of the derivative cell types and 
thus could be used to establish the basal origin of a novel 
cell population. In this study, scRNA- seq also revealed 
that Krt5- expressing basal cells are not homogeneous in 
their transcriptomes. Thus, while pulse- seq could collec-
tively mark all basal cells, it could not distinguish which 
individual clonal behaviours are stem cell- like, nor could 
it correlate such clonal behaviours to a particular subset 
of the Krt5- expressing population.

A more refined approach to prospective lineage tracing 
would make use of DNA barcodes to uniquely label each 
cell in the initial cell population. Although resolution into 
the labelled cell state would still be limited to the expres-
sion of a single marker gene, the end point measurements 
would provide information on heterogeneity in the clonal 
output of the labelled cells. From such data, one could 
assess whether the entire labelled cell population was 
equal in its fate potential or whether further fractionation 
of the labelled cells might be needed to resolve distinct cel-
lular subsets. Such experiments could use scRNA- seq to 
analyse the clonal progeny. Evolving barcode approaches 
could also be adapted as a variant of such prospective lin-
eage tracing, by requiring that barcode evolution be con-
ditional on the expression of a state- prognostic transgenic 
promoter. To our knowledge, however, such applications 
have not yet been demonstrated.

Lineage phylogenies on state manifolds
Although there are now multiple methods for phylo-
genetic lineage barcoding (Fig. 4), all share a common 
goal: to determine the shared division history of the 
cells collected at a single end point in time. A com-
mon innovation in recent lineage- barcoding studies 
has been the engineering of lineage barcode cassettes 
into expressed sequences (Fig. 4A, right), enabling the 
simultaneous measurement of lineage information and 
whole- transcriptome state measurements for each cell. 
While these approaches succeed in revealing detailed 
states for the end- point- sequenced cells (Fig. 5Ab), they 
fail to capture the transcriptional states of progenitor 
cells that existed at time points before sequencing. Thus 
far, early applications of phylogenetic state–lineage 
approaches have largely recapitulated known develop-
mental hierarchies in proof- of- concept studies. They 
have, however, revealed a recurring insight: namely, 
that similar cell states can arise (or ‘converge’) from 
qualitatively different developmental origins. Lineage 
construction using the tools reviewed above (FigS 3,4) 
can therefore be useful to identify converging devel-
opmental trajectories (Fig. 2d) and to distinguish other 
trajectories (Fig. 2b–h; Box 1) that are not immediately 
highlighted by state manifold approaches alone. They 
also can be used to identify measured features of cells 

Fig. 5 | Applications and pitfalls of lineage tracing on state manifolds. A | Recent 
studies have highlighted three experimental designs for combining lineage and state 
measurements. For simplicity , the panels depict largely congruent state–lineage 
hierarchies. Prospective (part Aa): a bulk genetic label is applied to cells of a particular 
state; labelled cells are subsequently captured and sequenced to reveal the gene 
expression states and lineage barcodes for each cell. Phylogenetic (part Ab):  
gene expression states and lineage barcodes are measured at a defined end point with 
respect to a biological process. Prior lineage relationships can be reconstructed 
retrospectively from the lineage barcodes, whereas state information is limited to the 
final time point. Resampled (part Ac): gene expression states and lineage barcodes are 
repeatedly sub- sampled over time, enabling the mapping of lineage trends directly  
on the state manifold. B–G | Phylogenetic reconstruction of fate hierarchies from 
end- point state and lineage measurements. The results of hypothetical lineage–state 
reconstruction analyses are displayed for each scenario; they vary dramatically , 
depending on the timing of both cell division and lineage barcoding. Heat maps depict 
the number of shared barcodes observed between each pair of states, normalized  
by the expected number of barcodes under a null hypothesis in which barcodes are 
distributed at random (‘Lineage O/E ratio’). For a thorough definition of this statistic,  
see Weinreb et al. (2020)84. Lineage relationships can only be inferred at the time points 
when marked clones are generated and expanded. Given constant cell division rates  
and identical state manifolds, different time windows of barcode induction will lead  
to different inferences about lineage relationships. B | Continuous lineage barcoding  
in an actively dividing cell population enables all major lineage restriction events to be 
well- represented in a lineage–state reconstruction analysis. C–E | Lineage relationships 
can only be inferred at time points when marked clones are generated and expanded . 
Given constant cell division rates and identical state manifolds, different time windows  
of barcode induction will lead to distinct inferences about lineage–state relationships.  
F | In postmitotic differentiation hierarchies, despite continuous DNA barcoding, an 
absence of cell division precludes the formation of marked clones containing >1 cell. 
Barcodes are no longer enriched across the state manifold and cannot be used to 
reconstruct fate restriction hierarchies. G | Lineage inferences require well- sampled 
barcode data from marked clones. Variable rates of cell division on a state manifold skew 
clone sizes and, hence, the statistical power to detect lineage–barcode correlations. 
scRNA- seq, single- cell RNA sequencing.
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(for example, novel marker transcripts) that reflect their 
cell ontogeny.

Three recent studies spanning different embryonic 
tissues illustrate the recurring observation of state  
convergence, although these examples are far from 
exhaustive. In a first example, integration- based bar-
codes were detected in scRNA- seq data (by TracerSeq; 
Fig. 3) in zebrafish embryos. From these data, collected 
at a single time point 24 hours after embryo fertilization, 
it was possible to determine the shared lineage history of 
tens of transcriptionally defined cell states. Notably, one 
set of structures in the embryo, known as the pharyngeal 
arches, could be seen to arise from different clonal ori-
gins, despite appearing transcriptionally similar. These 
structures arise from either neural crest or lateral plate 
mesoderm47. Once the origin of the cells was established, 
it became possible to identify genes whose expression in 
the pharyngeal arches was specific to the crest- derived 
cells47. In a second example, CRISPR–Cas9 barcoding 
using the ScarTrace system revealed that the zebrafish 
fin harbours resident immune cells (RICs) with an onto-
geny distinct from that of other immune cells86. These 
experiments could reveal precisely which cells were RICs 
amongst all immune cells in the fin, and they defined 
Epcam as a putative marker for this population. In yet 
a third example, Chan et al.85 used cumulative Cas9 
editing to study the ontogeny of endodermal tissues in 
the mouse embryo. These tissues are known to com-
prise a mixture of visceral and epiblast- derived cells117.  
Chan et al. could resolve between the visceral and epiblast 
lineages, despite their converging onto similar endo-
dermal gene expression programs. The researchers could 
then identify differences between the two endodermal 
lineages in the expression of two genes: Rhox5 and 
Trap1a. The ubiquity of converging trajectories has been  
further supported by complementary observations in  
the mouse extra- embryonic endoderm35,51, in C. elegans  
embryogenesis40 and in the parallel progres sion of 
excitatory and inhibitory neuronal states in the mouse 
central nervous system50. Collectively, these findings 
highlight a recurring phenomenon that these methods 
are particularly suited to address: they resolve different 
clonal origins among identical or nearly identical cell 
states (Fig. 2c–e), and they can reveal features of a cellular 
transcriptome (however subtle) that correlate with lin-
eage behaviour and could be used to label or isolate cell  
subsets for further study.

Clonal resampling on a state manifold
Recently, several groups have utilized an alternative 
approach for linking detailed cell states across time. 
The approach relies on ‘clonal resampling’: experimen-
tally isolating part of a clone for single- cell transcrip-
tomic analysis recurrently, as the clone differentiates. 
When scaled to large numbers of cells, this method 
facilitates the construction of state manifolds on which 
the trajectories of individual clones may be revealed 
(Fig. 5Ac). This method requires both that cells be sampled 
over time without excessively disrupting the behaviour 
of the surviving cells and that cells divide symmetrically, 
such that all cells within a clone initially possess similar 
states. Due to these requirements, this method is best 

applied to either in vitro systems or regenerative sys-
tems in which cells or tissues may be serially removed 
or transplanted. Early realizations of this approach have 
been applied in culture, in which individual clones of 
related cells can be physically split, grown and sam-
pled independently. For example, Tian et al.118 recently 
applied this approach to analysing dendritic cell clones 
derived from single haematopoietic stem cells cultured 
and assayed in vitro. By physically splitting small clones 
of cells into separate culture wells, they were able to per-
form two distinct types of measurement on the clonal 
‘sister’ cells: scRNA- seq at an early time point, to estab-
lish the transcriptional features of each clone before 
differentiation, and in vitro assays, to establish the abil-
ity of the same clone to generate three distinct types of 
differentiated dendritic cell population. This approach, 
which the researchers termed ‘SIS- seq’, was able to reveal 
rich transcriptional features of early progenitor cells that 
were predictive of the later fate outcomes.

More recent applications of this approach have relied 
on DNA barcoding, rather than physical isolation, to 
simultaneously track large numbers of cell clones. In an 
instructive example, Biddy et al.114 developed a method, 
‘CellTagging’, to trace the state of cells undergoing direct 
reprogramming from fibroblast to endoderm progen-
itors in vitro during serial rounds of passaging. The 
researchers made use of a lentiviral library to genetically 
barcode cells by integration of a constitutively expressed 
GFP- encoding gene with random barcodes engineered 
into its 3ʹ untranslated region sequence. During serial 
passaging, they applied additional rounds of lentiviral 
barcoding to mark successive lineage restriction events 
and simultaneously sampled subsets of the growing cul-
ture for scRNA- seq analysis. From this analysis, they 
identified that successful lineage conversion observed 
late in the reprogramming process correlated with a 
distinct expression profile of clonally related cells at 
an earlier time point. Such correlative analyses raise 
hypotheses for genes whose early expression influences 
future cell behaviours. In the study, Biddy et al. found 
that incorporating one such predictor gene, Mettl7a1, 
into the reprogramming procedure increased the effi-
ciency of generating endodermal progenitors. Crucially, 
in this study neither the initial, transient nor end state 
of the dynamics had to be resolved in advance, and no 
marker genes were required to label cells for lineage 
tracing. A similar logic was applied by Weinreb et al.84, 
who also used a lentiviral DNA- barcoding approach to 
demarcate fate boundaries in haematopoietic progenitor 
cell differentiation in order to link early biases in gene 
expression to later fate potential.

Clonal resampling thus offers a powerful approach to 
fully integrate state manifolds with lineage tracing and 
can be used to identify prospective fate markers. This 
approach has been most thoroughly applied in vitro, but 
it can also be used to interrogate in vivo systems that 
permit physical resampling, such as the haematopoietic 
system84 and the regenerative zebrafish fin86. A persisting 
challenge in studying in vivo systems in this way is the 
need to obtain sufficient statistical sampling of each 
clone of interest, which can be difficult when isolating 
and sequencing cells from large endogenous populations.

Cell ontogeny
The developmental history  
of a cell.

State convergence
A differentiation scenario in 
which cells with distinct origins 
converge onto the same end 
point on a state manifold.
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Computational tools for state–lineage mapping
Computational approaches to analyse combined lineage 
and state datasets are still in their infancy. They are likely 
to evolve considerably and to require steps that are sen-
sitive to the choice of experimental platform. As choices 
in data analysis could affect the conclusions drawn from 
such methods, we briefly review the key steps here.

The first step for DNA- barcoding pipelines is to 
assign a unique DNA barcode sequence to each cell 
clone. In doing so, pipelines must eliminate putative 
sequencing errors, remove cell doublets that could lead 
to two clonal barcodes appearing in one cell, and correct 
platform- specific artefacts. For the CRISPR- based and 
PolyLox methods, some barcodes can be formed with 
high probability, leading to frequent barcode homoplasy. 
Computational pipelines must therefore decide which 
barcodes are informative and which must be discarded 
from the analysis. Current methods are naive to recombi-
nation or error preferences of DNA- modifying enzymes; 
future methods could learn and incorporate editing 
biases to correct for observed barcode frequencies.

Computational pipelines then face decisions about 
how to reconstruct lineage phylogenies from large sets 
of clonal barcodes. In some cases, tree- building meth-
ods established for evolutionary phylogenetics have 
been applied directly to lineage reconstruction efforts; 
for example, GESTALT studies have utilized maxi-
mum parsimony98,101,119, whereas homing CRISPR and 
TracerSeq have utilized neighbour- joining methods47,100. 
However, previously established tree- building methods 
are not necessarily robust to the frequent detection 
errors encountered in single- cell measurements102. 
LINNAEUS102 and Chan et al.85 have therefore devel-
oped custom tree- building algorithms to minimize 
the influence of drop- outs and have also incorporated 
empirical likelihood estimates for each barcode in order 
to minimize the influence of barcode homoplasy on the 
final inferred tree topology. Inference of lineage rela-
tionships from DNA- barcoding data is an active area of 
research, with several additional groups now favouring 
maximum- likelihood approaches and ground- truth 
benchmarking of algorithm performance against 
empirical120–122 or simulated123 datasets.

At present, no universal computational tools exist 
for end- to- end lineage tree inference, starting from raw 
single- cell DNA barcode sequences. Given the wide 
diversity of DNA modification strategies, barcode lengths 
and barcode probability distributions, the development 
of a single universal tool might be unlikely. However, for 
CRISPR–Cas9 editing systems, in particular, community 
benchmarking efforts such as the DREAM challenge124 
are now providing opportunities to directly compare 
the performance of dozens to hundreds of independent 
algorithms. Standardization of metrics and input data 
types could further enable meta- approaches that draw 
results from the consensus of multiple different tools. 
Because all lineage- barcoding methods — including 
non- CRISPR–Cas9 methods — face similar downstream 
analysis challenges (for example, tree building, the ana-
lysis of large tree ensembles and increasing dataset sizes), 
the field as a whole will undoubtedly benefit from these 
and other computational innovations.

In addition to tree construction, there are also other —  
perhaps simpler — data representations that can reveal 
intuitive lineage–state relationships. Rather than focusing  
on the structure of individual lineage trees, one can ins-
tead integrate information from multiple trees so as to 
infer the average lineage relationships between cell states. 
For many organisms and tissues, such approaches may 
be crucial, because individual lineage trees can be highly 
variable. Various metrics can be used for establishing lin-
eage coupling between states, including the covariance 
of barcode abundances between states or the ratio of the 
barcodes observed to be shared between two transcrip-
tional states to that expected after data randomization47,84 
(Fig. 5B). Maximum- likelihood frameworks can similarly 
be leveraged so as to combine individual lineage trees 
into ‘consensus’ lineage trees by integrating gene expres-
sion and lineage data122. This approach permits the inte-
gration of information across biological specimens, to 
separate core systematic trends from chance relationships 
that occur in just a single lineage tree.

Pitfalls in lineage barcoding on a state manifold
New biological assays can generate unforeseen artefacts 
that often become appreciated only after technologies 
mature. In the case of sequencing- based lineage tracing, 
the details of an experimental design can profoundly 
affect the relationships encoded in sequencing data.  
In Fig. 5 we have detailed two parameters that can strongly  
influence the observed clonal overlaps between states. 
These include the effects of the timing of barcode induc-
tion (Fig. 5B–e) and of changes in endogenous cell divi-
sion rates (Fig. 5F,g). Altering these parameters can lead 
to strong differences in apparent lineage structure by 
affecting both the presence and size — that is, the detect-
ability — of the marked clones. Other barcode detection 
errors, including both type I and type II errors (Fig. 3C), 
can similarly interfere with lineage reconstruction 
efforts. Although the negative effects of detection errors 
can be minimized by means of certain tree reconstruc-
tion algorithms (for example, maximum parsimony), 
the frequency of such errors for a particular method 
should be quantified, and minimized wherever possi-
ble. Good experimental practices should further ensure 
that biological conclusions are robust to such errors, 
including through performing adequate biological/ 
technical replicates and the use of multiple data analysis 
strategies.

Emerging concepts
State trajectories and lineage codify two distinctive yet 
complementary aspects of a cell’s developmental his-
tory, and each type of analysis can provide insights into 
ontogeny and gene regulation. In this Review we have 
outlined some important limitations of state manifolds, 
and we have described the motivation and tools for inte-
grating bona fide lineage measurements with single- cell 
omics. From the early application of these methods, we 
propose to highlight three emerging concepts: first, state 
manifolds as models; second, the modes of coupling of 
cell state bifurcation with cell division; and third, the 
validity of trees as descriptions of cell differentiation 
hierarchies.
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State manifolds as models
In this Review we have raised the contradictions that 
can appear between lineage and state representations 
(Fig. 2) and discussed how clonal information could 
be used to clarify such developmental relationships. 
These contradictions demonstrate that representations 

of state manifolds are not infallible — rather, they are 
data- driven models that follow from particular sets of 
assumptions and data- processing criteria. Currently, 
most state manifolds are constructed in an unbiased 
fashion from the most prominent sources of covariation 
in the original state measurement. Under this practice, 
the defining features of an scRNA- seq manifold will 
reflect robust, variable transcriptional signatures and 
thus are not guaranteed to emphasize cell fate decisions, 
which might correlate with small sets of regulatory genes 
expressed at low levels at the time that fate restrictions 
occur. State manifolds have until now been constructed 
without incorporating information from clonal data. 
However, state and lineage relationships need not remain 
in conflict: once information on lineage is established, 
it can be used to improve our methods for representing 
state manifolds. An immediate and simple use of line-
age information, for example, is in identifying molecular 
markers of lineage- biased progenitor cell states. Indeed, 
novel fate markers have been inferred both from com-
bined lineage and state phylogenetic experiments85 and 
from clonal- resampling studies84,114. Lineage information 
could also be used to train algorithms in the construc-
tion of state manifolds in a way that avoids errors such 
as those in Fig. 2. Such actions demand a conceptual shift 
towards treating state manifolds as models of a particular 
set of high- dimensional gene expression features, rather 
than as absolute or universal references on which to 
overlay cell differentiation trajectories.

Variability of individual lineage trees
Both state manifolds and mitotic lineage trees can 
define hierarchies. What is the nature of the relation-
ship between these two hierarchies? Drawing on les-
sons from imaging- based clonal analysis125, we propose 
two potential relationships: one of mitotic coupling, and 
another of population coupling. Mitotic coupling will 
occur in cases in which a branch- point identified on the 
cell state manifold closely corresponds to a cell division 
event (Fig. 6a, left). Determinate lineage trees of ascid-
ians87 and C. elegans88 stand as instructive examples. 
Population coupling, by contrast, will occur in cases in 
which the clonal and division histories do not influence 
the progression of any individual cell along the manifold 
or its fate choice. Instead, cell behaviours are indetermi-
nate and can be described by a set of transition proba-
bilities for moving down a particular trajectory (Fig. 6a, 
right). Accordingly, population coupling can lead to 
highly variable lineage trees that resemble those from 
a stochastic branching process and that will not be pre-
cisely reproducible within or between organisms (Fig. 6b, 
right). In such cases, efforts towards high- resolution 
reconstruction of fate hierarchies may fail to produce a 
single representative lineage tree of development, but the 
distribution of state–lineage couplings across multiple 
observed lineage trees should nonetheless prove highly 
informative (Fig. 6c).

Is development a tree?
What is the structure of a differentiation hierarchy? 
Answers to this question depend first on whether one 
is considering a state manifold or a mitotic lineage. 
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Fig. 6 | Developmental paradigms that shape state–lineage relationships. a | State 
manifold diagrams depicting the timing and fates of mitotic daughter cells. In cases of 
mitotic coupling (left), cells divide asymmetrically and give rise to distinct daughter states. 
In cases of population coupling (right), the average flux of cells down branches of the state 
manifold is maintained, but the fates of individual daughter cells are largely unpredictable.  
b | Examples of observable lineage trees that result from mitotic or population coupling. 
Mitotic coupling (left) leads to invariant, determinant lineage trees. Population coupling 
(right) permits a large number of observable lineage tree possibilities (six shown).  
c | Consensus relationships derived from a large number of individual tree observations. 
Despite the varied possibilities for the individual lineage trees in part b, the lineage rela-
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In the absence of cell fusion, lineages can generally  
be treated as bifurcating trees, with each branch- point 
representing a mitotic event. State manifolds can be 
tree- like but, depending on the biology of the system, 
they need not be. State manifolds therefore represent 
an opportunity to discover the structure (that is, the 
topology) of a cell differentiation process. When state 
manifolds are integrated with lineage measurements, 
one has an opportunity to independently reject or con-
firm specific hypotheses regarding these structures. As 
we described above, several recent studies have shown 
evidence for state convergence, in which two or more 
distinct fate trajectories converge onto the same final 
position on a state manifold. This end point state thus 
comprises cells of mixed origins, which may or may 
not retain distinct functions or potentials. We reviewed 
examples of state convergence among immune cells86, 
neural crest lineages47 and endodermal populations35,85. 
The reverse scenario (state divergence) has also been 
observed, in which mitotic sister cells (highly related 
in lineage) rapidly adopt discontinuous states40. State 
divergence can occur as a result of asymmetric cell 
division, particularly in cases in which partitioned 
cytoplasmic components are delivered to only one of 
the two mitotic daughter cells. Such cases may pro-
duce state transitions that lack intermediate states and 
that thus would not appear as a bifurcation event on a 
state manifold, at any sampling depth. Both of these 
scenarios — convergence and divergence — will cause 
a state manifold to depart from a strict tree structure 
and can result from well- described biological scenar-
ios. Mapping novel examples of such scenarios from 

single- cell datasets will therefore require integrated 
state and lineage measurements.

Conclusions
With the emergence of genome- scale single- cell analyses, 
representations of differentiation dynamics have shifted 
in the span of a few years from cartoons of discrete state 
transitions to data- driven views of dynamic state mani-
folds. Such representations provide not just predictions 
for the differentiation dynamics of thousands of genes 
but also hypotheses for the structure of differentiation 
hierarchies, including novel transitional and terminal 
cell states, interactions with cell cycle and the appear-
ance of convergent differentiation that takes the form of 
‘loops’ between cell states. In this Review we described 
the errors and ambiguities that can arise in inferring 
dynamics directly from single- cell state measurements, 
and we argued that the integration of lineage- barcoding 
data can improve state manifold representations by 
facilitating a faithful reconstruction of dynamics. Such 
integrative measurements can identify prospective fate 
markers, localize fate boundaries on state manifolds, 
allow the inference of tree- like and non- tree- like dif-
ferentiation hierarchies, and should allow for resolving 
consensus fate relationships even when the individual 
lineage trees are highly variable. We thus anticipate that 
integrated measurements of cell state and lineage will 
greatly clarify the key events in cellular differentiation 
and become an important tool in the arsenal of stem cell, 
tissue and developmental biologists.
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An integrated encyclopedia of DNA
elements in the human genome
The ENCODE Project Consortium*

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is
unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription,
transcription factor association, chromatin structure and histone modification. These data enabled us to assign
biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory elements are physically associated with one another and with expressed genes,
providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical
correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation.
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an
expansive resource of functional annotations for biomedical research.

The human genome sequence provides the
underlying code for human biology. Despite
intensive study, especially in identifying
protein-coding genes, our understanding of the
genome is far from complete, particularly with
regard to non-coding RNAs, alternatively spliced transcripts and reg-
ulatory sequences. Systematic analyses of transcripts and regulatory
information are essential for the identification of genes and regulatory
regions, and are an important resource for the study of human biology
and disease. Such analyses can also provide comprehensive views of the
organization and variability of genes and regulatory information across
cellular contexts, species and individuals.

The Encyclopedia of DNA Elements (ENCODE) project aims to
delineate all functional elements encoded in the human genome1–3.
Operationally, we define a functional element as a discrete genome
segment that encodes a defined product (for example, protein or
non-coding RNA) or displays a reproducible biochemical signature
(for example, protein binding, or a specific chromatin structure).
Comparative genomic studies suggest that 3–8% of bases are under
purifying (negative) selection4–8 and therefore may be functional,
although other analyses have suggested much higher estimates9–11.
In a pilot phase covering 1% of the genome, the ENCODE project
annotated 60% of mammalian evolutionarily constrained bases, but
also identified many additional putative functional elements without
evidence of constraint2. The advent of more powerful DNA sequencing
technologies now enables whole-genome and more precise analyses
with a broad repertoire of functional assays.

Here we describe the production and initial analysis of 1,640 data
sets designed to annotate functional elements in the entire human
genome. We integrate results from diverse experiments within cell types,
related experiments involving 147 different cell types, and all ENCODE
data with other resources, such as candidate regions from genome-wide
association studies (GWAS) and evolutionarily constrained regions.
Together, these efforts reveal important features about the organization
and function of the human genome, summarized below.
. The vast majority (80.4%) of the human genome participates in at
least one biochemical RNA- and/or chromatin-associated event in at
least one cell type. Much of the genome lies close to a regulatory event:

95% of the genome lies within 8 kilobases (kb)
of a DNA–protein interaction (as assayed by
bound ChIP-seq motifs or DNase I footprints),
and 99% is within 1.7 kb of at least one of the
biochemical events measured by ENCODE.

. Primate-specific elements as well as elements without detectable
mammalian constraint show, in aggregate, evidence of negative selec-
tion; thus, some of them are expected to be functional.
. Classifying the genome into seven chromatin states indicates an initial
set of 399,124 regions with enhancer-like features and 70,292 regions
with promoter-like features, as well as hundreds of thousands of qui-
escent regions. High-resolution analyses further subdivide the genome
into thousands of narrow states with distinct functional properties.
. It is possible to correlate quantitatively RNA sequence production
and processing with both chromatin marks and transcription factor
binding at promoters, indicating that promoter functionality can
explain most of the variation in RNA expression.
. Many non-coding variants in individual genome sequences lie in
ENCODE-annotated functional regions; this number is at least as
large as those that lie in protein-coding genes.
. Single nucleotide polymorphisms (SNPs) associated with disease by
GWAS are enriched within non-coding functional elements, with a
majority residing in or near ENCODE-defined regions that are out-
side of protein-coding genes. In many cases, the disease phenotypes
can be associated with a specific cell type or transcription factor.

ENCODE data production and initial analyses
Since 2007, ENCODE has developed methods and performed a large
number of sequence-based studies to map functional elements across
the human genome3. The elements mapped (and approaches used)
include RNA transcribed regions (RNA-seq, CAGE, RNA-PET and
manual annotation), protein-coding regions (mass spectrometry),
transcription-factor-binding sites (ChIP-seq and DNase-seq),
chromatin structure (DNase-seq, FAIRE-seq, histone ChIP-seq and
MNase-seq), and DNA methylation sites (RRBS assay) (Box 1 lists
methods and abbreviations; Supplementary Table 1, section P, details
production statistics)3. To compare and integrate results across the
different laboratories, data production efforts focused on two selected

*Lists of participants and their affiliations appear at the end of the paper.
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sets of cell lines, designated ‘tier 1’ and ‘tier 2’ (Box 1). To capture a
broader spectrum of biological diversity, selected assays were also
executed on a third tier comprising more than 100 cell types including
primary cells. All data and protocol descriptions are available at
http://www.encodeproject.org/, and a User’s Guide including details
of cell-type choice and limitations was published recently3.

Integration methodology
For consistency, data were generated and processed using standardized
guidelines, and for some assays, new quality-control measures were
designed (see refs 3, 12 and http://encodeproject.org/ENCODE/

dataStandards.html; A. Kundaje, personal communication). Uniform
data-processing methods were developed for each assay (see
Supplementary Information; A. Kundaje, personal communication),
and most assay results can be represented both as signal information
(a per-base estimate across the genome) and as discrete elements
(regions computationally identified as enriched for signal). Extensive
processing pipelines were developed to generate each representation
(M. M. Hoffman et al., manuscript in preparation and A. Kundaje,
personal communication). In addition, we developed the irreproducible
discovery rate (IDR)13 measure to provide a robust and conservative
estimate of the threshold where two ranked lists of results from bio-
logical replicates no longer agree (that is, are irreproducible), and we
applied this to defining sets of discrete elements. We identified, and
excluded from most analyses, regions yielding untrustworthy signals
likely to be artefactual (for example, multicopy regions). Together, these
regions comprise 0.39% of the genome (see Supplementary
Information). The poster accompanying this issue represents different
ENCODE-identified elements and their genome coverage.

Transcribed and protein-coding regions
We used manual and automated annotation to produce a compre-
hensive catalogue of human protein-coding and non-coding RNAs as
well as pseudogenes, referred to as the GENCODE reference gene
set14,15 (Supplementary Table 1, section U). This includes 20,687
protein-coding genes (GENCODE annotation, v7) with, on average,
6.3 alternatively spliced transcripts (3.9 different protein-coding tran-
scripts) per locus. In total, GENCODE-annotated exons of protein-
coding genes cover 2.94% of the genome or 1.22% for protein-coding
exons. Protein-coding genes span 33.45% from the outermost start to
stop codons, or 39.54% from promoter to poly(A) site. Analysis of
mass spectrometry data from K562 and GM12878 cell lines yielded 57
confidently identified unique peptide sequences in intergenic regions
relative to GENCODE annotation. Taken together with evidence of
pervasive genome transcription16, these data indicate that additional
protein-coding genes remain to be found.

In addition, we annotated 8,801 automatically derived small RNAs
and 9,640 manually curated long non-coding RNA (lncRNA) loci17.
Comparing lncRNAs to other ENCODE data indicates that lncRNAs
are generated through a pathway similar to that for protein-coding
genes17. The GENCODE project also annotated 11,224 pseudogenes,
of which 863 were transcribed and associated with active chromatin18.

RNA
We sequenced RNA16 from different cell lines and multiple subcellular
fractions to develop an extensive RNA expression catalogue. Using a
conservative threshold to identify regions of RNA activity, 62% of
genomic bases are reproducibly represented in sequenced long (.200
nucleotides) RNA molecules or GENCODE exons. Of these bases, only
5.5% are explained by GENCODE exons. Most transcribed bases are
within or overlapping annotated gene boundaries (that is, intronic), and
only 31% of bases in sequenced transcripts were intergenic16.

We used CAGE-seq (59 cap-targeted RNA isolation and sequencing)
to identify 62,403 transcription start sites (TSSs) at high confidence
(IDR of 0.01) in tier 1 and 2 cell types. Of these, 27,362 (44%) are within
100 base pairs (bp) of the 59 end of a GENCODE-annotated transcript
or previously reported full-length messenger RNA. The remaining
regions predominantly lie across exons and 39 untranslated regions
(UTRs), and some exhibit cell-type-restricted expression; these may
represent the start sites of novel, cell-type-specific transcripts.

Finally, we saw a significant proportion of coding and non-coding
transcripts processed into steady-state stable RNAs shorter than 200
nucleotides. These precursors include transfer RNA, microRNA,
small nuclear RNA and small nucleolar RNA (tRNA, miRNA,
snRNA and snoRNA, respectively) and the 59 termini of these pro-
cessed products align with the capped 59 end tags16.

BOX 1

ENCODE abbreviations
RNA-seq. Isolation of RNA sequences, often with different purification
techniques to isolate different fractions of RNA followed by high-
throughput sequencing.
CAGE. Captureof themethylated cap at the 59 end of RNA, followed by
high-throughput sequencing of a small tag adjacent to the
59 methylated caps. 59 methylated caps are formed at the initiation of
transcription, although other mechanisms also methylate 59 ends of
RNA.
RNA-PET. Simultaneous capture of RNAs with both a 59 methyl cap
and a poly(A) tail, which is indicative of a full-length RNA. This is then
followed by sequencing a short tag from each end by high-throughput
sequencing.
ChIP-seq. Chromatin immunoprecipitation followed by sequencing.
Specific regions of crosslinked chromatin, which is genomic DNA in
complexwith itsboundproteins,are selectedbyusinganantibody toa
specific epitope. The enriched sample is then subjected to high-
throughput sequencing to determine the regions in the genome most
often bound by the protein to which the antibody was directed. Most
often used are antibodies to any chromatin-associated epitope,
including transcription factors, chromatin binding proteins and
specific chemical modifications on histone proteins.
DNase-seq. Adaption of established regulatory sequence assay to
modern techniques. The DNase I enzyme will preferentially cut live
chromatin preparations at sites where nearby there are specific (non-
histone) proteins. The resulting cut points are then sequenced using
high-throughput sequencing to determine those sites ‘hypersensitive’
to DNase I, corresponding to open chromatin.
FAIRE-seq. Formaldehyde assisted isolation of regulatory elements.
FAIRE isolates nucleosome-depleted genomic regions by exploiting
the difference in crosslinking efficiency between nucleosomes (high)
and sequence-specific regulatory factors (low). FAIRE consists of
crosslinking, phenol extraction, and sequencing the DNA fragments in
the aqueous phase.
RRBS. Reduced representation bisulphite sequencing. Bisulphite
treatment of DNA sequence converts unmethylated cytosines to
uracil. To focus the assay and save costs, specific restriction enzymes
that cutaroundCpGdinucleotidescan reduce thegenome toaportion
specifically enriched in CpGs.This enrichedsample is thensequenced
to determine the methylation status of individual cytosines
quantitatively.
Tier 1. Tier 1 cell types were the highest-priority set and comprised
three widely studied cell lines: K562 erythroleukaemia cells;
GM12878, a B-lymphoblastoid cell line that is also part of the 1000
Genomesproject (http://1000genomes.org)55; and theH1embryonic
stem cell (H1 hESC) line.
Tier 2. The second-priority set of cell types in the ENCODE project
which included HeLa-S3 cervical carcinoma cells, HepG2
hepatoblastoma cells and primary (non-transformed) human
umbilical vein endothelial cells (HUVECs).
Tier 3. Any other ENCODE cell types not in tier 1 or tier 2.
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Protein bound regions
To identify regulatory regions directly, we mapped the binding loca-
tions of 119 different DNA-binding proteins and a number of RNA
polymerase components in 72 cell types using ChIP-seq (Table 1,
Supplementary Table 1, section N, and ref. 19); 87 (73%) were
sequence-specific transcription factors. Overall, 636,336 binding
regions covering 231 megabases (Mb; 8.1%) of the genome are
enriched for regions bound by DNA-binding proteins across all cell
types. We assessed each protein-binding site for enrichment of known
DNA-binding motifs and the presence of novel motifs. Overall, 86%
of the DNA segments occupied by sequence-specific transcription
factors contained a strong DNA-binding motif, and in most (55%)
cases the known motif was most enriched (P. Kheradpour and
M. Kellis, manuscript in preparation).

Protein-binding regions lacking high or moderate affinity cognate
recognition sites have 21% lower median scores by rank than regions
with recognition sequences (Wilcoxon rank sum P value ,10216).
Eighty-two per cent of the low-signal regions have high-affinity recog-
nition sequences for other factors. In addition, when ChIP-seq peaks
are ranked by their concordance with their known recognition
sequence, the median DNase I accessibility is twofold higher in the
bottom 20% of peaks than in the upper 80% (genome structure
correction (GSC)20 P value ,10216), consistent with previous
observations21–24. We speculate that low signal regions are either
lower-affinity sites21 or indirect transcription-factor target regions
associated through interactions with other factors (see also refs 25, 26).

We organized all the information associated with each transcrip-
tion factor—including the ChIP-seq peaks, discovered motifs and
associated histone modification patterns—in FactorBook (http://www.
factorbook.org; ref. 26), a public resource that will be updated as the
project proceeds.

DNase I hypersensitive sites and footprints
Chromatin accessibility characterized by DNase I hypersensitivity is
the hallmark of regulatory DNA regions27,28. We mapped 2.89 million
unique, non-overlapping DNase I hypersensitive sites (DHSs) by
DNase-seq in 125 cell types, the overwhelming majority of which lie
distal to TSSs29. We also mapped 4.8 million sites across 25 cell types

that displayed reduced nucleosomal crosslinking by FAIRE, many of
which coincide with DHSs. In addition, we used micrococcal nuclease
to map nucleosome occupancy in GM12878 and K562 cells30.

In tier 1 and tier 2 cell types, we identified a mean of 205,109 DHSs
per cell type (at false discovery rate (FDR) 1%), encompassing an
average of 1.0% of the genomic sequence in each cell type, and 3.9%
in aggregate. On average, 98.5% of the occupancy sites of transcription
factors mapped by ENCODE ChIP-seq (and, collectively, 94.4% of all
1.1 million transcription factor ChIP-seq peaks in K562 cells) lie within
accessible chromatin defined by DNase I hotspots29. However, a
small number of factors, most prominently heterochromatin-bound
repressive complexes (for example, the TRIM28–SETDB1–ZNF274
complex31,32 encoded by the TRIM28, SETDB1 and ZNF274 genes),
seem to occupy a significant fraction of nucleosomal sites.

Using genomic DNase I footprinting33,34 on 41 cell types we iden-
tified 8.4 million distinct DNase I footprints (FDR 1%)25. Our de novo
motif discovery on DNase I footprints recovered ,90% of known
transcription factor motifs, together with hundreds of novel evolutio-
narily conserved motifs, many displaying highly cell-selective occu-
pancy patterns similar to major developmental and tissue-specific
regulators.

Regions of histone modification
We assayed chromosomal locations for up to 12 histone modifications
and variants in 46 cell types, including a complete matrix of eight
modifications across tier 1 and tier 2. Because modification states
may span multiple nucleosomes, which themselves can vary in position
across cell populations, we used a continuous signal measure of histone
modifications in downstream analysis, rather than calling regions
(M. M. Hoffman et al., manuscript in preparation; see http://code.
google.com/p/align2rawsignal/). For the strongest, ‘peak-like’ histone
modifications, we used MACS35 to characterize enriched sites. Table 2
describes the different histone modifications, their peak characteristics,
and a summary of their known roles (reviewed in refs 36–39).

Our data show that global patterns of modification are highly vari-
able across cell types, in accordance with changes in transcriptional
activity. Consistent with previous studies40,41, we find that integration
of the different histone modification information can be used system-
atically to assign functional attributes to genomic regions (see below).

DNA methylation
Methylation of cytosine, usually at CpG dinucleotides, is involved in
epigenetic regulation of gene expression. Promoter methylation is
typically associated with repression, whereas genic methylation cor-
relates with transcriptional activity42. We used reduced representation
bisulphite sequencing (RRBS) to profile DNA methylation quantita-
tively for an average of 1.2 million CpGs in each of 82 cell lines and
tissues (8.6% of non-repetitive genomic CpGs), including CpGs in
intergenic regions, proximal promoters and intragenic regions (gene
bodies)43, although it should be noted that the RRBS method pref-
erentially targets CpG-rich islands. We found that 96% of CpGs
exhibited differential methylation in at least one cell type or tissue

Table 1 | Summary of transcription factor classes analysed in
ENCODE

Acronym Description Factors
analysed

ChromRem ATP-dependent chromatin complexes 5
DNARep DNA repair 3
HISase Histone acetylation, deacetylation or methylation

complexes
8

Other Cyclin kinase associated with transcription 1
Pol2 Pol II subunit 1 (2 forms)
Pol3 Pol III-associated 6
TFNS General Pol II-associated factor, not site-specific 8
TFSS Pol II transcription factor with sequence-specific DNA

binding
87

Table 2 | Summary of ENCODE histone modifications and variants
Histone modification

or variant
Signal

characteristics
Putative functions

H2A.Z Peak Histone protein variant (H2A.Z) associated with regulatory elements with dynamic chromatin
H3K4me1 Peak/region Mark of regulatory elements associatedwithenhancersand otherdistal elements,but alsoenricheddownstreamof transcription starts
H3K4me2 Peak Mark of regulatory elements associated with promoters and enhancers
H3K4me3 Peak Mark of regulatory elements primarily associated with promoters/transcription starts
H3K9ac Peak Mark of active regulatory elements with preference for promoters

H3K9me1 Region Preference for the 59 end of genes
H3K9me3 Peak/region Repressive mark associated with constitutive heterochromatin and repetitive elements
H3K27ac Peak Mark of active regulatory elements; may distinguish active enhancers and promoters from their inactive counterparts

H3K27me3 Region Repressive mark established by polycomb complex activity associated with repressive domains and silent developmental genes
H3K36me3 Region Elongation mark associated with transcribed portions of genes, with preference for 39 regions after intron 1
H3K79me2 Region Transcription-associated mark, with preference for 59 end of genes
H4K20me1 Region Preference for 59 end of genes

ARTICLE RESEARCH

6 S E P T E M B E R 2 0 1 2 | V O L 4 8 9 | N A T U R E | 5 9

Macmillan Publishers Limited. All rights reserved©2012

http://www.factorbook.org
http://www.factorbook.org
http://code.google.com/p/align2rawsignal
http://code.google.com/p/align2rawsignal


assayed (K. Varley et al., personal communication), and levels of
DNA methylation correlated with chromatin accessibility. The most
variably methylated CpGs are found more often in gene bodies and
intergenic regions, rather than in promoters and upstream regulatory
regions. In addition, we identified an unexpected correspondence
between unmethylated genic CpG islands and binding by P300, a
histone acetyltransferase linked to enhancer activity44.

Because RRBS is a sequence-based assay with single-base resolu-
tion, we were able to identify CpGs with allele-specific methylation
consistent with genomic imprinting, and determined that these loci
exhibit aberrant methylation in cancer cell lines (K. Varley et al.,
personal communication). Furthermore, we detected reproducible
cytosine methylation outside CpG dinucleotides in adult tissues45,
providing further support that this non-canonical methylation event
may have important roles in human biology (K. Varley et al., personal
communication).

Chromosome-interacting regions
Physical interaction between distinct chromosome regions that can be
separated by hundreds of kilobases is thought to be important in the
regulation of gene expression46. We used two complementary chro-
mosome conformation capture (3C)-based technologies to probe
these long-range physical interactions.

A 3C-carbon copy (5C) approach47,48 provided unbiased detection
of long-range interactions with TSSs in a targeted 1% of the genome
(the 44 ENCODE pilot regions) in four cell types (GM12878, K562,
HeLa-S3 and H1 hESC)49. We discovered hundreds of statistically
significant long-range interactions in each cell type after accounting
for chromatin polymer behaviour and experimental variation. Pairs
of interacting loci showed strong correlation between the gene
expression level of the TSS and the presence of specific functional
element classes such as enhancers. The average number of distal ele-
ments interacting with a TSS was 3.9, and the average number of TSSs
interacting with a distal element was 2.5, indicating a complex net-
work of interconnected chromatin. Such interwoven long-range
architecture was also uncovered genome-wide using chromatin inter-
action analysis with paired-end tag sequencing (ChIA-PET)50 applied
to identify interactions in chromatin enriched by RNA polymerase II
(Pol II) ChIP from five cell types51. In K562 cells, we identified 127,417
promoter-centred chromatin interactions using ChIA-PET, 98% of
which were intra-chromosomal. Whereas promoter regions of 2,324
genes were involved in ‘single-gene’ enhancer–promoter interactions,
those of 19,813 genes were involved in ‘multi-gene’ interaction com-
plexes spanning up to several megabases, including promoter–
promoter and enhancer–promoter interactions51.

These analyses portray a complex landscape of long-range gene–
element connectivity across ranges of hundreds of kilobases to several
megabases, including interactions among unrelated genes (Supplemen-
tary Fig. 1, section Y). Furthermore, in the 5C results, 50–60% of long-
range interactions occurred in only one of the four cell lines, indicative
of a high degree of tissue specificity for gene–element connectivity49.

Summary of ENCODE-identified elements
Accounting for all these elements, a surprisingly large amount of the
human genome, 80.4%, is covered by at least one ENCODE-identified
element (detailed in Supplementary Table 1, section Q). The broadest
element class represents the different RNA types, covering 62% of the
genome (although the majority is inside of introns or near genes).
Regions highly enriched for histone modifications form the next
largest class (56.1%). Excluding RNA elements and broad histone
elements, 44.2% of the genome is covered. Smaller proportions of
the genome are occupied by regions of open chromatin (15.2%) or
sites of transcription factor binding (8.1%), with 19.4% covered by at
least one DHS or transcription factor ChIP-seq peak across all cell
lines. Using our most conservative assessment, 8.5% of bases are
covered by either a transcription-factor-binding-site motif (4.6%)

or a DHS footprint (5.7%). This, however, is still about 4.5-fold higher
than the amount of protein-coding exons, and about twofold higher
than the estimated amount of pan-mammalian constraint.

Given that the ENCODE project did not assay all cell types, or all
transcription factors, and in particular has sampled few specialized or
developmentally restricted cell lineages, these proportions must be
underestimates of the total amount of functional bases. However,
many assays were performed on more than one cell type, allowing
assessment of the rate of discovery of new elements. For both DHSs
and CTCF-bound sites, the number of new elements initially increases
rapidly with a steep gradient for the saturation curve and then slows
with increasing number of cell types (Supplementary Figs 1 and 2,
section R). With the current data, at the flattest part of the saturation
curve each new cell type adds, on average, 9,500 DHS elements (across
106 cell types) and 500 CTCF-binding elements (across 49 cell types),
representing 0.45% of the total element number. We modelled
saturation for the DHSs and CTCF-binding sites using a Weibull
distribution (r2 . 0.999) and predict saturation at approximately
4.1 million (standard error (s.e.) 5 108,000) and 185,100 (s.e. 5 18,020)
sites, respectively, indicating that we have discovered around half of the
estimated total DHSs. These estimates represent a lower bound, but
reinforce the observation that there is more non-coding functional
DNA than either coding sequence or mammalian evolutionarily con-
strained bases.

The impact of selection on functional elements
From comparative genomic studies, at least 3–8% of bases are under
purifying (negative) selection4–11, indicating that these bases may
potentially be functional. We previously found that 60% of mammalian
evolutionarily constrained bases were annotated in the ENCODE pilot
project, but also observed that many functional elements lacked
evidence of constraint2, a conclusion substantiated by others52–54. The
diversity and genome-wide occurrence of functional elements now
identified provides an unprecedented opportunity to examine further
the forces of negative selection on human functional sequences.

We examined negative selection using two measures that highlight
different periods of selection in the human genome. The first measure,
inter-species, pan-mammalian constraint (GERP-based scores;
24 mammals8), addresses selection during mammalian evolution.
The second measure is intra-species constraint estimated from the
numbers of variants discovered in human populations using data from
the 1000 Genomes project55, and covers selection over human evolu-
tion. In Fig. 1, we plot both these measures of constraint for different
classes of identified functional elements, excluding features overlapping
exons and promoters that are known to be constrained. Each graph also
shows genomic background levels and measures of coding-gene con-
straint for comparison. Because we plot human population diversity on
an inverted scale, elements that are more constrained by negative selec-
tion will tend to lie in the upper and right-hand regions of the plot.

For DNase I elements (Fig. 1b) and bound motifs (Fig. 1c), most
sets of elements show enrichment in pan-mammalian constraint and
decreased human population diversity, although for some cell types
the DNase I sites do not seem overall to be subject to pan-mammalian
constraint. Bound transcription factor motifs have a natural control
from the set of transcription factor motifs with equal sequence poten-
tial for binding but without binding evidence from ChIP-seq experi-
ments—in all cases, the bound motifs show both more mammalian
constraint and higher suppression of human diversity.

Consistent with previous findings, we do not observe genome-wide
evidence for pan-mammalian selection of novel RNA sequences
(Fig. 1d). There are also a large number of elements without mammalian
constraint, between 17% and 90% for transcription-factor-binding
regions as well as DHSs and FAIRE regions. Previous studies could
not determine whether these sequences are either biochemically active,
but with little overall impact on the organism, or under lineage-
specific selection. By isolating sequences preferentially inserted into
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the primate lineage, which is only feasible given the genome-wide scale
of this data, we are able to examine this issue specifically. Most primate-
specific sequence is due to retrotransposon activity, but an appreciable
proportion is non-repetitive primate-specific sequence. Of 104,343,413
primate-specific bases (excluding repetitive elements), 67,769,372
(65%) are found within ENCODE-identified elements. Examination
of 227,688 variants segregating in these primate-specific regions
revealed that all classes of elements (RNA and regulatory) show
depressed derived allele frequencies, consistent with recent negative
selection occurring in at least some of these regions (Fig. 1e). An alterna-
tive approach examining sequences that are not clearly under pan-
mammalian constraint showed a similar result (L. Ward and
M. Kellis, manuscript submitted). This indicates that an appreciable
proportion of the unconstrained elements are lineage-specific elements
required for organismal function, consistent with long-standing views
of recent evolution56, and the remainder are probably ‘neutral’ elements2

that are not currently under selection but may still affect cellular or
larger scale phenotypes without an effect on fitness.

The binding patterns of transcription factors are not uniform, and
we can correlate both inter- and intra-species measures of negative
selection with the overall information content of motif positions. The
selection on some motif positions is as high as protein-coding exons
(Fig. 1f; L. Ward and M. Kellis, manuscript submitted). These
aggregate measures across motifs show that the binding preferences
found in the population of sites are also relevant to the per-site beha-
viour. By developing a per-site metric of population effect on bound
motifs, we found that highly constrained bound instances across
mammals are able to buffer the impact of individual variation57.

ENCODE data integration with known genomic features
Promoter-anchored integration
Many of the ENCODE assays directly or indirectly provide informa-
tion about the action of promoters. Focusing on the TSSs of protein-
coding transcripts, we investigated the relationships between different
ENCODE assays, in particular testing the hypothesis that RNA
expression (output) can be effectively predicted from patterns of
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Figure 1 | Impact of selection on ENCODE functional elements in
mammals and human populations. a, Levels of pan-mammalian constraint
(mean GERP score; 24 mammals8, x axis) compared to diversity, a measure of
negative selection in the human population (mean expected heterozygosity,
inverted scale, y axis) for ENCODE data sets. Each point is an average for a
single data set. The top-right corners have the strongest evolutionary constraint
and lowest diversity. Coding (C), UTR (U), genomic (G), intergenic (IG) and
intronic (IN) averages are shown as filled squares. In each case the vertical and
horizontal cross hairs show representative levels for the neutral expectation for
mammalian conservation and human population diversity, respectively. The
spread over all non-exonic ENCODE elements greater than 2.5 kb from TSSs is
shown. The inner dashed box indicates that parts of the plot have been
magnified for the surrounding outer panels, although the scales in the outer
plots provide the exact regions and dimensions magnified. The spread for DHS
sites (b) and RNA elements (d) is shown in the plots on the left. RNA elements

are either long novel intronic (dark green) or long intergenic (light green)
RNAs. The horizontal cross hairs are colour-coded to the relevant data set in
d. c, Spread of transcription factor motif instances either in regions bound by
the transcription factor (orange points) or in the corresponding unbound motif
matches in grey, with bound and unbound points connected with an arrow in
each case showing that bound sites are generally more constrained and less
diverse. e, Derived allele frequency spectrum for primate-specific elements,
with variations outside ENCODE elements in black and variations covered by
ENCODE elements in red. The increase in low-frequency alleles compared to
background is indicative of negative selection occurring in the set of variants
annotated by the ENCODE data. f, Aggregation of mammalian constraint
scores over the glucocorticoid receptor (GR) transcription factor motif in
bound sites, showing the expected correlation with the information content of
bases in the motif. An interactive version of this figure is available in the online
version of the paper.
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chromatin modification or transcription factor binding (input).
Consistent with previous reports58, we observe two relatively distinct
types of promoter: (1) broad, mainly (C1G)-rich, TATA-less promoters;
and (2) narrow, TATA-box-containing promoters. These promoters
have distinct patterns of histone modifications, and transcription-fac-
tor-binding sites are selectively enriched in each class (Supplementary
Fig. 1, section Z).

We developed predictive models to explore the interaction between
histone modifications and measures of transcription at promoters,
distinguishing between modifications known to be added as a con-
sequence of transcription (such as H3K36me3 and H3K79me2) and
other categories of histone marks59. In our analyses, the best models
had two components: an initial classification component (on/off) and a
second quantitative model component. Our models showed that
activating acetylation marks (H3K27ac and H3K9ac) are roughly
as informative as activating methylation marks (H3K4me3 and
H3K4me2) (Fig. 2a). Although repressive marks, such as H3K27me3

or H3K9me3, show negative correlation both individually and in the
model, removing these marks produces only a small reduction in
model performance. However, for a subset of promoters in each cell
line, repressive histone marks (H3K27me3 or H3K9me3) must be used
to predict their expression accurately. We also examined the interplay
between the H3K79me2 and H3K36me3 marks, both of which mark
gene bodies, probably reflecting recruitment of modification enzymes
by polymerase isoforms. As described previously, H3K79me2 occurs
preferentially at the 59 ends of gene bodies and H3K36me3 occurs
more 39, and our analyses support the previous model in which the
H3K79me2 to H3K36me3 transition occurs at the first 39 splice site60.

Few previous studies have attempted to build qualitative or quant-
itative models of transcription genome-wide from transcription
factor levels because of the paucity of documented transcription-
factor-binding regions and the lack of coordination around a single
cell line. We thus examined the predictive capacity of transcription-
factor-binding signals for the expression levels of promoters (Fig. 2b).
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Figure 2 | Modelling transcription levels from histone modification and
transcription-factor-binding patterns. a, b, Correlative models between
either histone modifications or transcription factors, respectively, and RNA
production as measured by CAGE tag density at TSSs in K562 cells. In each case
the scatter plot shows the output of the correlation models (x axis) compared to
observed values (y axis). The bar graphs show the most important histone

modifications (a) or transcription factors (b) in both the initial classification
phase (top bar graph) or the quantitative regression phase (bottom bar graph),
with larger values indicating increasing importance of the variable in the model.
Further analysis of other cell lines and RNA measurement types is reported
elsewhere59,79. AUC, area under curve; Gini, Gini coefficient; RMSE, root mean
square error.
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In contrast to the profiles of histone modifications, most transcription
factors show enriched binding signals in a narrow DNA region near
the TSS, with relatively higher binding signals in promoters with
higher CpG content. Most of this correlation could be recapitulated
by looking at the aggregate binding of transcription factors without
specific transcription factor terms. Together, these correlation models
indicate both that a limited set of chromatin marks are sufficient to
‘explain’ transcription and that a variety of transcription factors might
have broad roles in general transcription levels across many genes. It is
important to note that this is an inherently observational study of
correlation patterns, and is consistent with a variety of mechanistic
models with different causal links between the chromatin, transcrip-
tion factor and RNA assays. However, it does indicate that there is
enough information present at the promoter regions of genes to
explain most of the variation in RNA expression.

We developed predictive models similar to those used to model
transcriptional activity to explore the relationship between levels of
histone modification and inclusion of exons in alternately spliced
transcripts. Even accounting for expression level, H3K36me3 has a
positive contribution to exon inclusion, whereas H3K79me2 has a
negative contribution (H. Tilgner et al., manuscript in preparation).
By monitoring the RNA populations in the subcellular fractions of
K562 cells, we found that essentially all splicing is co-transcriptional61,
further supporting a link between chromatin structure and splicing.

Transcription-factor-binding site-anchored integration
Transcription-factor-binding sites provide a natural focus around
which to explore chromatin properties. Transcription factors are often
multifunctional and can bind a variety of genomic loci with different
combinations and patterns of chromatin marks and nucleosome organ-
ization. Hence, rather than averaging chromatin mark profiles across all
binding sites of a transcription factor, we developed a clustering pro-
cedure, termed the Clustered Aggregation Tool (CAGT), to identify
subsets of binding sites sharing similar but distinct patterns of chro-
matin mark signal magnitude, shape and hidden directionality30. For
example, the average profile of the repressive histone mark H3K27me3
over all 55,782 CTCF-binding sites in H1 hESCs shows poor signal
enrichment (Fig. 3a). However, after grouping profiles by signal
magnitude we found a subset of 9,840 (17.6%) CTCF-binding sites
that exhibit significant flanking H3K27me3 signal. Shape and orienta-
tion analysis further revealed that the predominant signal profile for
H3K27me3 around CTCF peak summits is asymmetric, consistent
with a boundary role for some CTCF sites between active and
polycomb-silenced domains. Further examples are provided in
Supplementary Figs 5 and 6 of section E. For TAF1, predominantly
found near TSSs, the asymmetric sites are orientated with the direction
of transcription. However, for distal sites, such as those bound by
GATA1 and CTCF, we also observed a high proportion of asymmetric
histone patterns, although independent of motif directionality. In fact,
all transcription-factor-binding data sets in all cell lines show
predominantly asymmetric patterns (asymmetry ratio .0.6) for all
chromatin marks but not for DNase I signal (Fig. 3b). This indicates
that most transcription-factor-bound chromatin events correlate with
structured, directional patterns of histone modifications, and that pro-
moter directionality is not the only source of orientation at these sites.

We also examined nucleosome occupancy relative to the symmetry
properties of chromatin marks around transcription-factor-binding
sites. Around TSSs, there is usually strong asymmetric nucleosome
occupancy, often accounting for most of the histone modification
signal (for instance, see Supplementary Fig. 4, section E). However,
away from TSSs, there is far less concordance. For example, CTCF-
binding sites typically show arrays of well-positioned nucleosomes on
either side of the peak summit (Supplementary Fig. 1, section E)62.
Where the flanking chromatin mark signal is high, the signals are
often asymmetric, indicating differential marking with histone
modifications (Supplementary Figs 2 and 3, section E). Thus, we

confirm on a genome-wide scale that transcription factors can form
barriers around which nucleosomes and histone modifications are
arranged in a variety of configurations62–65. This is explored in further
detail in refs 25, 26 and 30.

Transcription factor co-associations
Transcription-factor-binding regions are nonrandomly distributed
across the genome, with respect to both other features (for example,
promoters) and other transcription-factor-binding regions. Within the
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Figure 3 | Patterns and asymmetry of chromatin modification at
transcription-factor-binding sites. a, Results of clustered aggregation of
H3K27me3 modification signal around CTCF-binding sites (a multifunctional
protein involved with chromatin structure). The first three plots (left column)
show the signal behaviour of the histone modification over all sites (top) and
then split into the high and low signal components. The solid lines show the
mean signal distribution by relative position with the blue shaded area
delimiting the tenth and ninetieth percentile range. The high signal component
is then decomposed further into six different shape classes on the right (see ref.
30 for details). The shape decomposition process is strand aware. b, Summary
of shape asymmetry for DNase I, nucleosome and histone modification signals
by plotting an asymmetry ratio for each signal over all transcription-factor-
binding sites. All histone modifications measured in this study show
predominantly asymmetric patterns at transcription-factor-binding sites. An
interactive version of this figure is available in the online version of the paper.
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tier 1 and 2 cell lines, we found 3,307 pairs of statistically co-associated
factors (P ,1 3 10216, GSC) involving 114 out of a possible 117 factors
(97%) (Fig. 4a). These include expected associations, such as Jun and

Fos, and some less expected novel associations, such as TCF7L2 with
HNF4-a and FOXA2 (ref. 66; a full listing is given in Supplementary
Table 1, section F). When one considers promoter and intergenic

P
ro

m
o

to
r 

p
ro

x
im

a
l 
re

g
io

n
s

In
te

rg
e
n

ic
 r

e
g

io
n

s

A (K562) B (K562)

Confidence

Degree of co-association

(z-score)

High

Medium

Low
0 10 20 30 40 50 60 70 80 90 ≥100

(H1 hESC)

a

A

B

bWhole genome 

JUNB

JUND

JUN

FOSL1

J
U

N
B

J
U

N
D

J
U

N

F
O

S
L

1

J
U

N
B

J
U

N
D

J
U

N

F
O

S
L

1

JUNB

JUND

JUN

FOSL1

HDAC2

GABPA

CHD2

POLR2A

GTF2F1

MXI1

MYC

HDAC2

GABPA

CHD2

POLR2A

GTF2F1

MXI1

MYC

HDAC2

NANOG

EP300

SP1

HDAC2

NANOG

EP300

SP1

H
D

A
C

2

G
A

B
P

A

M
X

I1

M
Y

C

C
H

D
2

H
D

A
C

2

G
A

B
P

A

M
X

I1

M
Y

C

C
H

D
2

E
P

3
0

0

S
P

1

H
D

A
C

2

N
A

N
O

G

E
P

3
0

0

S
P

1

H
D

A
C

2

N
A

N
O

G

TAF1
TBP
YY1

ELF1
MAX
E2F4
E2F6
IRF1

EGR1
ZBTB7A

ETS1
SIN3A

CCNT2
HMGN3
HDAC2
GABPA

CHD2
POLR2A
GTF2F1

MXI1
MYC

THAP1
SP1
SP2

NRF1
REST
SIX5
SRF
SPI1

RAD21
SMC3
CTCF

CTCFL
ZNF263
BCLAF1

TAF7
RDBP

ZBTB33
BCL3
ATF3
USF2
USF1
NFE2

GATA1
GATA2

TAL1
EP300

SMARCA4
SMARCB1

SIRT6
JUNB
JUND

JUN
FOSL1

FOS
MAFK

CEBPB
HDAC8

SETDB1
TRIM28
NR2C2

ZNF274
STAT1
STAT2
BDP1

POLR3A
BRF1

GTF3C2
BRF2

T
A

F
1

Y
Y

1
T

B
P

E
2
F

4
E

2
F

6
E

L
F

1
M

A
X

P
O

L
R

2
A

H
M

G
N

3
Z

B
T

B
7
A

C
C

N
T

2
E

G
R

1
E

T
S

1
S

IN
3
A

H
D

A
C

2
G

A
B

P
A

M
X

I1
M

Y
C

C
H

D
2

IR
F

1
G

T
F

2
F

1
T

H
A

P
1

S
P

2
R

E
S

T
N

R
F

1
U

S
F

1
F

O
S

S
P

1
S

R
F

S
P

I1
S

IX
5

C
T

C
F

R
A

D
2
1

S
M

C
3

C
T

C
F

L
Z

N
F

2
6
3

B
C

L
A

F
1

T
A

F
7

R
D

B
P

Z
B

T
B

3
3

B
C

L
3

A
T

F
3

U
S

F
2

N
F

E
2

S
E

T
D

B
1

T
R

IM
2
8

Z
N

F
2
7
4

N
R

2
C

2
G

A
T
A

1
G

A
T
A

2
T
A

L
1

E
P

3
0
0

S
M

A
R

C
A

4
S

M
A

R
C

B
1

S
IR

T
6

J
U

N
B

J
U

N
D

J
U

N
F

O
S

L
1

M
A

F
K

C
E

B
P

B
H

D
A

C
8

S
T
A

T
1

S
T
A

T
2

B
D

P
1

P
O

L
R

3
A

B
R

F
1

G
T

F
3
C

2
B

R
F

2

Figure 4 | Co-association between transcription factors. a, Significant co-
associations of transcription factor pairs using the GSC statistic across the entire
genome in K562 cells. The colour strength represents the extent of association
(from red (strongest), orange, to yellow (weakest)), whereas the depth of colour
represents the fit to the GSC20 model (where white indicates that the statistical
model is not appropriate) as indicated by the key. Most transcription factors have
a nonrandom association to other transcription factors, and these associations are
dependent on the genomic context, meaning that once the genome is separated
into promoter proximal and distal regions, the overall levels of co-association

decrease, but more specific relationships are uncovered. b, Three classes of
behaviour are shown. The first column shows a set of associations for which
strength is independent of location in promoter and distal regions, whereas the
second column shows a set of transcription factors that have stronger associations
in promoter-proximal regions. Both of these examples are from data in K562 cells
and are highlighted on the genome-wide co-association matrix (a) by the labelled
boxes A and B, respectively. The third column shows a set of transcription factors
that show stronger association in distal regions (in the H1 hESC line). An
interactive version of this figure is available in the online version of the paper.

Table 3 | Summary of the combined state types
Label Description Details* Colour

CTCF CTCF-enriched element Sites of CTCF signal lacking histone modifications, often associated with open chromatin. Many
probably have a function in insulator assays, but because of the multifunctional nature of CTCF, we
are conservative in our description. Also enriched for the cohesin components RAD21 and SMC3;

CTCF is known to recruit the cohesin complex.

Turquoise

E Predicted enhancer Regions of open chromatin associated with H3K4me1 signal. Enriched for other enhancer-
associated marks, including transcription factors known to act at enhancers. In enhancer assays,

many of these (.50%) function as enhancers. A more conservative alternative would be cis-
regulatory regions. Enriched for sites for the proteins encoded by EP300, FOS, FOSL1, GATA2,
HDAC8, JUNB, JUND, NFE2, SMARCA4, SMARCB1, SIRT6 and TAL1 genes in K562 cells. Have

nuclear and whole-cell RNA signal, particularly poly(A)2 fraction.

Orange

PF Predicted promoter flanking region Regions that generally surround TSS segments (see below). Light red
R Predicted repressed or low-activity region This is a merged state that includes H3K27me3 polycomb-enriched regions, along with regions that

are silent in terms of observed signal for the input assays to the segmentations (low or no signal).
They may have other signals (for example, RNA, not in the segmentation input data). Enriched for
sites for the proteins encoded by REST and some other factors (for example, proteins encoded by

BRF2, CEBPB, MAFK, TRIM28, ZNF274 and SETDB1 genes in K562 cells).

Grey

TSS Predicted promoter region including TSS Found close to or overlapping GENCODE TSS sites. High precision/recall for TSSs. Enriched for
H3K4me3. Sites of open chromatin. Enriched for transcription factors known to act close to promoters

and polymerases Pol II and Pol III. Short RNAs are most enriched in these segments.

Bright red

T Predicted transcribed region Overlap gene bodies with H3K36me3 transcriptional elongation signal. Enriched for phosphorylated
form of Pol II signal (elongating polymerase) and poly(A)1 RNA, especially cytoplasmic.

Dark green

WE Predicted weak enhancer or open
chromatin cis-regulatory element

Similar to the E state, but weaker signals and weaker enrichments. Yellow

*Where specific enrichmentsor overlaps are identified, these are derived from analysis in GM12878and/or K562 cells where the data for comparison is richest. The colours indicated are used in Figs5 and7 and in
display of these tracks from the ENCODE data hub.
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Figure 5 | Integration of ENCODE data by genome-wide segmentation.
a, Illustrative region with the two segmentation methods (ChromHMM and
Segway) in a dense view and the combined segmentation expanded to show
each state in GM12878 cells, beneath a compressed view of the GENCODE
gene annotations. Note that at this level of zoom and genome browser
resolution, some segments appear to overlap although they do not.
Segmentation classes are named and coloured according to the scheme in
Table 3. Beneath the segmentations are shown each of the normalized signals
that were used as the input data for the segmentations. Open chromatin signals
from DNase-seq from the University of Washington group (UW DNase) or the
ENCODE open chromatin group (Openchrom DNase) and FAIRE assays are
shown in blue; signal from histone modification ChIP-seq in red; and
transcription factor ChIP-seq signal for Pol II and CTCF in green. The mauve

ChIP-seq control signal (input control) at the bottom was also included as an
input to the segmentation. b, Association of selected transcription factor (left)
and RNA (right) elements in the combined segmentation states (x axis)
expressed as an observed/expected ratio (obs./exp.) for each combination of
transcription factor or RNA element and segmentation class using the heat-
map scale shown in the key besides each heat map. c, Variability of states
between cell lines, showing the distribution of occurrences of the state in the six
cell lines at specific genome locations: from unique to one cell line to ubiquitous
in all six cell lines for five states (CTCF, E, T, TSS and R). d, Distribution of
methylation level at individual sites from RRBS analysis in GM12878 cells
across the different states, showing the expected hypomethylation at TSSs and
hypermethylation of genes bodies (T state) and repressed (R) regions.
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regions separately, this changes to 3,201 pairs (116 factors, 99%) for
promoters and 1,564 pairs (108 factors, 92%) for intergenic regions,
with some associations more specific to these genomic contexts (for
example, the cluster of HDAC2, GABPA, CHD2, GTF2F1, MXI1 and
MYC in promoter regions and SP1, EP300, HDAC2 and NANOG in
intergenic regions (Fig. 4b)). These general and context-dependent
associations lead to a network representation of the co-binding with
many interesting properties, explored in refs 19, 25 and 26. In addition,
we also identified a set of regions bound by multiple factors represent-
ing high occupancy of transcription factor (HOT) regions67.

Genome-wide integration
To identify functional regions genome-wide, we next integrated ele-
ments independent of genomic landmarks using either discriminative
training methods, where a subset of known elements of a particular class
were used to train a model that was then used to discover more instances
of this class, or using methods in which only data from ENCODE assays
were used without explicit knowledge of any annotation.

For discriminative training, we used a three-step process to predict
potential enhancers, described in Supplementary Information and
ref. 67. Two alternative discriminative models converged on a set of
,13,000 putative enhancers in K562 cells67. In the second approach,
two methodologically distinct unbiased approaches (see refs 40, 68
and M. M. Hoffman et al., manuscript in preparation) converged on a
concordant set of histone modification and chromatin-accessibility
patterns that can be used to segment the genome in each of the tier 1
and tier 2 cell lines, although the individual loci in each state in each
cell line are different. With the exception of RNA polymerase II and
CTCF, the addition of transcription factor data did not substantially
alter these patterns. At this stage, we deliberately excluded RNA and
methylation assays, reserving these data as a means to validate the
segmentations.

Our integration of the two segmentation methods (M. M. Hoffman
et al., manuscript in preparation) established a consensus set of seven
major classes of genome states, described in Table 3. The standard
view of active promoters, with a distinct core promoter region (TSS
and PF states), leading to active gene bodies (T, transcribed state), is
rediscovered in this model (Fig. 5a, b). There are three ‘active’ distal
states. We tentatively labelled two as enhancers (predicted enhancers,
E, and predicted weak enhancers, WE) due to their occurrence in
regions of open chromatin with high H3K4me1, although they differ
in the levels of marks such as H3K27ac, currently thought to
distinguish active from inactive enhancers. The other active state
(CTCF) has high CTCF binding and includes sequences that function
as insulators in a transfection assay. The remaining repressed state (R)
summarizes sequences split between different classes of actively
repressed or inactive, quiescent chromatin. We found that the
CTCF-binding-associated state is relatively invariant across cell types,
with individual regions frequently occupying the CTCF state across all
six cell types (Fig. 5c). Conversely, the E and T states have substantial
cell-specific behaviour, whereas the TSS state has a bimodal behaviour
with similar numbers of cell-invariant and cell-specific occurrences.
It is important to note that the consensus summary classes do not
capture all the detail discovered in the individual segmentations con-
taining more states.

The distribution of RNA species across segments is quite distinct,
indicating that underlying biological activities are captured in the
segmentation. Polyadenylated RNA is heavily enriched in gene
bodies. Around promoters, there are short RNA species previously
identified as promoter-associated short RNAs (Fig. 5b)16,69. Similarly,
DNA methylation shows marked distinctions between segments,
recapitulating the known biology of predominantly unmethylated
active promoters (TSS states) followed by methylated gene bodies42

(T state, Fig. 5d). The two enhancer-enriched states show distinct
patterns of DNA methylation, with the less active enhancer state
(by H3K27ac/H3K4me1 levels) showing higher methylation. These

states also have an excess of RNA elements without poly(A) tails and
methyl-cap RNA, as assayed by CAGE sequences, compared to
matched intergenic controls, indicating a specific transcriptional
mode associated with active enhancers70. Transcription factors also
showed distinct distributions across the segments (Fig. 5b). A striking
pattern is the concentration of transcription factors in the TSS-
associated state. The enhancers contain a different set of transcription
factors. For example, in K562 cells, the E state is enriched for binding
by the proteins encoded by the EP300, FOS, FOSL1, GATA2, HDAC8,
JUNB, JUND, NFE2, SMARCA4, SMARCB1, SIRT6 and TAL1 genes.
We tested a subset of these predicted enhancers in both mouse and
fish transgenic models (examples in Fig. 6), with over half of the
elements showing activity, often in the corresponding tissue type.

The segmentation provides a linear determination of functional
state across the genome, but not an association of particular distal
regions with genes. By using the variation of DNase I signal across cell
lines, 39% of E (enhancer associated) states could be linked to a
proposed regulated gene29 concordant with physical proximity
patterns determined by 5C49 or ChIA-PET.

To provide a fine-grained regional classification, we turned to a self
organizing map (SOM) to cluster genome segmentation regions based
on their assay signal characteristics (Fig. 7). The segmentation regions
were initially randomly assigned to a 1,350-state map in a two-
dimensional toroidal space (Fig. 7a). This map can be visualized as
a two-dimensional rectangular plane onto which the various signal
distributions can be plotted. For instance, the rectangle at the bottom
left of Fig. 7a shows the distribution of the genome in the initial
randomized map. The SOM was then trained using the twelve differ-
ent ChIP-seq and DNase-seq assays in the six cell types previously
analysed in the large-scale segmentations (that is, over 72-dimensional
space). After training, the SOM clustering was again visualized in two
dimensions, now showing the organized distribution of genome seg-
ments (lower right of panel, Fig. 7a). Individual data sets associated
with the genome segments in each SOM map unit (hexagonal cells)
can then be visualized in the same framework to learn how each
additional kind of data is distributed on the chromatin state map.
Figure 7b shows CAGE/TSS expression data overlaid on the randomly
initialized (left) and trained map (right) panels. In this way the trained
SOM highlighted cell-type-specific TSS clusters (bottom panels of
Fig. 7b), indicating that there are sets of tissue-specific TSSs that are
distinguished from each other by subtle combinations of ENCODE

ba

Figure 6 | Experimental characterization of segmentations. Randomly
sampled E state segments (see Table 3) from the K562 segmentation were
cloned for mouse- and fish-based transgenic enhancer assays. a, Representative
LacZ-stained transgenic embryonic day (E)11.5 mouse embryo obtained with
construct hs2065 (EN167, chr10: 46052882–46055670, GRCh37). Highly
reproducible staining in the blood vessels was observed in 9 out of 9 embryos
resulting from independent transgenic integration events. b, Representative
green fluorescent protein reporter transgenic medaka fish obtained from a
construct with a basal hsp70 promoter on meganuclease-based transfection.
Reproducible transgenic expression in the circulating nucleated blood cells and
the endothelial cell walls was seen in 81 out of 100 transgenic tests of this
construct.

RESEARCH ARTICLE

6 6 | N A T U R E | V O L 4 8 9 | 6 S E P T E M B E R 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012



chromatin data. Many of the ultra-fine-grained state classifications
revealed in the SOM are associated with specific gene ontology (GO)
terms (right panel of Fig. 7c). For instance, the left panel of Fig. 7c
identifies ten SOM map units enriched with genomic regions
associated with genes associated with the GO term ‘immune response’.
The central panel identifies a different set of map units enriched for the
GO term ‘sequence-specific transcription factor activity’. The two
map units most enriched for this GO term, indicated by the darkest
green colouring, contain genes with segments that are high in

H3K27me3 in H1 hESCs, but that differ in H3K27me3 levels in
HUVECs. Gene function analysis with the GO ontology tool
(GREAT71) reveals that the map unit with high H3K27me3 levels in
both cell types is enriched in transcription factor genes with known
neuronal functions, whereas the neighbouring map unit is enriched in
genes involved in body patterning. The genome browser shots at the
bottom of Fig. 7c pick out an example region for each of the two SOM
map units illustrating the difference in H3K27me3 signal. Overall, we
have 228 distinct GO terms associated with specific segments across
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Figure 7 | High-resolution segmentation of
ENCODE data by self-organizing maps (SOM).
a–c, The training of the SOM (a) and analysis of the
results (b, c) are shown. Initially we arbitrarily placed
genomic segments from the ChromHMM
segmentation on to the toroidal map surface,
although the SOM does not use the ChromHMM
state assignments (a). We then trained the map
using the signal of the 12 different ChIP-seq and
DNase-seq assays in the six cell types analysed. Each
unit of the SOM is represented here by a hexagonal
cell in a planar two-dimensional view of the toroidal
map. Curved arrows indicate that traversing the
edges of two dimensional view leads back to the
opposite edge. The resulting map can be overlaid
with any class of ENCODE or other data to view the
distribution of that data within this high-resolution
segmentation. In panel a the distributions of genome
bases across the untrained and trained map (left and
right, respectively) are shown using heat-map
colours for log10 values. b, The distribution of TSSs
from CAGE experiments of GENCODE annotation
on the planar representations of either the initial
random organization (left) or the final trained SOM
(right) using heat maps coloured according to the
accompanying scales. The bottom half of b expands
the different distributions in the SOM for all
expressed TSSs (left) or TSSs specifically expressed
in two example cell lines, H1 hESC (centre) and
HepG2 (right). c, The association of Gene Ontology
(GO) terms on the same representation of the same
trained SOM. We assigned genes that are within
20 kb of a genomic segment in a SOM unit to that
unit, and then associated this set of genes with GO
terms using a hypergeometric distribution after
correcting for multiple testing. Map units that are
significantly associated to GO terms are coloured
green, with increasing strength of colour reflecting
increasing numbers of genes significantly associated
with the GO terms for either immune response (left)
or sequence-specific transcription factor activity
(centre). In each case, specific SOM units show
association with these terms. The right-hand panel
shows the distribution on the same SOM of all
significantly associated GO terms, now colouring by
GO term count per SOM unit. For sequence-specific
transcription factor activity, two example genomic
regions are extracted at the bottom of panel c from
neighbouring SOM units. These are regions around
the DBX1 (from SOM unit 26,31, left panel) and
IRX6 (SOM unit 27,30, right panel) genes,
respectively, along with their H3K27me3 ChIP-seq
signal for each of the tier 1 and 2 cell types. For
DBX1, representative of a set of primarily neuronal
transcription factors associated with unit 26,31,
there is a repressive H3K27me3 signal in both H1
hESCs and HUVECs; for IRX6, representative of a
set of body patterning transcription factors
associated with SOM unit 27,30, the repressive mark
is restricted largely to the embryonic stem (ES) cell.
An interactive version of this figure is available in the
online version of the paper.
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one or more states (A. Mortazavi, personal communication), and can
assign over one-third of genes to a GO annotation solely on the basis of
its multicellular histone patterns. Thus, the SOM analysis provides a
fine-grained map of chromatin data across multiple cell types, which
can then be used to relate chromatin structure to other data types at
differing levels of resolution (for instance, the large cluster of units
containing any active TSS, its subclusters composed of units enriched
in TSSs active in only one cell type, or individual map units signifi-
cantly enriched for specific GO terms).

The classifications presented here are necessarily limited by the
assays and cell lines studied, and probably contain a number of
heterogeneous classes of elements. Nonetheless, robust classifications
can be made, allowing a systematic view of the human genome.

Insights into human genomic variation
We next explored the potential impact of sequence variation on
ENCODE functional elements. We examined allele-specific variation
using results from the GM12878 cells that are derived from an indi-
vidual (NA12878) sequenced in the 1000 Genomes project, along with
her parents. Because ENCODE assays are predominantly sequence-
based, the trio design allows each GM12878 data set to be divided by
the specific parental contributions at heterozygous sites, producing
aggregate haplotypic signals from multiple genomic sites. We
examined 193 ENCODE assays for allele-specific biases using
1,409,992 phased, heterozygous SNPs and 167,096 insertions/dele-
tions (indels) (Fig. 8). Alignment biases towards alleles present in
the reference genome sequence were avoided using a sequence
specifically tailored to the variants and haplotypes present in
NA12878 (a ‘personalized genome’)72. We found instances of pref-
erential binding towards each parental allele. For example, com-
parison of the results from the POLR2A, H3K79me2 and H3K27me3
assays in the region of NACC2 (Fig. 8a) shows a strong paternal bias for
H3K79me2 and POL2RA and a strong maternal bias for H3K27me3,
indicating differential activity for the maternal and paternal alleles.

Figure 8b shows the correlation of selected allele-specific signals
across the whole genome. For instance, we found a strong allelic
correlation between POL2RA and BCLAF1 binding, as well as nega-
tive correlation between H3K79me2 and H3K27me3, both at genes
(Fig. 8b, below the diagonal, bottom left) and chromosomal segments
(top right). Overall, we found that positive allelic correlations among
the 193 ENCODE assays are stronger and more frequent than nega-
tive correlations. This may be due to preferential capture of accessible
alleles and/or the specific histone modification and transcription
factor, assays used in the project.

Rare variants, individual genomes and somatic variants
We further investigated the potential functional effects of individual
variation in the context of ENCODE annotations. We divided
NA12878 variants into common and rare classes, and partitioned
these into those overlapping ENCODE annotation (Fig. 9a and
Supplementary Tables 1 and 2, section K). We also predicted potential
functional effects: for protein-coding genes, these are either non-
synonymous SNPs or variants likely to induce loss of function by
frame-shift, premature stop, or splice-site disruption; for other
regions, these are variants that overlap a transcription-factor-
binding site. We found similar numbers of potentially functional
variants affecting protein-coding genes or affecting other ENCODE
annotations, indicating that many functional variants within
individual genomes lie outside exons of protein-coding genes. A more
detailed analysis of regulatory variant annotation is described in
ref. 73.

To study further the potential effects of NA12878 genome variants
on transcription-factor-binding regions, we performed peak calling
using a constructed personal diploid genome sequence for NA12878
(ref. 72). We aligned ChIP-seq sequences from GM12878 separately
against the maternal and paternal haplotypes. As expected, a greater

fraction of reads were aligned than to the reference genome (see
Supplementary Information, Supplementary Fig. 1, section K). On
average, approximately 1% of transcription-factor-binding sites in
GM12878 cells are detected in a haplotype-specific fashion. For
instance, Fig. 9b shows a CTCF-binding site not detected using the
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Figure 8 | Allele-specific ENCODE elements. a, Representative allele-specific
information from GM12878 cells for selected assays around the first exon of the
NACC2 gene (genomic region Chr9: 138950000–138995000, GRCh37).
Transcription signal is shown in green, and the three sections show allele-
specific data for three data sets (POLR2A, H3K79me2 and H3K27me3 ChIP-
seq). In each case the purple signal is the processed signal for all sequence reads
for the assay, whereas the blue and red signals show sequence reads specifically
assigned to either the paternal or maternal copies of the genome, respectively.
The set of common SNPs from dbSNP, including the phased, heterozygous
SNPs used to provide the assignment, are shown at the bottom of the panel.
NACC2 has a statistically significant paternal bias for POLR2A and the
transcription-associated mark H3K79me2, and has a significant maternal bias
for the repressive mark H3K27me3. b, Pair-wise correlations of allele-specific
signal within single genes (below the diagonal) or within individual
ChromHMM segments across the whole genome for selected DNase-seq and
histone modification and transcription factor ChIP-seq assays. The extent of
correlation is coloured according to the heat-map scale indicated from positive
correlation (red) through to anti-correlation (blue). An interactive version of
this figure is available in the online version of the paper.
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reference sequence that is only present on the paternal haplotype
due to a 1-bp deletion (see also Supplementary Fig. 2, section K).
As costs of DNA sequencing decrease further, optimized analysis of
ENCODE-type data should use the genome sequence of the indi-
vidual or cell being analysed when possible.

Most analyses of cancer genomes so far have focused on character-
izing somatic variants in protein-coding regions. We intersected four
available whole-genome cancer data sets with ENCODE annotations
(Fig. 9c and Supplementary Fig. 2, section L). Overall, somatic variation
is relatively depleted from ENCODE annotated regions, particularly for
elements specific to a cell type matching the putative tumour source (for
example, skin melanocytes for melanoma). Examining the mutational
spectrum of elements in introns for cases where a strand-specific
mutation assignment could be made reveals that there are mutational
spectrum differences between DHSs and unannotated regions (0.06
Fisher’s exact test, Supplementary Fig. 3, section L). The suppression
of somatic mutation is consistent with important functional roles of
these elements within tumour cells, highlighting a potential alternative
set of targets for examination in cancer.

Common variants associated with disease
In recent years, GWAS have greatly extended our knowledge of
genetic loci associated with human disease risk and other phenotypes.

The output of these studies is a series of SNPs (GWAS SNPs) corre-
lated with a phenotype, although not necessarily the functional
variants. Notably, 88% of associated SNPs are either intronic or
intergenic74. We examined 4,860 SNP–phenotype associations for
4,492 SNPs curated in the National Human Genome Research
Institute (NHGRI) GWAS catalogue74. We found that 12% of these
SNPs overlap transcription-factor-occupied regions whereas 34% over-
lap DHSs (Fig. 10a). Both figures reflect significant enrichments relative
to the overall proportions of 1000 Genomes project SNPs (about 6% and
23%, respectively). Even after accounting for biases introduced by selec-
tion of SNPs for the standard genotyping arrays, GWAS SNPs show
consistently higher overlap with ENCODE annotations (Fig. 10a, see
Supplementary Information). Furthermore, after partitioning the
genome by density of different classes of functional elements, GWAS
SNPs were consistently enriched beyond all the genotyping SNPs in
function-rich partitions, and depleted in function-poor partitions (see
Supplementary Fig. 1, section M). GWAS SNPs are particularly
enriched in the segmentation classes associated with enhancers and
TSSs across several cell types (see Supplementary Fig. 2, section M).

Examining the SOM of integrated ENCODE annotations (see
above), we found 19 SOM map units showing significant enrichment
for GWAS SNPs, including many SOM units previously associated
with specific gene functions, such as the immune response regions.
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Figure 9 | Examining ENCODE elements on a per individual basis in the
normal and cancer genome. a, Breakdown of variants in a single genome
(NA12878) by both frequency (common or rare (that is, variants not present in
the low-coverage sequencing of 179 individuals in the pilot 1 European panel of
the 1000 Genomes project55)) and by ENCODE annotation, including protein-
coding gene and non-coding elements (GENCODE annotations for protein-
coding genes, pseudogenes and other ncRNAs, as well as transcription-factor-
binding sites from ChIP-seq data sets, excluding broad annotations such as
histone modifications, segmentations and RNA-seq). Annotation status is
further subdivided by predicted functional effect, being non-synonymous and
missense mutations for protein-coding regions and variants overlapping bound

transcription factor motifs for non-coding element annotations. A substantial
proportion of variants are annotated as having predicted functional effects in
the non-coding category. b, One of several relatively rare occurrences, where
alignment to an individual genome sequence (paternal and maternal panels)
shows a different readout from the reference genome. In this case, a paternal-
haplotype-specific CTCF peak is identified. c, Relative level of somatic variants
from a whole-genome melanoma sample that occur in DHSs unique to
different cell lines. The coloured bars show cases that are significantly enriched
or suppressed in somatic mutations. Details of ENCODE cell types can be
found at http://encodeproject.org/ENCODE/cellTypes.html. An interactive
version of this figure is available in the online version of the paper.
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Thus, an appreciable proportion of SNPs identified in initial GWAS
scans are either functional or lie within the length of an ENCODE
annotation (,500 bp on average) and represent plausible candidates
for the functional variant. Expanding the set of feasible functional
SNPs to those in reasonable linkage disequilibrium, up to 71% of
GWAS SNPs have a potential causative SNP overlapping a DNase I
site, and 31% of loci have a candidate SNP that overlaps a binding site
occupied by a transcription factor (see also refs 73, 75).

The GWAS catalogue provides a rich functional categorization
from the precise phenotypes being studied. These phenotypic cate-
gorizations are nonrandomly associated with ENCODE annotations
and there is marked correspondence between the phenotype and the
identity of the cell type or transcription factor used in the ENCODE
assay (Fig. 10b). For example, five SNPs associated with Crohn’s
disease overlap GATA2-binding sites (P value 0.003 by random
permutation or 0.001 by an empirical approach comparing to
the GWAS-matched SNPs; see Supplementary Information), and
fourteen are located in DHSs found in immunologically relevant cell

types. A notable example is a gene desert on chromosome 5p13.1
containing eight SNPs associated with inflammatory diseases.
Several are close to or within DHSs in T-helper type 1 (TH1) and
TH2 cells as well as peaks of binding by transcription factors in
HUVECs (Fig. 10c). The latter cell line is not immunological, but
factor occupancy detected there could be a proxy for binding of a
more relevant factor, such as GATA3, in T cells. Genetic variants in
this region also affect expression levels of PTGER4 (ref. 76), encoding
the prostaglandin receptor EP4. Thus, the ENCODE data reinforce
the hypothesis that genetic variants in 5p13.1 modulate the expression
of flanking genes, and furthermore provide the specific hypothesis
that the variants affect occupancy of a GATA factor in an allele-
specific manner, thereby influencing susceptibility to Crohn’s disease.

Nonrandom association of phenotypes with ENCODE cell types
strengthens the argument that at least some of the GWAS lead SNPs
are functional or extremely close to functional variants. Each of the
associations between a lead SNP and an ENCODE annotation
remains a credible hypothesis of a particular functional element
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Figure 10 | Comparison of genome-wide-association-study-identified loci
with ENCODE data. a, Overlap of lead SNPs in the NHGRI GWAS SNP
catalogue (June 2011) with DHSs (left) or transcription-factor-binding sites
(right) as red bars compared with various control SNP sets in blue. The control
SNP sets are (from left to right): SNPs on the Illumina 2.5M chip as an example
of a widely used GWAS SNP typing panel; SNPs from the 1000 Genomes
project; SNPs extracted from 24 personal genomes (see personal genome
variants track at http://main.genome-browser.bx.psu.edu (ref. 80)), all shown
as blue bars. In addition, a further control used 1,000 randomizations from the
genotyping SNP panel, matching the SNPs with each NHGRI catalogue SNP
for allele frequency and distance to the nearest TSS (light blue bars with bounds
at 1.5 times the interquartile range). For both DHSs and transcription-factor-
binding regions, a larger proportion of overlaps with GWAS-implicated SNPs
is found compared to any of the controls sets. b, Aggregate overlap of

phenotypes to selected transcription-factor-binding sites (left matrix) or DHSs
in selected cell lines (right matrix), with a count of overlaps between the
phenotype and the cell line/factor. Values in blue squares pass an empirical
P-value threshold #0.01 (based on the same analysis of overlaps between
randomly chosen, GWAS-matched SNPs and these epigenetic features) and
have at least a count of three overlaps. The P value for the total number of
phenotype–transcription factor associations is ,0.001. c, Several SNPs
associated with Crohn’s disease and other inflammatory diseases that reside in a
large gene desert on chromosome 5, along with some epigenetic features
indicative of function. The SNP (rs11742570) strongly associated to Crohn’s
disease overlaps a GATA2 transcription-factor-binding signal determined in
HUVECs. This region is also DNase I hypersensitive in HUVECs and T-helper
TH1 and TH2 cells. An interactive version of this figure is available in the online
version of the paper.
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class or cell type to explore with future experiments. Supplementary
Tables 1–3, section M, list all 14,885 pairwise associations across the
ENCODE annotations. The accompanying papers have a more
detailed examination of common variants with other regulatory
information19,25,29,73,75,77.

Concluding remarks
The unprecedented number of functional elements identified in this
study provides a valuable resource to the scientific community as well
as significantly enhances our understanding of the human genome.
Our analyses have revealed many novel aspects of gene expression and
regulation as well as the organization of such information, as illu-
strated by the accompanying papers (see http://www.encodeproject.
org/ENCODE/pubs.html for collected ENCODE publications).
However, there are still many specific details, particularly about the
mechanistic processes that generate these elements and how and
where they function, that require additional experiments to elucidate.

The large spread of coverage—from our highest resolution, most
conservative set of bases implicated in GENCODE protein-coding
gene exons (2.9%) or specific protein DNA binding (8.5%) to the
broadest, most general set of marks covering the genome (approxi-
mately 80%), with many gradations in between—presents a spectrum
of elements with different functional properties discovered by
ENCODE. A total of 99% of the known bases in the genome are within
1.7 kb of any ENCODE element, whereas 95% of bases are within 8 kb
of a bound transcription factor motif or DNase I footprint.
Interestingly, even using the most conservative estimates, the fraction
of bases likely to be involved in direct gene regulation, even though
incomplete, is significantly higher than that ascribed to protein-
coding exons (1.2%), raising the possibility that more information
in the human genome may be important for gene regulation than
for biochemical function. Many of the regulatory elements are not
constrained across mammalian evolution, which so far has been one
of the most reliable indications of an important biochemical event
for the organism. Thus, our data provide orthologous indicators for
suggesting possible functional elements.

Importantly, for the first time we have sufficient statistical power to
assess the impact of negative selection on primate-specific elements,
and all ENCODE classes display evidence of negative selection in these
unique-to-primate elements. Furthermore, even with our most conser-
vative estimate of functional elements (8.5% of putative DNA/protein
binding regions) and assuming that we have already sampled half of the
elements from our transcription factor and cell-type diversity, one
would estimate that at a minimum 20% (17% from protein binding
and 2.9% protein coding gene exons) of the genome participates in these
specific functions, with the likely figure significantly higher.

The broad coverage of ENCODE annotations enhances our under-
standing of common diseases with a genetic component, rare genetic
diseases, and cancer, as shown by our ability to link otherwise
anonymous associations to a functional element. ENCODE and
similar studies provide a first step towards interpreting the rest of
the genome—beyond protein-coding genes—thereby augmenting
common disease genetic studies with testable hypotheses. Such
information justifies performing whole-genome sequencing (rather
than exome only, 1.2% of the genome) on rare diseases and investi-
gating somatic variants in non-coding functional elements, for
instance, in cancer. Furthermore, as GWAS analyses typically asso-
ciate disease to SNPs in large regions, comparison to ENCODE non-
coding functional elements can help pinpoint putative causal variants
in addition to refinement of location by fine-mapping techniques78.
Combining ENCODE data with allele-specific information derived
from individual genome sequences provides specific insight on the
impact of a genetic variant. Indeed, we believe that a significant goal
would be to use functional data such as that derived from this project
to assign every genomic variant to its possible impact on human
phenotypes.

So far, ENCODE has sampled 119 of 1,800 known transcription fac-
tors and general components of the transcriptional machinery on a
limited number of cell types, and 13 of more than 60 currently known
histone or DNA modifications across 147 cell types. DNase I, FAIRE and
extensive RNA assays across subcellular fractionations have been under-
taken on many cell types, but overall these data reflect a minor fraction of
the potential functional information encoded in the human genome. An
important future goal will be to enlarge this data set to additional factors,
modifications and cell types, complementing the other related projects
in this area (for example, Roadmap Epigenomics Project, http://
www.roadmapepigenomics.org/, and International Human Epigenome
Consortium, http://www.ihec-epigenomes.org/). These projects will
constitute foundational resources for human genomics, allowing a
deeper interpretation of the organization of gene and regulatory
information and the mechanisms of regulation, and thereby provide
important insights into human health and disease. Co-published
ENCODE-related papers can be explored online via the Nature
ENCODE explorer (http://www.nature.com/ENCODE), a specially
designed visualization tool that allows users to access the linked papers
and investigate topics that are discussed in multiple papers via them-
atically organized threads.

METHODS SUMMARY
For full details of Methods, see Supplementary Information.
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Hubbard8; Stanford-Yale, Harvard, University of Massachusetts Medical School,
University of Southern California/UC Davis group (data production and analysis)
Stephen G. Landt12, Seth Frietze7, Alexej Abyzov21, Nick Addleman12, Roger P.
Alexander21, Raymond K. Auerbach21, Suganthi Balasubramanian21, Keith
Bettinger12, Nitin Bhardwaj21, Alan P. Boyle12, Alina R. Cao62, Philip Cayting12,
Alexandra Charos63, Yong Cheng12, Chao Cheng21, Catharine Eastman12, Ghia
Euskirchen12, Joseph D. Fleming64, Fabian Grubert12, Lukas Habegger21, Manoj
Hariharan12, Arif Harmanci21, Sushma Iyengar65, Victor X. Jin66, Konrad J.
Karczewski12, Maya Kasowski12, Phil Lacroute12, Hugo Lam12, Nathan
Lamarre-Vincent64, Jing Leng21, Jin Lian67, Marianne Lindahl-Allen64, Renqiang
Min21{, Benoit Miotto64, Hannah Monahan63, Zarmik Moqtaderi64, Xinmeng J. Mu21,
Henriette O’Geen62, Zhengqing Ouyang12, Dorrelyn Patacsil12, Baikang Pei21,
Debasish Raha63, Lucia Ramirez12, Brian Reed63, Joel Rozowsky21, Andrea Sboner58,
Minyi Shi12, Cristina Sisu21, Teri Slifer12, Heather Witt7, Linfeng Wu12, Xiaoqin Xu62,
Koon-Kiu Yan21, Xinqiong Yang12, Kevin Y. Yip21{, Zhengdong Zhang60, Kevin Struhl64,
Sherman M. Weissman67, Mark Gerstein21, Peggy J. Farnham7, Michael Snyder12;
University of Albany SUNY group (data production and analysis) Scott A.
Tenenbaum5, Luiz O. Penalva68, Francis Doyle5; University of Chicago, Stanford group
(data production and analysis) Subhradip Karmakar41, Stephen G. Landt12, Raj R.
Bhanvadia41, Alina Choudhury41, Marc Domanus41, Lijia Ma41, Jennifer Moran41,
Dorrelyn Patacsil12, Teri Slifer12, Alec Victorsen41, Xinqiong Yang12, Michael Snyder12,
Kevin P. White41; University of Heidelberg group (targeted experimental validation)
Thomas Auer69{, Lazaro Centanin69, Michael Eichenlaub69, Franziska Gruhl69,
Stephan Heermann69, Burkhard Hoeckendorf69, Daigo Inoue69, Tanja Kellner69,
Stephan Kirchmaier69, Claudia Mueller69, Robert Reinhardt69, Lea Schertel69,
Stephanie Schneider69, Rebecca Sinn69, Beate Wittbrodt69, Jochen Wittbrodt69;
University of Massachusetts Medical School Bioinformatics group (data production
and analysis) Zhiping Weng23, Troy W. Whitfield23, Jie Wang23, Patrick J. Collins3,
Shelley F. Aldred3, Nathan D. Trinklein3, E. Christopher Partridge14, Richard M.
Myers14; University of Massachusetts Medical School Genome Folding group (data
production and analysis) Job Dekker11, Gaurav Jain11, Bryan R. Lajoie11, Amartya
Sanyal11; University of Washington, University of Massachusetts Medical Center
group (data production and analysis) Gayathri Balasundaram70, Daniel L. Bates16,
Rachel Byron70, Theresa K. Canfield16, Morgan J. Diegel16, Douglas Dunn16, Abigail K.
Ebersol71, Tristan Frum71, Kavita Garg72, Erica Gist16, R. Scott Hansen71, Lisa
Boatman71, Eric Haugen16, Richard Humbert16, Gaurav Jain11, Audra K. Johnson16,
Ericka M. Johnson71, Tattyana V. Kutyavin16, Bryan R. Lajoie11, Kristen Lee16, Dimitra
Lotakis71, Matthew T. Maurano16, Shane J. Neph16, Fiedencio V. Neri16, Eric D.
Nguyen71, Hongzhu Qu16, Alex P. Reynolds16, Vaughn Roach16, Eric Rynes16, Peter
Sabo16, Minerva E. Sanchez71, Richard S. Sandstrom16, Amartya Sanyal11, Anthony O.
Shafer16, Andrew B. Stergachis16, Sean Thomas16, Robert E. Thurman16, Benjamin
Vernot16, Jeff Vierstra16, Shinny Vong16, Hao Wang16, Molly A. Weaver16, Yongqi Yan71,
Miaohua Zhang70, Joshua M. Akey16, Michael Bender70, Michael O. Dorschner73, Mark
Groudine70, Michael J. MacCoss16, Patrick Navas71, George Stamatoyannopoulos71,
Rajinder Kaul9, Job Dekker11, John A. Stamatoyannopoulos40; Data Analysis Center
(data analysis); Ian Dunham1, Kathryn Beal1, Alvis Brazma74, Paul Flicek1, Javier
Herrero1, NathanJohnson1, DamianKeefe1, Margus Lukk74{, NicholasM.Luscombe75,
Daniel Sobral1{, Juan M. Vaquerizas75, Steven P. Wilder1, Serafim Batzoglou2, Arend
Sidow76, Nadine Hussami2, Sofia Kyriazopoulou-Panagiotopoulou2, Max W.
Libbrecht2{, Marc A. Schaub2, Anshul Kundaje2{, Ross C. Hardison25,26, Webb Miller25,
Belinda Giardine25, Robert S. Harris25, Weisheng Wu25, Peter J. Bickel20, Balazs
Banfai20, Nathan P. Boley20, James B. Brown20, Haiyan Huang20, Qunhua Li20{, Jingyi
Jessica Li20, William Stafford Noble16,77, Jeffrey A. Bilmes78, Orion J. Buske16, Michael
M. Hoffman16, Avinash D. Sahu16{, Peter V. Kharchenko79, Peter J. Park79, Dannon
Baker80, James Taylor80, Zhiping Weng23, Sowmya Iyer27, Xianjun Dong23, Melissa
Greven23, Xinying Lin23, Jie Wang23, Hualin S. Xi32, Jiali Zhuang23, Mark Gerstein21,
Roger P. Alexander21, Suganthi Balasubramanian21, Chao Cheng21, Arif Harmanci21,
Lucas Lochovsky21, Renqiang Min21{, Xinmeng J. Mu21, Joel Rozowsky21, Koon-Kiu
Yan21, Kevin Y. Yip21{ & Ewan Birney1

1Vertebrate Genomics Group, European Bioinformatics Institute (EMBL-EBI), Wellcome
Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK. 2Department of
Computer Science, Stanford University, 318 Campus Drive, Stanford, California
94305-5428, USA. 3SwitchGear Genomics, 1455 Adams Drive Suite 1317, Menlo Park,
California 94025, USA. 4Functional Genomics, Cold Spring Harbor Laboratory, 1
Bungtown Road, Cold Spring Harbor, New York 11724, USA. 5College of Nanoscale
Sciences and Engineering, University ay Albany-SUNY, 257 Fuller Road, NFE 4405,
Albany, New York 12203, USA. 6Broad Institute of MIT and Harvard, 7 Cambridge Center,
Cambridge, Massachusetts 02142, USA. 7Biochemistry and Molecular Biology, USC/
Norris Comprehensive Cancer Center, 1450 Biggy Street, NRT 6503, Los Angeles,
California 90089, USA. 8Informatics, Wellcome Trust Sanger Institute, Wellcome Trust
Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. 9Department of Medicine,
Division of Medical Genetics, University of Washington, 3720 15th Avenue NE, Seattle,
Washington 98195, USA. 10College of Arts and Sciences, Boise State University, 1910
University Drive, Boise, Idaho 83725, USA. 11Program in Systems Biology, Program in
Gene Function and Expression, Department of Biochemistry and Molecular

ARTICLE RESEARCH

6 S E P T E M B E R 2 0 1 2 | V O L 4 8 9 | N A T U R E | 7 3

Macmillan Publishers Limited. All rights reserved©2012



Pharmacology, University of Massachusetts Medical School, 364 Plantation Street,
Worcester, Massachusetts 01605, USA. 12Department of Genetics, Stanford University,
300 Pasteur Drive, M-344, Stanford, California 94305-5120, USA. 13Center for Systems
and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular
Genetics and Microbiology, The University of Texas at Austin, 1 University Station A4800,
Austin, Texas 78712,USA. 14HudsonAlpha Institute for Biotechnology, 601Genome Way,
Huntsville, Alabama 35806, USA. 15Center for Biomolecular Science and Engineering,
University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA.
16Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle,
Washington 98195-5065, USA. 17Institute for Genome Sciences and Policy, Duke
University, 101 Science Drive, Durham, North Carolina 27708, USA. 18Department of
Biology, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer
Center, The University of North Carolina at Chapel Hill, 408 Fordham Hall, Chapel Hill,
North Carolina 27599-3280, USA. 19Computer Science and Artificial Intelligence
Laboratory, Broad Institute ofMIT andHarvard,Massachusetts Institute ofTechnology,32
Vassar Street, Cambridge, Massachusetts 02139, USA. 20Department of Statistics,
University of California, Berkeley, 367 Evans Hall, University of California, Berkeley,
Berkeley, California 94720, USA. 21Computational Biology and Bioinformatics Program,
Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA.
22Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor
Aiguader, 88, Barcelona 08003, Catalonia, Spain. 23Program in Bioinformatics and
Integrative Biology, University of Massachusetts Medical School, 364 Plantation Street,
Worcester, Massachusetts 01605, USA. 24Department of Genetics, The University of
NorthCarolinaatChapelHill, 120MasonFarmRoad,CB7240,ChapelHill, NorthCarolina
27599, USA. 25Center for Comparative Genomics and Bioinformatics, The Pennsylvania
State University, Wartik Laboratory, University Park, Pennsylvania 16802, USA.
26Department of Biochemistry and Molecular Biology, The Pennsylvania State University,
304 Wartik Laboratory, University Park, Pennsylvania 16802, USA. 27Program in
Bioinformatics, Boston University, 24 Cummington Street, Boston, Massachusetts
02215, USA. 28RIKEN Omics Science Center, RIKEN Yokohama Institute, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. 29Division of Biology,
California Institute of Technology, 156-291200 East California Boulevard, Pasadena,
California 91125, USA. 30Developmental and Cell Biology and Center for Complex
Biological Systems, University of California Irvine, 2218 Biological Sciences III, Irvine,
California 92697-2300, USA. 31Genome Technology Branch, National Human Genome
Research Institute, 5625 Fishers Lane, Bethesda, Maryland 20892, USA. 32Departmentof
Biochemistry and Molecular Pharmacology, Bioinformatics Core, University of
Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605,
USA. 33Howard Hughes Medical Institute and Department of Pathology, Massachusetts
General Hospital and Harvard Medical School, 185 Cambridge St CPZN 8400, Boston,
Massachusetts 02114, USA. 34National Human Genome Research Institute, National
Institutes of Health, 31 Center Drive, Building 31, Room 4B09, Bethesda, Maryland
20892-2152, USA. 35National Human Genome Research Institute, National Institutes of
Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA. 36Department of
Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham,
North Carolina 27710, USA. 37National Human Genome Research Institute, National
Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20892, USA. 38Affymetrix,
Inc., 3380 Central Expressway, Santa Clara, California 95051, USA. 39Departament de
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