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et al. demonstrate that DMAD depletion in
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epigenetically modulate a group of

neuronal genes by coordinating with the

Trithorax and Polycomb histone

modifiers.
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SUMMARY

A ten-eleven translocation (TET) ortholog exists as a
DNA N6-methyladenine (6mA) demethylase (DMAD)
in Drosophila. However, the molecular roles of 6mA
and DMAD remain unexplored. Through genome-
wide 6mA and transcriptome profiling in Drosophila
brains and neuronal cells, we found that 6mA may
epigenetically regulate a group of genes involved in
neurodevelopment and neuronal functions. Mecha-
nistically, DMAD interacts with the Trithorax-related
complex protein Wds to maintain active transcrip-
tion by dynamically demethylating intragenic 6mA.
Accumulation of 6mA by depleting DMAD coordi-
nates with Polycomb proteins and contributes to
transcriptional repression of these genes. Our find-
ings suggest that active 6mA demethylation by
DMAD plays essential roles in fly CNS by orches-
trating through added epigenetic mechanisms.

INTRODUCTION

Cytosine methylation at the 5-carbon position (5-methylcyto-

sine; 5mC) is a critical repressive epigenetic mark in themamma-

lian genome (Bird, 2002; Ma et al., 2010; Sch€ubeler, 2015; Spiva-

kov and Fisher, 2007). 5mC is generally viewed as a stable and

irreversible covalent modification to DNA; however, the fact

that ten-eleven translocation (TET) proteins can oxidize 5mC to

5-hydroxymethylcytosine (5hmC) and downstream derivatives

gives us a new perspective on the plasticity of 5mC-dependent

regulatory processes (Zhang et al., 2012). Cytosine modifica-

tions exist in bacteria, archaea, viruses, fungi, vertebrates, and

plants, but their presence and functions remain controversial in
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model organisms such as Drosophila (Lyko et al., 2000; Zhang

et al., 2015b).

Surprisingly, a TET ortholog with unknown function exists in

the fly genome (Dunwell et al., 2013). Recent studies demon-

strated that this Drosophila TET ortholog could demethylate

the DNA modification N6-methyladenine (6mA) in eukaryotes

(Zhang et al., 2015b), a prevalent DNA modification previously

only found in bacteria. 6mA was also recently found in algae,

worms, fungi, and mammals (Fu et al., 2015; Greer et al., 2015;

Koziol et al., 2016; Mondo et al., 2017; Wu et al., 2016; Zhang

et al., 2015b). Although this Drosophila TET ortholog was identi-

fied as a 6mA demethylase (DMAD) (Zhang et al., 2015b), the

precise molecular functions of 6mA and DMAD in the Drosophila

genome remain unknown.
RESULTS

DMAD Depletion in Drosophila Brain Results in Brain
Developmental Defects Accompanied by 6mA
Accumulation
Gene expression analyses across adult fly tissues show that

DMAD is highly expressed in fly brains (Figure 1A). Previous

work showed that DMAD is essential for development, since

only a small fraction of DMAD null mutants can survive through

the pupa stage, although these mutants die within 3 days post-

eclosion (Zhang et al., 2015b). To understand the role DMAD

plays in fly brain function, we generated multiple transgenic

lines, P{UASp-artimiR-DMAD}, which carry artificial microRNAs

(miRNAs) targeting DMAD. Consistent with DMAD null flies

(Zhang et al., 2015b), ubiquitous expression of artificial miRNAs

againstDMADusing the driverTubulin-GAL4 (DMAD-knockdown

[DMAD-KD]) resulted in developmental defects, asmost flies died

pre-eclosion (Figure S1A). The mRNA of DMAD was effectively

depleted in two DMAD-KD lines (Figure S1B). Neuronal-specific

DMAD-nKD under the control of the pan-neuronal driver
Inc.
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Figure 1. DMAD Demethylates Intragenic 6mA in Drosophila Brains

(A) qRT-PCR across fly tissues revealed high levels of DMAD expression in heads compared to other somatic tissues (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001.

Welch two sample t tests.

(B) High-resolution HPLC quantification of 5hmC and 6mA inDrosophila brains in the presence (Ctrl) and absence (DMAD null) of DMAD. 5hmC divided by total C

and 6mA divided by total A are shown as percentages per million (ppm) nucleotides. There was a �3.6-fold increase in 6mA with DMAD depletion, while 5hmC

was undetectable (n = 2).

(C) Dot blots using an antibody specific for 6mA confirmed the accumulation of 6mA in DMAD null fly brains.

(D) Confocal images of adult brains stained with anti-Elav (green), anti-DMAD (red), and anti-6mA (purple) in the background of elav-Gal4 alone (i and iii) or in

combination with UAS-DMAD miRNA (DMAD-nKD) (ii and iv). Enlarged views of areas indicated with arrows in iii and iv are shown below. Compared to control

brains (elav-Gal4 alone), DMAD-KD significantly increased nuclear 6mA levels in elav-expressing cells.

(E) Genomic annotation of gain-of-6mA regions in DMAD null fly brains revealed their intragenic characteristics. A heatmap shows the enrichment of each

genomic feature versus expected values.

(F) Plot of the global transcriptome in control and DMAD null fly brains obtained from RNA-seq (n = 2). Genes bearing gain-of-6mA regions in their gene bodies

were highlighted (upregulated genes are in pink, and downregulated genes are in purple).

(G) Gene Ontology analysis was performed on a subset of downregulated genes in (F) (purple). Log2 fold change, (KD: WT) < �0.5, was applied as the threshold

cutoff. Several biological processes involved in neurodevelopment and neuronal functions were enriched and are highlighted in red.

Data are presented as mean ± SEM.
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Elav-GAL4 resulted inmushroombody (MB) abnormalities inadult

flies.MBsareone of the best characterizedbrain regions involved

in learning and memory in flies and are composed of axon-like

fiber structures forming Fas-II-positive neuronal lobes (the a-,

b- and g-lobes) (Figure S1C; Heisenberg, 2003). In DMAD-nKD

flies, the b-lobes, which normally end at the midline cleft, often

crossed the midline. Also, DMAD-nKD flies also bore accessory

MB phenotypes, such as missing or misdirected a- and b-lobes,

as well as truncated or overbranched lobes (Figure S1C). These

data suggest that DMADmaycontribute to neuronalmorphology,

development, and function in the fly brain.

DMAD possesses enzymatic activity as a DNA 6mA demethy-

lase in fly ovaries (Zhang et al., 2015b). To confirm this enzymatic

activity in fly brains, we applied highly sensitive ultra-high-per-

formance liquid chromatography-tandem mass spectrometry

(UHPLC-MS/MS) to quantify 6mA and 5hmC abundance in

control and DMAD null fly brains (Sch€ubeler, 2015; Zhang

et al., 2015b). The DMAD protein level was abolished entirely in

DMAD null fly brains (Figure S1D). Consistent with previous find-

ings, a shallow level of 5hmC was detectable in control fly brains

(Dunwell et al., 2013; Raddatz et al., 2013), and DMAD depletion

had minimal effects on 5hmC abundance (average 5hmC/C

[cytosine] percentage per million nucleotide [ppm] increased

from 2.29 to 3.44). In contrast to 5hmC, we detected higher

levels of 6mA in control fly brains (average, 26.0 6mA/A [adeno-

sine] ppm). Importantly, 6mA levels significantly increased 4-fold

in DMAD null flies relative to controls (Figure 1B; Table S1). We

confirmed this finding with dot blots, using a 6mA-specific anti-

body (Figure 1C). To further confirm that DMAD is a 6mA deme-

thylase in fly neuronal cells, we performed 6mA immunostaining

in control and DMAD-nKD flies. Neuronal-specific DMAD-KD

using Elav-Gal4 resulted in 6mA accumulation explicitly in Elav-

expressing neuronal cells (Figure 1D). Also, in vitro, 6mA deme-

thylation assays using double-stranded synthetic oligonucleo-

tide substrates indicated that recombinant DMAD demethylates

6mA (Figures S1E and S1F). These findings provide strong sup-

port for the role of DMAD as 6mA demethylase in fly brains. One

recent study suggested that DMAD can generate 5-hydroxyme-

thylcytosine in RNA molecules (5hmrC), and DMAD-deficient S2

cells showed decreased 5hmrC (Delatte et al., 2016). To test this,

we applied UHPLC-MS/MS to precisely quantify the 5hmrC

levels in control, DMAD null fly brains, and DMAD-KD S2

cells. Extremely low levels of 5hmrC (0.2 ppm in fly brains and

2 ppm in S2 cells versus 25–100 ppm 6mA) were detected (Fig-

ure S1G), indicating that 6mA is a major substrate for DMAD in

the Drosophila genome. No significant change in RNA for 5mC

was observed (Figure S1H). Furthermore, we tested the 6mA

levels in an AlkB neuronal KD, which is a homolog of mammalian

6mA putative demethylase Alkbh1 (Wu et al., 2016). No substan-

tial 6mA accumulation was found in the absence of AlkB

(Figure S1I), suggesting that DMAD could be the key 6mA deme-

thylase in Drosophila. Since the key residues responsible for

DMAD’s demethylation activities were defined (Zhang et al.,

2015b), we generated the recombinant DMAD catalytic domain

(DMAD-CD) and its catalytically dead mutations (DMAD-

CD-mut) to test their direct demethylation activity in vitro. The

DMAD-CD has comparable demethylation activities with bacte-

rial 6mA demethylase ALKB. In agreement with previous obser-
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vations, the DMAD-CD mutant displayed drastic and significant

reduced enzymatic activity for 6mA demethylation (Figure S1J).

To understand the molecular functions of active 6mA deme-

thylation, we generated genome-wide 6mA maps from control

and DMAD null fly brains. We immunoprecipitated 6mA-contain-

ing DNA isolated from �1,000 dissected fly brains and used

high-throughput sequencing to identify genomic loci enriched

for 6mA. The specificity and reproducibility of 6mA immunopre-

cipitation were ensured using competitive elution with excess

6mA. Overall, the number of binned genomic regions containing

high 6mA reads was larger in DMAD null brains (Figure S1K). We

identified 5,340 high-confidence gain-of-6mA regions in DMAD

null mutants relative to control flies. Thus, these regions repre-

sent active 6mA demethylation loci in wild-type brains (Fig-

ure S1L; Table S1). Genomic annotation of gain-of-6mA regions

revealed that a large percentage of 6mA increases occurred

in intragenic regions, with enrichment in introns and UTRs

compared to expected values. Consistent with previous obser-

vations (Zhang et al., 2015b), gain-of-6mA regions were also

enriched for several classes of repetitive elements relative to

expected values (Figure 1E).

To investigate theconnectionbetweendynamic6mAdemethy-

lation and global transcriptome changes, we performed RNA

sequencing (RNA-seq) on control and DMAD null fly brains

(Table S1). 1,704 downregulated and 1,349 upregulated genes

bearing significant accumulations of 6mA on their gene bodies

upon DMAD depletion were found (Figure 1F, purple and pink,

respectively). Gene Ontology (GO) analysis of these downregu-

lated genes showed enrichment in several key ontology terms

reflecting DMAD null fly phenotypes, such as behavior, learning,

memory, and neuronal differentiation (Figure 1G). In contrast, up-

regulated genes were enriched in general development-related

functions (Figure S1M). To further investigate the potential regula-

tory mechanisms underlying 6mA-mediated gene regulation, we

searched for commonmotifswithin gain-of-6mA regions andpre-

dicted possible binding factors based on these motifs. Intrigu-

ingly, the 6mA motif ‘‘AGAAGGAG’’ in fly brains was previously

found in C. elegans (Greer et al., 2015), potentially suggesting a

conservedmechanismof 6mA regulation across species. Several

known DNA-binding proteins, such as transcription factors Aef1

and Adf1, were predicted to bind to these regions (Figure S1N).

Interestingly, both Aef1 and Adf1 define Polycomb response

elements (PREs) by interacting with Polycomb PRC1 component

Pc (Orsi et al., 2014). These findings inspired us to explore the

possible interplay between 6mA and histone modifiers.

6mA Is Associated with the Binding of Polycomb Protein
in Drosophila Neuronal Cells
To gain in-depth mechanistic insight into 6mA dynamics and

gene regulation, we assessed the effects of reduced DMAD

expression in a fly neuronal cell line, BG3C2 (Ui et al., 1994),

which was extensively analyzed in the modENCODE project.

DMAD-KD was performed using double-stranded RNAs

(dsRNAs), and successful DMAD-KD was confirmed by qPCR

and western blots (Figures 2A and 2B). Consistent with our

data in fly brains, DMAD-KD in the BG3C2 neuronal cell line

also led to an overall increase in 6mA levels (Figure 2C). A total

of 6,093 gain-of-6mA regions were identified in BG3C2 cells



Figure 2. 6mA Is Enriched at Polycomb-Binding Sites in Neuronal Cells

(A) qRT-PCR validated a 70% reduction in DMADmRNA levels after double-strand small interfering RNA (siRNA) knockdown in BG3C2 cells. ***p < 0.001. Welch

two sample t tests.

(B) Western blot using a DMAD-specific antibody confirmed effective DMAD-KD in BG3C2 cells. kd, knockdown.

(C) Dot blots using a 6mA-specific antibody confirmed 6mA accumulation in the absence of DMAD in BG3C2 cells.

(D) GO analysis showed specific enrichment for neurodevelopment and neuronal functions from downregulated genes carrying intragenic BG3C2 gain-of-6mA

regions. The red font highlights the key Gene Ontology terms related to neurodevelopment.

(E) Average fold change in 6mA mapped reads versus non-enriched input DNA was calculated for various binned ChIP-chip regions of epigenetic regulators

available from themodENCODEdatabase. Average fold change is plotted in Heatmap view. Red (fold change > 1) indicates enrichment over input, while blue (fold

change < 1) indicates depletion. 6mA was explicitly enriched at Polycomb-protein-binding sites. Enrichment and depletion were significant with p value < 0.001,

Welch two-sample t tests.

Data are presented as mean ± SEM.
from replicates of control and DMAD-KD cells (Figure S2A;

Table S2). In parallel, RNA-seq analyses were performed for con-

trol and DMAD-KD BG3C2 cells (Table S2). Like our findings in

the brain, gain-of-6mA regions were associated with intragenic

regions such as introns and repetitive elements relative to ex-

pected values (Figure S2B). Also, GO analysis of downregulated

genes containing intragenic gain-of-6mA regions showed prefer-

ential enrichment for neuronal functions (Figure 2D). Conversely,

upregulated genes having gain-of-6mA regions were enriched

for general developmental pathways (Figure S2C). Furthermore,

we found 42.5% and 21.2% of neuronally expressed long inter-

spersed elements (LINEs) and long terminal repeats (LTRs),

respectively, overlapped with gain-of-6mA regions (Figure S2D),

consistent with the previous report that 6mA could potentially

impact transposon expression (Zhang et al., 2015b). To confirm

the 6mA-immunoprecipitation sequencing (IP seq) data, we per-

formed restriction enzyme digests to validate 6mA differential
loci found by BG3C2 6mA-IP (STAR Methods). As expected,

the qPCR results were consistent with our 6mA-IP findings that

these loci contain methylation on the adenines and 6mA accu-

mulated upon DMAD-KD (Figure S2E).

To directly link 6mA to epigenetic modulators, we used

chromatin immunoprecipitation (ChIP)-chip data available for

BG3C2 cells from modENCODE (Ho et al., 2014) to investigate

6mA enrichment at epigenetic regulator binding sites. We calcu-

lated 6mA reads over non-enriched input at the epigenetic

regulator binding sites, finding that 6mA is explicitly enriched

at Polycomb-protein-binding sites, including Polycomb complex

components Pc, dRING, Psc, and Ez, but not other epigenetic

regulators such as HP1, Su(var)3-7, and CTCF (Figures 2E and

S2F). Moreover, DMAD-KD led to further 6mA accumulation,

primarily on Polycomb-binding sites (Figure S2G). Therefore,

6mA could potentially work cooperatively with Polycomb pro-

teins to mediate epigenetic regulation of gene expression.
Molecular Cell 71, 848–857, September 6, 2018 851



DMAD Coordinates with the Trithorax-Related Protein
Wds to Regulate Gene Expression by Maintaining 6mA
Homeostasis at a Group of Neuronal Genes
To investigate the regulatory roles of DMAD in gene expression,

we performed ChIP-seq to map genome-wide DMAD-binding

sites in BG3C2 cells (Table S3). Genome-wide annotation of

DMAD-binding sites revealed its general intragenic enrichment,

such as exons (Figure S3A). Interestingly, 6mA accumulated

on introns and UTRs upon DMAD-KD (Figure 3A), consistent

with genomic annotations of gain-of-6mA regions (Figure 1E).

We focused next on the DMAD-bound genes bearing accumula-

tion of 6mA in their gene bodies in the DMAD-KD cells, as they

could be modulated by DMAD through 6mA demethylation.

These genes were further separated into downregulated and up-

regulated genes (Figures 3B and S3B). Interestingly, instead of

more exon enrichment of general DMAD-binding sites, DMAD

showed more enrichment in introns of these genes, coinciding

with 6mA accumulation in introns (Figures 1E and S2B). These

genes were subcategorized based on the DMAD intragenic

binding regions (Figures 3C and S3C). In general, DMAD-binding

sites and 6mA accumulation upon DMAD-KD were associated

with the same genomic regions. For instance, a remarkable

95% and 98% of intronic 6mA accumulations were found in

genes with DMAD binding to their introns, showing that DMAD

influenced these genes through their intronic 6mA demethylation

(Figures 3C and S3C, respectively). Interestingly, 76% of introns

in downregulated genes harbored gain-of-6mA regions and

DMAD-binding sites in the exact intronic regions, further sug-

gesting that DMAD could demethylate 6mA in cis (Figure 3D).

Similar observations were also found in the upregulated genes,

although the percentage of DMAD and gain-of-6mA binding to

the same introns showed a lesser extent (Figure S3D). Given

that DMAD depletion downregulated a group of critical neuronal

genes, we hypothesized that DMAD may coordinate with tran-

scriptional activators to maintain active expression profiles.

Using the modENCODE ChIP-chip dataset, we found that bind-

ing sites of Wds (Will die slowly), a protein component of the

Trithorax-related complex that is responsible for gene activation

(Mohan et al., 2011), substantially overlapped with DMAD-bind-

ing sites (Figure 3E). This overlap appeared specific, as the

binding sites of many other transcription factors available in

ChIP-chip datasets did not overlap with DMAD (Figure S3E).

Wds is the Drosophila ortholog of the mammalian WDR5 and

has been shown to modulate active transcription with other Tri-

thorax components through histone modifications (Herz et al.,

2012; Mohan et al., 2011). Substantial overlap between Wds-

and DMAD-binding sites suggested that Wds and DMAD may

form a complex in vivo. To test this, we performed co-immuno-

precipitation (coIP) experiments and observed a biochemical as-

sociation between DMAD and Wds in BG3C2 cells (Figure 3F).

Altered genes in DMAD-KDBG3C2 cells significantly overlapped

with differentially expressed genes due to the Wds KD (Figures

3G and S3F). Interestingly, KD of Wds did not affect the global

6mA level, suggesting that the DMAD target recognition and de-

methylation are independent of Wds (Figures S3G and S3H).

CoIP experiments using Wds and DMAD deletion constructs

were performed to map their interaction domains. WD40 do-

mains of Wds were critical for interaction with DMAD, as the
852 Molecular Cell 71, 848–857, September 6, 2018
complete removal of WD40 domains abolished its binding to

DMAD (Figure S3I). On the other hand, the C-terminal DMAD

(amino acids [aa] 1,657–2,860) bearing the Tet-JBP catalytic

domain, but not the DMAD N-terminal region (aa 1–1,657) with

the CXXC DNA-binding domain, was responsible for association

with Wds (Figure S3J). Additional fine mapping revealed that

DMAD 1,657–2,666, including the 6mA catalytic domain

(aa 1,796–2,666), bind to Wds (Figure S3K). These data together

suggest that the DMAD interaction with Wds is coupled with its

6mA demethylation activities.

Since ChIP-chip assays, in general, have lower resolution than

ChIP-seq, we performed Wds ChIP-seq in control and DMAD-

KD BG3C2 cells (Table S3). 2,249 of 2,976 Wds peaks overlap-

ped with DMAD-binding sites, actively supporting their cooper-

ation in transcriptional control (Figure 3H). We further analyzed

ChIP-seq data to understand the dynamic changes of Pc

(Table S3) and Wds on DMAD-binding sites and gain-of-6mA

regions. We computed the normalized Pc and Wds ChIP-seq

read ratios at DMAD-binding sites using DMAD-KD over control

cells. Wds, but not Pc, showed a significant reduction in the

absence of DMAD (Figure 3I; blue indicates KD reads < WT

reads; p < 0.001). Interestingly, substantial and significant

increases in Pc binding were found on gain-of-6mA regions,

suggesting potential crosstalk between 6mA and Polycomb pro-

teins (Figure 3I; red indicates KD reads > WT reads; p < 0.001).

Using micrococcal nuclease (MNase) digestion coupled with

high-throughput sequencing, we investigated the dynamic

changes of nucleosome positioning on intragenic DMAD-binding

sites and gain-of-6mA regions when DMAD was depleted.

DMAD-binding sites showed no significant changes in nucleo-

some occupancy when DMAD was KD (Figures S3L and S3N;

p = 0.4436). In contrast, gain-of-6mA regions displayed signifi-

cantly higher nucleosome occupancy in DMAD-KD cells (Figures

S3M and S3O; p < 0.0001), possibly due to Polycomb recruit-

ment for chromatin remodeling (Orsi et al., 2014). Our findings

suggest that DMAD binds to specific sets of genes to modulate

intragenic 6mA levels and coordinate with histone modifiers,

thereby regulating gene expression.

6mA Dynamic Regulation by DMAD Coordinates with
Trithorax- and Polycomb-Mediated Epigenetic
Mechanisms
To further define DMAD-mediated epigenetic regulatory mecha-

nisms, we focused on two sets of regions located in downregu-

lated genes that have vital neuronal functions: (1) intragenic re-

gions commonly bound by DMAD/Wds identified by ChIP-seq

(Figure 4A, green) and (2) Gain-of-6mA regions in intragenic re-

gions of genes identified in Figure 4A that are also commonly

bound by DMAD/Wds (Figure 4B, pink). We examined the dy-

namic changes of Pc and Wds binding, as well as signature his-

tone modifications, such as H3K27me3 and H3K4me3, at these

loci in both control and DMAD-depleted cells. Intragenic regions

bound by DMAD and/or Wds showed a slight but not significant

reduction in Pc andH3K27me3 uponDMADdepletion. However,

DMAD loss led to a substantial and significant reduction in Wds

and the active histone marker H3K4me3 (Figure 4A). These data

suggest that interplay between DMAD and Wds at these loci

maintains transcriptional activation. We also noted that Wds



Figure 3. DMAD Demethylates Intragenic 6mA In Cis and Coordinates with Trithorax-Related Protein Wds to Regulate Gene Expression

(A) Average fold changes in 6mA reads between DMAD-KD and control were calculated for DMAD-occupied gene introns, exons, and UTRs. Enrichment or

depletion of 6mA on these genomic regions were significant (p < 0.001 or p < 0.05, Welch two-sample t tests).

(B) Intragenic distributions of DMAD on DMAD-bound downregulated genes bearing accumulation of 6mA upon DMAD-KD was demonstrated proportionally.

DMAD showed strong intronic enrichment on these genes. TTSs, transcription termination sites.

(C) The genes in (B) were further subcategorized based on the DMAD intragenic association. Gain-of-6mA distributions on each subset of genes were calculated,

and the percentages are shown in the pie chart.

(D) The percentages of genes with both DMAD and gain-of-6mA binding to the same genomic feature were calculated.

(E) Venn diagram shows substantial and significant overlap between DMAD and Wds ChIP-chip data (binomial tests, p < 0.001).

(F) Co-immunoprecipitation experiments indicated a physical interaction between DMAD and Wds.

(G) Downregulated genes in the DMAD-KD cells showed significant overlapping with downregulated genes in the absence of Wds. Chi-square tests were

performed. RNA-seq was performed in triplicates. Reads per kilobase per million mapped reads (RPKM) fold changes < �0.1 were included.

(H) Substantial overlap between DMAD and Wds ChIP-seq peaks suggested their functional coordination in regulating gene expression.

(I) Average fold change in Pc and Wds reads of DMAD-KD over control were calculated for both DMAD-binding sites and gain-of-6mA regions to explore Pc and

Wds dynamics in these regions. The heatmap demonstrates a general decrease in both Pc and Wds at DMAD-binding sites when DMAD is depleted. A specific

and significant increase in Pc binding on gain-of-6mA regions with DMAD depletion was found; Welch two-sample t tests, p values were indicated.

Data are presented as mean ± SEM.
was solely enriched at downregulated genes compared to non-

enriched input (Figures S3P and S3Q). These data show that

Wds, not Pc, is responsible for maintaining active expression
of downregulated genes by interacting with DMAD. Genetic

interaction between DMAD and Wds was further examined in

the context of MB development. Either control (elav > +) or
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Figure 4. DMAD and 6mA Coordinate with Trithorax and Polycomb

(A) Average normalized reads (per million) dynamics in Pc, Wds, H3K27me3, and H3K4me3 at DMAD and Wds binding sites in genes downregulated in the

absence of DMAD compared to the control are shown. Welch two-sample t tests; p values were indicated.

(B) Dynamics of average normalized reads (per million) in Pc, Wds, H3K27me3, and H3K4me3 at gain-of-6mA regions in intragenic regions of genes identified in

(A) that were bound by DMAD and/or Wds. Welch two-sample t tests were performed; p values are indicated.

(C) Loci from (A) and (B) were further tested by qPCR for expression changes in the absence of DMAD, Wds, Pc, or combined depletion of DMAD and Pc, as well

as DMAD and Wds. t tests were performed. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

(D) In vitro 6mA-Pc binding assays were performed to confirm direct correlation between 6mA and Pc.

(E) Pc binding kinetics to control and 6mA-modified probes showed that Pc displayed stronger binding to 6mA-modified DNA probes, as measured by

fluorescence polarization assays.

(F) DMAD binds to a group of genes involved in neurodevelopment and neuronal functions. These genes are directly targeted by the Trithorax protein Wds to

maintain an active transcription profile. Additionally, DMAD actively demethylates intragenic 6mA. In the absence of DMAD, Wds binding is reduced at these loci,

and accumulation of intragenic 6mA recruits Polycomb proteins.

Data are presented as mean ± SEM.
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pan-neuronal KD of Wds alone (elav > WdsRNAi) does not

affect a-lobe development. Pan-neuronal DMAD-KD (elav >

DMADRNAi) causes an a-lobe defect that is significantly

enhanced by the Wds KD (elav > WdsRNAi + DMADRNAi) (Fig-

ure S3R). These results further confirmed functional interplay be-

tween DMAD andWds and suggested that DMAD preceded and

coordinated withWds (Figure S3R). It also suggested that DMAD

could partner with other Trithorax proteins in fly neurons. In

agreement with this, Trithorax-related (Trr), a major H3K4 mono-

methyltransferase on enhancers, shared substantial overlap with

DMAD (Herz et al., 2012) (Figure S3S).

Analysis of the second set of regions, which contains intragenic

regionswith increased6mAuponDMAD-KD, shows that Pcbind-

ing was concomitantly and significantly enhanced (Figure 4B).

This observation supports the notion that accumulation of intra-

genic 6mA due to DMAD loss could facilitate Polycomb recruit-

ment to secure transcriptional repression at these loci. In the

absenceofDMAD, thesedata suggest a dynamic switchbetween

Trithorax and Polycomb proteins at these downregulated genes.

We also investigated upregulated genes bearing DMAD-Wds

binding and gain-of-6mA regions. The DMAD-binding sites on

these genes displayed a more sophisticated modulating

network, as indicated by the co-occupancy of Wds and Pc on

these regions (Figures S3Q, S4A, and S4B). Importantly, GO an-

alyses showed a specific enrichment of neurodevelopment and

neuronal functional terms of these downregulated genes bound

byDMAD, compared to general terms of upregulated genes (Fig-

ures S4C and S4D). This evidence implies that these downregu-

lated genes could be the primary and direct targets of the DMAD-

Wds complex related to neuronal development and functions.

To confirm the direct targets of DMAD and Wds, we indepen-

dently KD DMAD, Wds, and Pc in BG3C2 cells. We also gener-

ated Pc-DMAD or Wds-DMAD double-KD cell lines (Figures

S4E and S4F). Several loci shown in Figures 4A and 4B were

tested for expression changes with these KD conditions. Similar

genes were downregulated with either Wds KD or DMAD-KD,

suggesting that Wds interacts and coordinates with DMAD to

transcriptionally activate these genes. DMAD and Wds double

KD showed synergistic effects on some loci. On the other

hand, simultaneous depletion of DMAD and Pc sustained or

stimulated gene expression, suggesting that Pc contributes to

transcription repression (Figures 4C and S4F). However, we

found that the KD of Pc itself resulted in a significant reduction

of Wds (Figure S4E). The reduction in Wds might represent inter-

esting crosstalk between TrxG and PcG (Schuettengruber et al.,

2007). Considering this finding, we found that Pc KD resulted in

reduced expression of some loci, possibly due to indirect effects

of regulating Wds or other factor expression.

To obtain direct evidence that Pc preferentially binds to the

6mA mark, we synthesized DNA oligos with the gain-of-6mA

and Pc common consensus sequence. The adenines in the

consensus sequence were either methylated or unmodified as

a negative control. Control and 6mA-containing probes were

used for in vitro binding with recombinant FLAG-Pc produced

from baculovirus. We found that Pc preferentially binds to

6mA-modified probes over controls in vitro (Figure 4D). By using

a fluorescence-based DNA-binding assay (Hashimoto et al.,

2014), we calculated the binding kinetics. FLAG-Pc bound to
probes in a dose-dependent manner, and 6mA-modified probes

showed stronger binding kinetics (Kd) to Pc relative to control

(Figure 4E).

We generated three Pc deletion constructs covering the chro-

modomain (Pc aa 1–86), the linker region (Pc aa 75–228), and the

cbox domain (Pc aa 222–390) and tested their binding affinities

to control and 6mA-modified DNA oligos (Figures S4G and

S4H) to define the 6mA-binding domain of Pc. Only the C-termi-

nal Pc deletion (aa 222–390) bound toDNAprobes and displayed

a preference for 6mA-modified DNA probes, although with lower

affinity than full-length Pc (Figure S4I). These data provide further

evidence that 6mA has crosstalk with Polycomb proteins.

DISCUSSION

Cytosine modifications are rare, if present at all, in many

model organisms, including worms (C. elegans) and insects

(D. melanogaster). Speculation exists that 6mA could serve as

a viable DNA modification in these organisms to epigenetically

modulate transcription. Crosstalk between 6mA and H3K4me2

in C. elegans (Greer et al., 2015), as well as communication be-

tween cytosine methylation and H3K9me3 (Du et al., 2015),

has been documented. Our data identify the molecular mecha-

nisms of 6mA and its demethylase DMAD in gene regulation.

Our findings suggest that 6mA plays epigenetic roles in regu-

lating a group of genes involved inDrosophila neurodevelopment

and neuronal functions. DMAD coordinates with the Trithorax-

related protein Wds to maintain active transcription by removing

intragenic 6mA. Depletion of DMAD results in a reduction of Wds

and accumulation of 6mA. This 6mA accumulation recruits Poly-

comb Pc to implement transcriptional repression on these loci.

Also, our data link DNA modification to histone modifications in

insect cells (Figure 4F). It is worth noting that, like 5mC in mam-

mals, the specific epigenetic role(s) of 6mA, either active or

repressive, could depend on its co-factors and varies in different

species, tissues, and cell types.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-N6-methyladenosine antibody Synaptic Systems 202003; RRID: AB_2279214

Anti-H3K4me3 Abcam ab8580; RRID: AB_306649

Anti-H3K27me3 Abcam ab6002; RRID: AB_305237

Anti-Pc antibody (dN-19) Santa Cruz sc-15814; RRID: AB_672372

Anti-Wds Novus Biologicals 40630002; RRID: AB_11030435

Anti-DMAD Chen Lab Zhang et al., 2015b

Anti-Fasciclin II DSHB 1D4; RRID: AB_528235

Anti-HA (16B12) Covance MMS-101P; RRID: AB_2314672

Anti-Myc (9E10) Thermo Fisher Scientific MA1-980; RRID: AB_558470

Rabbit TrueBlot anti-Rabbit IgG HRP Rockland 18-8816-33; RRID: AB_2610848

Mouse TrueBlot anti-Mouse IgG HRP Rockland 18-8817-30; RRID: AB_2610849

Alexa Fluor 488 Anti-Rabbit IgG Jackson ImmunoResearch 711-545-152; RRID: AB_2313584

Cy3 Anti-Rabbit IgG (H+L) Jackson ImmunoResearch 711-165-152; RRID: AB_2307443

Anti-FLAG M2 Magnetic Beads Sigma M8823; RRID: AB_2637089

Anti-HA�Agarose Sigma A2095; RRID: AB_257974

EZview Red Anti-c-Myc Affinity Gel Sigma E6654; RRID: AB_10093201

Dynabeads Protein G Thermo Fisher Scientific 10003D

Chemicals, Peptides, and Recombinant Proteins

Recombinant Pc full length This study Pc full length

Recombinant Pc (aa 1-86) This study Pc (aa 1-86)

Recombinant Pc (aa 75-228) This study Pc (aa 75-228)

Recombinant Pc (aa 222-390) This study Pc (aa 222-390)

DMAD catalytic domain This study N/A

Agencourt AMPure XP beads Beckman Coulter A63880

Dynabeads MyOne Streptavidin C1 Thermo Fisher Scientific 65001

Cellfectin II Reagent Thermo Fisher Scientific 10362100

Dpn I New England Biolabs R0176S

Calf intestinal phosphatase New England Biolabs M0290S

Phosphodiesterase I from Crotalus adamanteus venom Sigma P3243

Insulin solution human Sigma I9278

Sodium Ascorbate Sigma A4034

Alpha-ketoglutaric acid Sigma K3752

Lithium chloride Sigma L4408

Bacterial and Virus Strains

E. coli (DH5a)-One Shot Top10 Thermo Fisher Scientific C404003

Baculovirus LakePharma N/A

Critical Commercial Assays

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Q32854

High Sensitivity DNA Analysis Kits Agilent 5067-4627

NEBNext DNA Library Prep Reagent Set New England Biolabs E6000

HiScribe T7 High Yield RNA Synthesis Kit New England Biolabs E2040S

TruSeq RNA Sample Prep Kit V2 Illumina RS-122-2001

Pierce BCA Protein Assay Kit Thermo Fisher Scientific 23225

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Q5 Site-Directed Mutagenesis Kit New England Biolabs E0554S

Pierce Biotin 30 End DNA Labeling Kit Thermo Fisher Scientific 89818

Deposited Data

All sequencing data This paper GEO: GSE67855

Raw images Mendeley Data https://doi.org/10.17632/

wy3jshg29m.3

Experimental Models: Cell lines

BG3C2 cells The Drosophila Genomics

Resource Center (DGRC)

Ui et al., 1994

SF9 cells Lab of Xiaodong Cheng N/A

Experimental Models: Organisms/Strains

DMAD1 Chen Lab Zhang et al., 2015b

DMAD2 Chen Lab Zhang et al., 2015b

DMAD RNAi This study N/A

Wds RNAi Bloomington stock center 60399

Recombinant DNA

pET- Pc-1-390 Harte Lab Tie et al., 2016

pET- Pc-1-86 Harte Lab Tie et al., 2016

pET- Pc-75-390 Harte Lab Tie et al., 2016

pET- Pc-75-228 Harte Lab Tie et al., 2016

pFastBac FPC Addgene Plasmid #1927

pFastBac-Flag-Pc-1-86 This study N/A

pFastBac-Flag-Pc-75-228 This study N/A

pFastBac-Flag-Pc-222-390 This study N/A

pAc5.1-HA-Wds full length This study N/A

pAc5.1-HA-Wds-1-61 This study N/A

pAc5.1-HA-Wds-1-187 This study N/A

pAc5.1-HA-Wds-1-262 This study N/A

pAc5.1-myc- DMAD full length This study N/A

pAc5.1-myc- DMAD-1-1657 This study N/A

pAc5.1-myc-DMAD-1657-2860 This study N/A

pAc5.1-myc-1658-1796 This study N/A

pAc5.1-myc-1797-2666 This study N/A

pAc5.1-myc-2667-2860 This study N/A

Oligonucleotides

artmiR-DMAD-1 s: 50-ctagcagtCGATGTACTAGAATGGCTGG

AtagttatattcaagcataTGCAGCCATTGTAGTACATCGgcg-30
IDT N/A

artmiR-DMAD-1-as: 50-aattcgcCGATGTACTACAATGGCTGC

AtatgcttgaatataactaTCCAGCCATTCTAGTACATCGactg-30
IDT N/A

artmiR-DMAD-2 s: 50-ctagcagtCGCCTATGATCCCTATCAGT

AtagttatattcaagcataTTCTGATAGGCATCATAGGCGgcg-30
IDT N/A

artmiR-DMAD-2-as: 50-aattcgcCGCCTATGATGCCTATCAGAA

tatgcttgaatataactaTACTGATAGGGATCATAGGCGactg-30
IDT N/A

6mA-modified probe for Pc binding assay: GAT CGA TCG

ACA /iN6Me-dA/CA /iN6Me-dA/CA /iN6Me-dA/CA /iN6Me-dA/

CA /iN6Me-dA/CA /iN6Me-dA/CA /iN6Me-dA/CA /iN6Me-dA/GA

TCG ATC GA

IDT N/A

Reverse complemented probe: TCG ATC GAT CTG TGT GTG

TGT GTG TGT CGA TCG ATC

IDT N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Bowtie v.1.1.2 Langmead et al., 2009 N/A

MACS 1.4.2 Zhang et al., 2008 N/A

Ngsplot 2.61 Shen et al., 2014 N/A

HOMER v.4.9.1 Heinz et al., 2010 N/A

TopHat v.2.0.13 Trapnell et al., 2012 N/A

Cuffdiff v.2.2.1 Trapnell et al., 2012 N/A

Bedtools v.2.17.0 Quinlan and Hall, 2010 N/A

R/Bioconductor package DSS 3.7 Wu et al., 2013 N/A

CisGenome v.2.0 Ji et al., 2006 N/A

TEToolkit v.1.5.1 Jin et al., 2015 N/A

Dynamic analysis of nucleosome position and occupancy

by sequencing (DANPOS) v.2

Chen et al., 2013 N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and classifiers should be directed to andwill be fulfilled byBing Yao (bing.yao@emory.

edu) or Peng Jin (peng.jin@emory.edu). There are no restrictions for use of the materials disclosed.

METHOD DETAILS

DMAD Null and DMAD-KD Fly Lines
DMAD null flies were described previously (Zhang et al., 2015b). DMAD transgenic RNAi lines, P{uasp-2 3 artmiR-DMAD}, in which

two sets of 71 nt oligos containing a small hairpin sequence targeting the DMAD coding region under the control of the uasp pro-

moter, were generated according to themethod described previously (Zhang et al., 2015b). The sequences of these oligos are below.

artmiR-DMAD-1 s: 50-ctagcagtCGATGTACTAGAATGGCTGGAtagttatattcaagcataTGCAGCCATTGTAGTACATCGgcg-30

artmiR-DMAD-1-as:

50-aattcgcCGATGTACTACAATGGCTGCAtatgcttgaatataactaTCCAGCCATTCTAGTACATCGactg-30

artmiR-DMAD-2 s:

50-ctagcagtCGCCTATGATCCCTATCAGTAtagttatattcaagcataTTCTGATAGGCATCATAGGCGgcg-30

artmiR-DMAD-2-as:

50-aattcgcCGCCTATGATGCCTATCAGAAtatgcttgaatataactaTACTGATAGGGATCATAGGCGactg-30
Immunostaining
Fly brains were dissected in calcium-free 1x PBS and fixed in 4%paraformaldehyde for 1 hr on ice. Fixed tissues were permeabilized

with 0.3% PTX (1x PBS + 0.3% Triton X-100) at room temperature for 30 min and then blocked in 0.1% PTX (1x PBS + 0.1% Triton

X-100) + 5%Normal Goat Serum for 30moremin. Tissues were then incubated with anti-DMAD (1:200, Rb) or anti-6mA (1:500, Rb) in

PBTG (PBST + 5% normal goat serum) overnight at 4�C. Anti-Fasciclin II monoclonal antibody (DHSB, 1D4) was used to stain the

Drosophila mushroom body. The next day, tissues were washed 3 times with 1x PBST for 5 min and incubated with secondary

antibody for 1 hr at room temperature. The tissues were washed 3 times with 1x PBST and mounted onto slides with Vectashield

to prevent photobleaching. Samples were kept at �20�C until observed under confocal microscopy.

Cell Culture and RNAi
BG3C2 cells were cultured as described previously (Ui et al., 1994). For double stranded RNA (dsRNA) KD, a 580bp dsRNA fragment

targeting DMAD coding region was generated via T7 promoter-driven in vitro transcription using an RT-PCR product as template. The

following primers were used for RT-PCR: forward �50gaaatCTCGAGtaatacgactcactatagggCGGAGCCAGTAGTTTTCAGC30and
reverse - 50gaaatGAATTCtaatacgactcactatagggCATGGGGTTGATCTTCTCGT30. The in vitro transcription was performed using

HiScribe T7High Yield RNASynthesis Kit fromNEB followingmanufacturer’s instructions. dsRNAproducts were purified by two-step

extractions with phenol: chloroform: isoamyl alcohol = 25:24:1, followed by chloroform alone. The extracted dsRNAwas precipitated

with absolute ethanol. The dsRNA was incubated with BG3C2 cells that had been grown in Shields and Sang M3 insect medium

under FBS starvation for at least 24 hr. After 24-hour incubation with dsRNA, FBS was added to the culture media to a final
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concentration of 3%. Fresh media containing dsRNA was replaced every 48 hr and the total incubation time was 144 hr to ensure

effective KD. Drosophila S2 cells were cultured as described previously for co-immunoprecipitation experiments (Zhang

et al., 2015a).

Isolation of Genomic DNA
Lysis buffer containing 100mM Tris-HCl (pH 8.5), 5mM EDTA (pH 8.0), 0.2% SDS, 200mM NaCl, and 20-25 mL of protease K

(20mg/ml) was added to homogenized tissues or cells, mixed well, and incubated at 55�C overnight. After the overnight digestion,

the lysates were brought to room temperature, and incubated with 5 mL of RNase A solution (20mg/ml) for at least 1 hr at room

temperature. DNA was extracted by adding equal volume of phenol: chloroform: isoamyl alcohol at a ratio of 25:24:1 and centrifuged

at 13,000 rpm for 10 min. Supernatant was transferred to clean tubes. Equal volume of isopropanol was then added to the superna-

tant and mixed well at room temperature to precipitate DNA. Once flocky DNA was visible, the precipitate was transferred to a new

tube containing 1ml of 70% ethanol to wash. DNA was then collected by centrifugation and air-dried.

UHPLC-MRM-MS/MS Analysis
Genomic DNA was enzymatically digested into single nucleosides with a mixture of DNaseI, calf intestinal phosphatase, and snake

venom phosphodiesterase I at 37�C for 12 h. After the enzymes were removed by ultrafiltration, the digested DNA was subjected to

UHPLC-MS/MS analysis. HPLC fractionation ofDrosophilam6dA and UHPLC-QTOF-MS/MS analysis were performed as described

previously (Zhang et al., 2015b).

Dot Blot
Dot blot was performed as described previously (Szulwach et al., 2011) using 6mA rabbit polyclonal antibody. DNA samples were

subjected to extensive RNase treatments before loading on Nitrocellulose membrane.

6mA Immunoprecipitation
Genomic DNA was sonicated to 200-300 bp fragments for 6mA enrichment using rabbit polyclonal antibody (Synaptic Systems) at

1:100 in 1x IP buffer containing 100mM Tris-HCl (pH7.4), 150mM NaCl and 0.05% Triton X-100. The DNA-antibody incubation was

conducted on a rotating platform at 4�C overnight. Dynabeads Protein G (Novex by Life Technologies, REF 10009D 30mg/ml) were

added the next day for additional 2 hr at 4�C. The beads were then washed six times at room temperature with 1x ice-cold IP buffer.

After the wash, the immunoprecipitated DNA fragments were eluted by adding IP buffer containing 2.6mM 6mA for competitive

elution. The elutions were repeated for three times at room temperature. The eluted DNA fragments were precipitated by isopropanol.

Chromatin Immunoprecipitation (ChIP)
BG3C2 cells (5-103 106) in the presence or absence of DMAD were fixed in 1% formaldehyde for 10 min at room temperature with

gentle shaking, then 0.125 M final concentration of Glycine was added for additional 5-minute incubation to stop the fixation. Fixed

cells were lysed on ice for 10min in a NP-40 lysis buffer (10 mMHEPES/pH7.9, 0.5%NP-40, 1.5 mMMgCl2, 10mMKCl, 0.5 mMDTT

and protease inhibitor cocktail) to release nuclei. After centrifugation at 4000 rpm for 5 min, the nuclear pellets were further lysed by

sonication on ice in a nuclear lysis buffer (20 mMHEPES/pH7.9, 25%glycerol, 0.5%NP-40, 0.5% Triton X-100, 0.42MNaCl, 1.5mM

MgCl2, 0.2 mM EDTA and protease inhibitor cocktail), then centrifuged at 13,000 rpm for 10 min at 4�C. The supernatant was diluted

with 2 volumes of dilution buffer (0.01% SDS, 1% Triton X-100, 1.2 mM EDTA, 167 mM NaCl, 16.7 mM Tris-HCl/pH8.0 and protease

inhibitor cocktail). Immunoprecipitation was performed with desired antibodies for 6 hr to overnight at 4�C. After antibody incubation,
20 mL salmon sperm blocked DNA/protein G agarose (Upstate) were added and incubated for additional 1 hr. Precipitates were

sequentially washed with TSE I (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl/pH 8.0), TSE II (0.1%

SDS, 1% Triton X-100, 2 mM EDTA, 500 mM NaCl, 20 mM Tris-HCl/pH 8.0), TSE III (0.25 M LiCl, 1% NP-40, 1% deoxycholate,

1mMEDTA, 10mMTris-HCl/pH 8.0), and thenwashed twice with TE buffer. TheChIP’ed DNAwas eluted by elution buffer containing

1% SDS and 0.1 M NaHCO3. NaCl at final concentration of 0.2M was added to the elution along with 1 mg RNaseA for reverse-

crosslinking at 65�C for at least 6 hr. DNA fragments were purified using the PCR Purification Kit (QIAGEN). ChIP’ed DNA was sub-

jected to library preparation.

Co-immunoprecipitation
BG3C2 or S2 cells were lysed for 10 min on ice with lysis buffer containing 25 mM Tris-HCl (pH7.5), 2mM MgCl2, 5mM DTT, 0.5%

Triton X-100, and 300mMNaCl in the presence of DNase andRNase. The cell lysate was sonicated before centrifugation at maximum

speed for 10 min; the supernatant was incubated with antibodies overnight at 4�C. After antibody incubation, 20 mL salmon sperm

blocked DNA/protein G agarose beads (Upstate) were added and incubated for additional 1 hr. Beads were then washed 3 times by

lysis buffer. The immunoprecipitated proteins were eluted with 2x Laemmli Sample Buffer (Bio-Rad) followed by western blots.

Baculovirus Infection and FLAG-Tagged Pc Purification
SF9 cells were a gift from Dr. Xiaodong Cheng’s lab in the Department of Biochemistry at the Emory University School of Medicine.

SF9 cells were cultured in Sf-900 III SFM media from Thermo Fisher Scientific, and infected with Baculovirus generated with
Molecular Cell 71, 848–857.e1–e6, September 6, 2018 e4



pFastBac-FPC (full-length Pc) with FLAG tag obtained from Addgene. Baculovirus were produced by LakePharma. 72-hour post

infection, SF9 cells were collected and lysed in lysis buffer containing 25mM Tris-Cl (pH 7.5), 300mM NaCl, 0.5% Triton X-100,

and protease inhibitor tablet (Roche) for 30 min on ice followed by sonication at 1.5V, 0-3W for 20 s. Samples with 300 mL volume

in each tube were sonicated 4 times. Lysate was centrifuged at 13,000 rpm for 10 min and supernatant was transferred to a

new tube for IP purification. The supernatant was incubated with FLAG-M2 dynabeads (Sigma) and rotated at 4�C for 3 hr.

Beads were then washed 5 times with 1x lysis buffer. To elute the FLAG-Pc, beads were incubated with the elution buffer containing

3X FLAG peptide at 100ug/ml for 2 hr at 4�C with gentle rotation. FLAG-Pc were tested by western blots.

Probe Labeling and Annealing
To compare Pc binding efficiency to 6mA DNA and unmodified DNA, two oligos were designed based on gain-of-6mA regions and

the consensus sequence recognized by Pc (�50-GAT CGA TCG A-CA CAC ACA CAC ACA CA-G ATC GAT CGA-30).
The forward and reverse oligos were separately labeled using the Biotin 30 End DNA Labeling Kit (Catalog number: 89818) from

PierceFisher Scientific per manufacturer’s instruction. Labeled oligos were precipitated with 0.1 volume of 3M NaAc (pH 5.2) and

3 volumes of absolute ethanol. Precipitated oligos were dissolved in 50 mL of nuclease free water and annealed into double stranded

oligos.

Pc and DNA Probe Binding Assays
dsDNA probes with either unmodified A or 6mA were independently mobilized on Dynabeads Streptavidin MyOne C1 (Life

Technologies) with 1x W/B buffer containing 25mM Tris-Cl (pH7.5), 1mM EDTA, and 1M NaCl at room temperature for 30 min

with gentle rotation. The beads were then immobilized with probes and blocked with Blocker BSA (10x), Thermo Fisher Scientific

(Catalog number: 37520) in TBS for 30 min at room temperature. Beads were washed twice with 1x lysis buffer. A range of purified

FLAG-Pc protein concentrations (0.01 mM to 1 mM) was added to blocked beads and incubated for 1 hr at room temperature with

gentle rotation. The beads were then washed extensively with 1x lysis buffer 5 times. FLAG-Pc was eluted in 2x Laemmli Sample

Buffer (Bio-Rad) at 100�C for 10 min and loaded onto an SDS-polyacrylamide gel for western blot to detect binding efficiency.

Generation of Deletion/Truncation Constructs of DMAD, Wds, and Pc
Site-directed mutagenesis kit (NEB) was used to generate series of deletion constructs from full-length cDNA from DMAD, Wds

and Pc. All constructs were subjected to Sanger sequencing to confirm the correct insertion. DMAD andWds constructs were cloned

into pAc 5.1 vector and expressed in Drosophila S2 cells for co-immunoprecipitation experiments. Pc deletion constructs were

cloned into pFASTBAC plasmid for Baculovirus production (LakePharma).

Fluorescence-Based Pc-6mA Binding Assays
The 6-carboxy-fluorescein (FAM)-labeled control or 6mA-modified DNA probes were annealed with their reverse complementary

strand to form double-strandedDNA oligos. Various concentrations (0.01-1 mM) of Pc full length or C-terminal truncation recombinant

proteins were incubated with 2 nM DNA oligos for 15 min at room temperature in nicking buffer (10mM Tris-Cl pH8.0, 1mM EDTA,

0.1% BSA). Fluorescence polarization measurements were carried out at 25�C on a Synergy 4 microplate reader (BioTek). Curves

were fit individually using GraphPad Prism 7.0 software (GraphPad Software). Binding constants (Kd) were calculated described

previously (Hashimoto et al., 2014).

In Vitro 6mA Demethylation Assay
Double stranded control and 6mA-modified DNA oligos were mixed with DMAD C-terminal catalytic domain (aa 1657-2860) in reac-

tion buffer containing 50mMHEPES (pH8.0), 2mM ascorbate, 1mM a-KG and 150 mMFe at room temperature for 3 hr. The reactions

were stopped by proteinase K digestion at 50�C for 2 hr. The purified DNA samples were subjected to 6mA dot blots and ImageJ

quantification.

DpnI Digestion and qPCR
DpnI digestion and qPCR was conducted as previously described (Luo et al., 2016). Briefly, restriction enzyme digestion was per-

formed by treating 1 ug of genomic DNA with 5 uL of 5 U/uL DpnI restriction enzyme (NEB) at 37�C for 1 hr. The digested DNA

and non-digested DNA (5 ng) were subjected to qPCR using FastStart SYBR Green Master kit. The restriction enzyme digestion

method takes advantage of the 6mA-sensitive restriction enzyme DpnI that preferentially cleaves methylated adenine at GATC/

CATC/GATG sites. Equal amounts of DpnI-digested DNA and undigested control DNA were subjected to qPCR analyses with

primers targeting 6mA dynamic regions identified by 6mA-IP. The percentage of 6mA in either control or DMAD-KD can be assessed

by qPCR amplification and normalized to undigested DNA control (digested/undigested). Loci with lower 6mA modification in con-

trols would hinder DpnI digestion, resulting in higher PCR fold changes than DMAD-KD samples.

Library Preparation and High-Throughput Sequencing
Enriched DNA from 6mA-IP and ChIP were subjected to library construction using the NEBNext ChIP-Seq Library Prep Reagent Set

from Illumina according themanufacturer’s protocol. Briefly, 25 ng of input genomic DNA or experimental enriched DNAwere utilized
e5 Molecular Cell 71, 848–857.e1–e6, September 6, 2018



for each library construction. DNA fragments (150-300 bp) were selected by AMPure XP Beads (Beckman Coulter) after adaptor liga-

tion. An Agilent 2100 BioAnalyzer was used to quantify amplified DNA and qPCR was applied to accurately quantify library concen-

tration. 20 pM diluted libraries were used for sequencing. 50-cycle single-end sequencings were performed using Illumina HISeq

2000. Image processing and sequence extraction were done using the standard Illumina Pipeline. RNA-seq libraries were generated

from duplicated samples per condition using the Illumina TruSeq RNA Sample Preparation Kit v2 following manufacturer’s protocol.

RNA-seq libraries were sequenced as 50-cycle pair-end runs using Illumina HISeq 2000.

Bioinformatics Analyses
Bioinformatics analyses for ChIP-seq and 6mA-IP-seq were conducted as described previously (Szulwach et al., 2011; Yao et al.,

2014). Briefly, FASTQ sequence files were aligned to the dm3 reference genome using Bowtie v1.1.2 (Langmead et al., 2009). Peaks

were identified by Model-based Analysis of ChIP-Seq (MACS) software (Zhang et al., 2008). Ngsplot software was used to calculate

and plot unique 6mA and ChIP-seq mapped reads various genomic regions and generated heatmaps (Shen et al., 2014). Annotation

and motif analysis were performed using the HOMER (Heinz et al., 2010) suite. RNA-seq reads were aligned using Tophat v2.0.8

(Trapnell et al., 2012) and differential RPKM expression values were extracted using cuffdiff v2.2.1 (Trapnell et al., 2012). Genomic

interval overlapping analyses were performed using Bedtools (Quinlan and Hall, 2010). GO analyses were performed by The Data-

base for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 (Huang da et al., 2009) and GO Consortium (Ashburner

et al., 2000). Gain-of-6mA regions in BG3C2 cells were identified by published computational algorithm (R/Bioconductor package

DSS) that implements a series of differential methylation detection algorithms based on the dispersion shrinkage method followed

by Wald statistical test to rigorously interrogate the 6mA differential regions between replicated samples of control and DMAD-

KD group (Feng et al., 2014). Top-ranked gain-of-6mA regions were further intersected with 6mA peaks identified by MACS with

FDR < 0.05. modENCODE ChIP-chip regions were generated by CisGenome (Ji et al., 2006). Transposon expression was analyzed

by TEtranscripts (Jin et al., 2015). Gain-of-6mA regions in brains were identified by bedtools (Quinlan and Hall, 2010). MNase-seq

data were analyzed using dynamic analysis of nucleosome position and occupancy by sequencing (DANPOS) (Chen et al., 2013).

Sample Size and Statistics
Fly brain RNA-seq experiments were performed using two control and DMAD null pooled samples as biological replicates. Each

pooled sample contained 500-1000 fly brains per sample per genotype. Fly brains were dissected from heads to avoid 6mA contam-

ination from bacteria. BG3C2 RNA-seq samples were performed in triplicate from control and DMAD-KD cells. Brain RNA-seq were

performed in duplicates. Differential expression analyses were performed by cuffdiff (Trapnell et al., 2012). 6mA-IP in control and

DMAD null brains were performed using biological replicates from 1000 pooled fly brains per sample per genotype. 6mA-IP exper-

iments in BG3C2 cells were performed in duplicate using control and DMAD-KD cells. Control and DMAD-KD replicate 1 was

sequenced twice serving as a technical replicate. DMADChIP-seq experiments in BG3C2 cells were performed in triplicate. All repli-

cated samples from each condition were merged for downstream bioinformatic analyses. Pearson’s Chi-square tests with Yates’

continuity correction and Welch Two Sample t tests were performed in R computational environment (http://www.r-project.org/).

Student’s t tests were performed in Graphpad Prism (http://www.graphpad.com/scientific-software/prism/).

DATA AND SOFTWARE AVAILABILITY

The accession number for the ChIP-seq, RNA-seq, and 6mA-IP-seq reported in this paper is GEO: GSE67855.

Original imaging data have been deposited to Mendeley Data and are available at https://data.mendeley.com/datasets/

wy3jshg29m/3.
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Quantitative Sequencing of
5-Methylcytosine and
5-Hydroxymethylcytosine at
Single-Base Resolution
Michael J. Booth,1* Miguel R. Branco,2,3* Gabriella Ficz,2 David Oxley,4 Felix Krueger,5

Wolf Reik,2,3† Shankar Balasubramanian1,6,7†

5-Methylcytosine can be converted to 5-hydroxymethylcytosine (5hmC) in mammalian DNA by the
ten-eleven translocation (TET) enzymes. We introduce oxidative bisulfite sequencing (oxBS-Seq),
the first method for quantitative mapping of 5hmC in genomic DNA at single-nucleotide resolution.
Selective chemical oxidation of 5hmC to 5-formylcytosine (5fC) enables bisulfite conversion of
5fC to uracil. We demonstrate the utility of oxBS-Seq to map and quantify 5hmC at CpG islands
(CGIs) in mouse embryonic stem (ES) cells and identify 800 5hmC-containing CGIs that have
on average 3.3% hydroxymethylation. High levels of 5hmC were found in CGIs associated with
transcriptional regulators and in long interspersed nuclear elements, suggesting that these
regions might undergo epigenetic reprogramming in ES cells. Our results open new questions
on 5hmC dynamics and sequence-specific targeting by TETs.

5-Methylcytosine (5mC) is an epigenetic DNA
mark that plays important roles in gene
silencing and genome stability and is found

enriched at CpG dinucleotides (1). In metazoa,
5mC can be oxidized to 5-hydroxymethylcytosine
(5hmC) by the ten-eleven translocation (TET) en-
zyme family (2, 3). 5hmCmay be an intermediate
in active DNA demethylation but could also con-
stitute an epigenetic mark per se (4). Levels of
5hmC in genomic DNA can be quantified with
analytical methods (2, 5, 6) and mapped through
the enrichment of 5hmC-containing DNA frag-

ments that are then sequenced (7–13). Such ap-
proaches have relatively poor resolution and give
only relative quantitative information. Single-
nucleotide sequencing of 5mC has been per-
formed by using bisulfite sequencing (BS-Seq),
but this method cannot discriminate 5mC from
5hmC (14, 15). Single-molecule real-time se-
quencing (SMRT) can detect derivatized 5hmC
in genomic DNA (16). However, enrichment of
5hmC-containing DNA fragments is required,
which causes loss of quantitative information
(16). Furthermore, SMRT has a relatively high
rate of sequencing errors (17), and the peak call-
ing of modifications is imprecise (16). Protein
and solid-state nanopores can resolve 5mC from
5hmC and have the potential to sequence unam-
plified DNA (18, 19).

We observed the decarbonylation and deami-
nation of 5-formylcytosine (5fC) to uracil (U)
under bisulfite conditions that would leave 5mC
unchanged (Fig. 1A and supplementary text).
Thus, 5hmC sequencing would be possible if
5hmC could be selectively oxidized to 5fC and
then converted to U in a two-step procedure (Fig.

1B). Whereas BS-Seq leads to both 5mC and
5hmC being detected as Cs, this “oxidative
bisulfite” sequencing (oxBS-Seq) approach would
yield Cs only at 5mC sites and therefore allow
us to determine the amount of 5hmC at a partic-
ular nucleotide position by subtraction of this
readout from a BS-Seq one (Fig. 1C).

Specific oxidation of 5hmC to 5fC (table S1)
was achieved with potassium perruthenate (KRuO4).
In our reactivity studies on a synthetic 15-nucleotide
oligomer single-stranded DNA (ssDNA) contain-
ing 5hmC, we established conditions under which
KRuO4 reacted specifically with the primary al-
cohol of 5hmC (Fig. 2A). Fifteen-nucleotide oligo-
mer ssDNA that contained C or 5mC did not
show any base-specific reactions with KRuO4 (fig.
S1, A and B). For 5hmC in DNA, we only ob-
served the aldehyde (5fC) and not the carboxylic
acid (20), even with a moderate excess of oxidant.
The KRuO4 oxidation can oxidize 5hmC in sam-
ples presented as double-stranded DNA (dsDNA),
with an initial denaturing step before addition of
the oxidant; this results in a quantitative conver-
sion of 5hmC to 5fC (Fig. 2B).

To test the efficiency and selectivity of the oxi-
dative bisulfite method, three synthetic dsDNAs
containing either C, 5mC, or 5hmC were each
oxidized with KRuO4 and then subjected to a
conventional bisulfite conversion protocol. Sanger
sequencing revealed that 5mC residues did not
convert to U, whereas both C and 5hmC resi-
dues did convert to U (fig. S2). Because Sanger
sequencing is not quantitative, to gain a more
accurate measure of the efficiency of transforming
5hmC to U, Illumina (San Diego, California) se-
quencing was carried out on the synthetic DNA
containing 5hmC (122-nucleotide oligomer) after
oxidative bisulfite treatment. An overall 5hmC-
to-U conversion level of 94.5% was observed (Fig.
2C and fig. S14). The oxidative bisulfite proto-
col was also applied to a synthetic dsDNA that
contained multiple 5hmC residues (135-nucleotide
oligomer) in a range of different contexts that
showed a similarly high conversion efficiency
(94.7%) of 5hmC to U (Fig. 2C and fig. S14).
Last, the KRuO4 oxidation was carried out on
genomic DNA and showed through mass spec-
trometry a quantitative conversion of 5hmC to
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5fC (Fig. 2D), with no detectable degradation of
C (fig. S1C). Thus, the oxidative bisulfite protocol
specifically converts 5hmC to U in DNA, leaving
C and 5mC unchanged, enabling quantitative,
single-nucleotide-resolution sequencing on wide-
ly available platforms.

We then used oxBS-Seq to quantitatively map
5hmC at high resolution in the genomic DNA
of mouse embryonic stem (ES) cells. We chose
to combine oxidative bisulfite with reduced rep-
resentation bisulfite sequencing (RRBS) (21),
which allows deep, selective sequencing of a
fraction of the genome that is highly enriched
for CpG islands (CGIs). We generated RRBS
and oxidative RRBS (oxRRBS) data sets, achiev-
ing an average sequencing depth of ~120 reads
per CpG, which when pooled yielded an aver-
age of ~3300 methylation calls per CGI (fig.
S3). After applying depth and breadth cutoffs
(supplementary materials, materials and meth-
ods), 55% (12,660) of all CGIs (22) were cov-
ered in our data sets.

To identify 5hmC-containing CGIs, we tested
for differences between the RRBS and oxRRBS
data sets using stringent criteria, yielding a false
discovery rate of 3.7% (supplementary materials,
materials and methods). We identified 800 5hmC-
containing CGIs, which had an average of 3.3%
(range of 0.2 to 18.5%) CpG hydroxymethylation
(Fig. 3, A and B). We also identified 4577 5mC-
containing CGIs averaging 8.1% CpG methyla-
tion (Fig. 3B). We carried out sequencing on an
independent biological duplicate sample of
the same ES cell line but at a different passage
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number, which according to mass spectrometry
had reduced levels of 5hmC (0.10 versus 0.16% of
all Cs), and consistently we found fewer 5hmC-
containing CGIs (supplementary text). 5hmC-
containing CGIs present in both samples showed
good quantitative reproducibility (fig. S5). In
non-CpG contexts, we found very few CGIs (71)
with levels of 5mC above the bisulfite conversion
error (0.2%) (fig. S9) and no CGIs with detect-
able levels of 5hmC.

Genes associated with 5mC-containing CGIs
included Dazl, which is known to be methylated
in ES cells (fig. S7) (23). Similarly, we found
that Zfp64 and Ecat1 had significant levels of
5hmC (7). Genes with >5% 5hmC at transcrip-
tion start site (TSS) CGIs were associated with
gene ontology terms related to transcription fac-
tor activity—and in particular were enriched in
developmentally relevant genes encoding for
Homeobox-containing proteins (such as Irx4,
Gbx1, and Hoxc4). To validate our method, we
quantified 5hmC and 5mC levels at 21 CGIs
containing MspI restriction sites by means of
glucosylation-coupled methylation-sensitive quan-
titative polymerase chain reaction (glucMS-qPCR)
(Fig. 3D) (24). We found a good correlation
between the quantification with oxRRBS and
glucMS-qPCR [correlation coefficient (r) = 0.86,

Fig. 3. Quantification of 5mC and 5hmC levels at CGIs by means of oxRRBS.
(A) Fraction of unconverted cytosines per CGI; 5hmC-containing CGIs (red)
have a statistically significant lower fraction in the oxRRBS data set; a false
discovery rate of 3.7% was estimated from the CGIs with the opposite
pattern (black). (B) 5mC and 5hmC levels within CGIs with significant levels
of the respective modification. (C) Examples of genomic RRBS and oxRRBS

profiles overlapped with (h)MeDIP-Seq profiles (7). Green bars represent
CGIs; data outside CGIs were masked (gray areas). Each bar in the oxRRBS
tracks represents a single CpG (in either DNA strand). (D) 5mC and 5hmC
levels at selected MspI sites were validated through glucMS-qPCR. OxRRBS
data are percentage T 95% confidence interval. Mean glucMS-qPCR values
are shown, with the black dots representing individual replicates.
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P = 5 × 10–7 and r = 0.52, P = 0.01 for 5mC
and 5hmC, respectively], showing that oxRRBS
reliably measures 5hmC at individual CpGs. We
also found a good correlation between oxRRBS and
our previously published (hydroxy)methylated
DNA immunoprecipitation sequencing [(h)MeDIP-
Seq] data sets (fig. S8) (7).

Across CGIs, both 5mC and 5hmC levels are
inversely correlated with CpG density, and in-
tragenic and intergenic CGIs contain higher lev-
els of either modification than those overlapping
TSSs (Fig. 4, A and B, and fig. S6) (13, 22). TET1
is enriched at TSSs, and thus, a high turnover of
5mC and 5hmC that would keep the steady-
state levels low at these sites has been suggested
(9). Non-TSS CGIs, however, appear to accumu-
late substantial amounts of both marks, suggest-
ing reduced turnover in these regions. We find
that the highest levels of 5hmC are found at
CGIs with intermediate levels (25 to 75%) of
5mC (Fig. 4C and fig. S6). Although low-5mC
CGIs have reduced potential for 5hmC genera-
tion and/or are subjected to a high turnover,
high-5mC CGIs are perhaps protected from ex-
tensive TET-mediated oxidation, thus stabiliz-
ing methylation. Intermediate-5mC CGIs are
therefore potentially more epigenetically plastic,
given the relatively high abundance of both
marks.

Most TSS CGIs (98%) have less than 10%
5mC, as well as low 5hmC, and these are asso-
ciated with higher transcription levels than av-
erage (fig. S10). Within this narrow window,
we find a mild negative correlation between
transcription and both 5mC and 5hmC levels
(fig. S10). At higher 5mC levels, there are in-
sufficient CGIs to obtain a statistically signifi-
cant result, and it remains possible that here the
epigenetic balance between 5mC and 5hmC plays

an important transcriptional role, as we previ-
ously suggested (7).

Last, we quantified 5mC and 5hmC levels at
two classes of retrotransposons [long interspersed
nuclear element–1 (LINE1) and intracisternal
A-particle (IAP)] using two approaches: aligning
the oxRRBS reads to the respective consensus
sequences and combining oxidative bisulfite
with MassARRAY technology (Sequenom, San
Diego, California) (fig. S11). We find that LINE1
elements display a considerable amount of 5hmC
(approximately 5%), as previously suggested
through (h)MeDIP-Seq (7). IAPs, on the other
hand, have low or no 5hmC. Because LINE1
elements are reprogrammed during preimplan-
tation development whereas IAPs are resistant
to this process (25), this suggests a possible in-
volvement of 5hmC in the demethylation of spe-
cific repeat classes.

The oxBS-Seq method reliably maps and
quantifies both 5mC and 5hmC at the single-
nucleotide level. Owing to the fundamentalmech-
anism of oxBS-Seq, the approach is compatible
with any sequencing platform. In ES cells, we
found that in CGIs 5hmC is exclusive to CpG
dinucleotides and that it accumulates at intra-
genic, low-CpG-density CGIs, which tend to have
intermediate levels of 5mC and may be particu-
larly epigenetically plastic.
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REVIEW

Single-cell epigenomics: Recording
the past and predicting the future
Gavin Kelsey,1,2*† Oliver Stegle,3,4*† Wolf Reik1,2,5†

Single-cell multi-omics has recently emerged as a powerful technology by which different
layers of genomic output—and hence cell identity and function—can be recorded
simultaneously. Integrating various components of the epigenome into multi-omics
measurements allows for studying cellular heterogeneity at different time scales
and for discovering new layers of molecular connectivity between the genome and its
functional output. Measurements that are increasingly available range from those
that identify transcription factor occupancy and initiation of transcription to long-lasting
and heritable epigenetic marks such as DNA methylation. Together with techniques in
which cell lineage is recorded, this multilayered information will provide insights into a
cell’s past history and its future potential. This will allow new levels of understanding of cell
fate decisions, identity, and function in normal development, physiology, and disease.

T
he discovery and description of individual
cells in the body has fascinated biologists
andpathologists since the cellwasdiscovered
(1).With the advent ofmolecular cell biology,
methods have been developed formeasuring

properties and functions of single cells at increas-
ing resolution. This includes, among others, fluo-
rescent protein reporters and single-molecule
detection of RNA or DNA. Only recently how-
ever, have high-throughput sequencing methods
allowed us more comprehensive access to genomic
information in single cells. Hence, single-cell RNA
sequencing has revealed how heterogeneous the
transcriptome of individual cells can be within
a seemingly homogeneous cell population or
tissue, providing insights into cell identity, fate,
and function in the context of both normal
biology and pathology [Stubbington et al. (2)
and Lein et al. (3)]. A few years from now, we
likely will have access to total RNA, small and
long noncoding RNA, and transcriptional initia-
tion output of the transcriptome (in addition to
the stable cytoplasmic component). The develop-
ment of single-cell RNA sequencing was followed
by single-cell genome sequencing, which has
provided new insights into genomic stability
and genomic variations that occur in physiology
and in disease—for example, in cancer, repro-
ductive medicine, or microbial genetics (4).
Epigenetics connects the genome with its func-

tional output (Fig. 1). Various epigenetic marks
have been described, ranging from DNA (such as
DNAmethylation) to histonemodifications, which
can affect the way the cell reads its genome and
hence its transcriptional output. Transcription

factors that bind to DNA can create or alter
epigenetic states (e.g., open or closed chromatin
and higher-order chromatin conformation), or
their binding can be sensitive to preexisting epi-
genetic states. Some epigenetic marks can also be
heritable from one cell generation to the next (dur-
ing mitosis) or from one organism generation to
the next [intergenerational or transgenerational
epigenetic inheritance (5)]. However, there are
key questions in epigenetics
that canonlybeaddressedby
determining the epigenome
in single cells. For example,
how is transcriptional het-
erogeneity between cells
connected with epigenetic
heterogeneity (if it is), do
changes in transcriptionpre-
cede or follow epigenetic
marks when cells change
their fate or function, and are epigenetic states
better or worse identifiers of rare cell populations
and transitional states than the transcriptome?
The recent development of single-cell epigenomics
methods is beginning to allow us to address these
fundamental questions.
Single-cell epigenome methods can identify

open or closed chromatin, including nucleosome
positioning (6–11). From these, one can infer the
likelihood of certain transcription factors to bind
or not bind to specific DNA sequences within in-
dividual cells, and methods are being devel-
oped that allow for assaying transcription factor
binding directly—for example, single-cell chro-
matin immunoprecipitation sequencing (ChIP-
seq). Thus, one can currently measure (albeit
imperfectly) the heterogeneity in a cell population
of key histone marks associated with transcrip-
tional states, such as H3K4me3, which indicates
active transcription, or H3K27me3, which is found
on geneswith a repressed transcriptional state (12).
Functional states (such as transcriptional output)
of the genome are also guided by the way the DNA
in each cell is organized into higher-order chroma-
tin, which can be determined by single-cell high-

throughput chromosome conformation capture
(Hi-C) (13). Finally, various DNAmodifications—
such as methylation (5mC), hydroxymethylation
(5hmC), and formylcytosine (5fC)—can be located
at the single-cell level by sequencing inmost areas
of the genome, including at single-nucleotide
resolution (14–18). These modifications are part
of the biological turnover of DNA methylation
and are associated, for example, with transcrip-
tional repression (5mC) or enhancers, includ-
ing active ones (5hmC and 5fC). Hence, today we
can probe the majority of epigenetic dimensions
with single-cell resolution.
The techniques described above have been

combined into single-cellmulti-omics (19), which
can reveal new connections between regulatory
principles that operate in the individual layers
(Figs. 1 and 2).Hence, genome sequencing together
with transcriptome sequencing can reveal how
genetic variation is related to transcriptional vari-
ation (20, 21). Furthermore, genome-scale methyl-
ome sequencing coupled with the transcriptome
(22, 23) has identified widespread associations
between epigenetic marks and transcriptional het-
erogeneity. The latest incarnation, triple-omics,
combines genome, methylome, and transcriptome
(24) assays and can reveal methylome, chromatin
accessibility, and the transcriptome (11). Together
with the development of multidimensional com-
putational methods (22, 25), these techniques
are beginning to tease out intricate and unique

cell- and locus-specific relation-
ships between, say,methylation
and nucleosome accessibility
of a gene promoter and the
transcriptional output of the
gene (11).

Single-cell profiling of
DNA modifications

Because epigenetic informa-
tion comes inmultiple forms—

covalentmodifications onDNA, posttranslational
modifications of histones, chromatin accessibil-
ity and compaction, and higher-order conforma-
tion of chromosome domains—each layer of
information requires a different biochemical
approach to profile it. This has implications for
the nature and quality of the information gen-
erated from single cells and for the ability to
combine multiple measures from the same sin-
gle cell in multi-omic applications. Depend-
ing on the type of question, it will be necessary
to determine whether depth or breadth (many,
many cells) is required for any specific study
(Fig. 2).
Technically, DNA methylation has been the

easiest to assay, building on well-established
bisulphite chemistry (26). However, bisulphite
treatment degrades DNA, preventing full-genome
coverage and requiring an adaptation of bisulphite
sequencing (BS-seq) to the single-cell level (14–16).
BS-seq, by which unmodified cytosine is converted
to thymine but 5mC remains unconverted (26),
yields single-base precision in principle, with the
advantage that both modified and unmodified
sites are identified (26). Therefore, sites without
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information are not falsely assigned as unme-
thylated and, because of the general congruence
of methylation over consecutive CpGs in many
genomic contexts, missing sites can be imputed
from relatively sparse data.
Current single-cell BS-seq (scBS-seq) protocols

achieve a coverage up to ~40% (15), whichmeans
that for most loci the observed sequence reads
will originate from only one chromosomal copy.
Recent advances in performing single-cell meth-
ylation profiling with combinatorial indexing
(27, 28) may mitigate some of these limitations
while simultaneously offering scalability to thou-
sands of cells in a single experiment (Fig. 2).
Alternatively, because methylation state can de-
termine whether particular restriction enzymes
cleave their recognition sites, methods that use
methylation-sensitive or dependent restriction
enzymes could present an alternative to bisulphite-
based methods (29).
Mapping the derivatives of 5mC in single cells

has been particularly useful in preimplantation
embryos, in which oxidation of 5mC contributes
to the active demethylation of the paternal chro-
mosomes (30). The pronounced strand bias
in distribution between sister cells of these
modifications along the same chromosome
has provided high-resolution analysis of sister-
chromatin exchange (31) and has been used as
a lineage reconstruction tool (17), as well as
mapping active demethylation in advance of
expression at the promoters of developmen-
tally important genes (18). Such advances have

required alternative approaches, because 5mC
cannot be discriminated from the less abun-
dant 5hmC after bisulphite treatment, and the
rarer derivatives 5fC and 5-carboxycytosine
(5caC) are indistinguishable from unmodified
cytosine.
Treatment with the CpG methylase M.SssI

[methylase-assisted bisulphite sequencing, (MAB-
seq)] (31) allows indirect detection of 5fC, to-
gether with 5caC, due to their retention as the
only sites remaining susceptible to C to T conver-
sion after bisulphite treatment. Careful control of
themethylation reaction is needed to minimize
false-positive calls, particularly for a rare modi-
fication such as 5fC, which is present at most at
tens of thousands of CpG sites, compared with
millions of CpGsmodified by 5mC. 5hmC can be
profiled in single cells by glucosylating 5hmC
positions to generate recognition sites for the
restriction endonuclease AbaS1 (scAba-seq) (17).
This provides a positive readout of 5hmC, but,
with the inclusion of multiple enzymatic reac-
tions, there is an unknown false-negative rate,
which might contribute to a range in the num-
ber of 5hmC positions recorded in single cells.
5fC can be detected in single cells by direct
chemical labeling with the specific reactivity of
malononitrile [chemical-labeling-enabled C-to-T
conversion sequencing (CLEVER-seq)] (18). The
adduct produced prevents normal pairing with
G, such that labeled 5fC sites are read as T during
polymerase chain reaction (PCR) amplification.
In theory, this approach may allow for robust de-

tection of modified bases on single-molecule se-
quencing platforms.

Combining methylation profiling into
multi-omics approaches

scBS-seq can be combinedwith scRNA-seq through
separation of nuclei from cell cytoplasm, separa-
tion of RNA and DNA for separate downstream
reactions, or preamplification of RNA and DNA
in the same cell lysate before splitting and parallel
processing for genomic DNA amplification and
cDNA library preparation (22–24). BS-seq cover-
age is sufficiently uniform to permit identification
of chromosome aneuploidies or large CNVs from
regional variations in read depth (24). Of note,
similar to scRNA-seq protocols that use plate-
basedmethods, scBS-seq can inprinciple be coupled
with profiling of up to tens of cell-surfacemarkers
that can be assayed using fluorescence-activated
cell sorting, an approach that has been applied in
immunology [see Stubbington et al., (2)].
Bisulphite sequencing also underlies the nu-

cleosome occupancy and methylome (NOME)
sequencing method, which enables information
on nucleosome positioning and accessible chro-
matin to be inferred simultaneously with DNA
methylation (9–11). Individual lysed cells are
treatedwithM.CviPI, whichmethylates GpC sites
in accessible DNA; then, following bisulphite
treatment, methylated cytosines in a GpC con-
text demarcate accessible DNA (linker regions
and nucleosome-free DNA), while methylation
is read from conversion events of CpGs. Because
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Fig. 1. Single-cell methods and heterogeneity of different molecular
layers. (Left) Overview of different molecular layers that can be assayed
using single-cell protocols. (Right) A cell with different layers of multi-

omics measurements, as defined on the left. Concordance or heterogeneity
respectively may exist between the different layers, and this can be
recorded by single-cell sequencing and computationally evaluated.
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both accessible and nonaccessible states are re-
ported,missing information is not falsely assigned,
which provides an advantage over other meth-
ods for chromatin accessibility. On the other
hand, as a method that sequences the genome
with no selectivity for open chromatin, high lev-
els of sequencing may be needed to guarantee
coverage of elements of interest.
Another potential limitation is the need to filter

out C-C-G and G-C-G positions from the methyl-
ation data, which reduces the number of genome-
wide cytosines that can be assayed comparedwith
scBS-seq by ~50%. However, despite this filter, a
large proportion of the loci in genomic regions
with important regulatory roles, such as promoters
and enhancers, can still be profiled using scNOME-
seq–based methods (11). scNOME-seq has identi-
fied chromatin remodeling dynamics on the two
parental alleles during preimplantation develop-
ment, discriminating cis-regulatory elements open
inall cells andpromoters thatdiverge inaccessibility
between individual blastomeres, these being rela-
tively enriched in gene ontology (GO) terms related
to developmental processes and cell differentiation
(9). Further enhancements of these data can be
provided by incorporating transcriptome informa-
tion from the same cell (Fig. 2) (11) to query the
strength of coupling between DNA methylation,
open chromatin, and transcriptional output.

Mapping functional chromatin states in
single cells

A variety of assays have been adapted to profile
chromatin states in single cells; these are pred-
icated on enrichment-based strategies; thus, in
principle, they have a lower sequencing overhead
than scNOME-seq. Open chromatin can be iden-
tified by deoxyribonuclease I (DNase I) sensitiv-
ity, which was first adapted to the single-cell level
in a low-throughput application able to detect an
average of ~40,000 DNase I hypersensitive sites
(DHSs) per cell (6). However, due to nonspecific
signals throughout the genome, the false-discovery
rate is high. Thus, previous knowledge of DHSs
from bulk experiments is required to identify gen-
uine DHSs, with the confidence of detection of
proximal regulatory elements scaling with expres-
sion level of associated genes.
Higher-throughput applications have been de-

veloped for the assay for transposase-accessible
chromatin sequencing (ATAC-seq), in which DNA
accessibility is probed by the ability of the pro-
karyotic Tn5 transposase to insert sequencing
adapters into accessible regions of the genome,
in contrast to regions that are inaccessible, such
as those interacting with a nucleosome. These
approaches have used microfluidics to process
single cells and introduce cell-identifying bar-
codes as part of the tagging process (7) or by
combinatorial-cell barcoding (8) (Fig. 2), allow-
ing parallel processing of a large number of sam-
ples (>10,000).
Throughput levels face a cost of reduced depth,

as typically <10% of known promoters are rep-
resented in an individual scATAC-seq library.
Sparseness of data limits analysis of cellular
variation at individual regulatory elements. This

may preclude ab initio identification of open
chromatin sites, and the absence of open chro-
matin at a locus of interest in a single cell may
reflect missing data. As well as reporting active
regulatory elements governing hematopoietic
differentiation, scATAC-seq has identified the
evolution of regulatory elements during disease
progression in acute myeloid leukemia (32). In
addition, the ability of scATAC-seq to delineate
the cis-regulatory landscapes of constituent cell
types from a complex solid tissue has been dem-
onstrated by isolating single nuclei from frozen
samples of mouse forebrain (33).

Posttranslationalmodifications of histones that
correlate with chromatin activity states are con-
ventionallymapped by ChIP-seq. Adapting ChIP-
seq to extract this information from single cells
presents additional problems of specificity and
sensitivity, because it is dependent on antibody
binding to pull down modified histones with
associated DNA. Droplet approaches and cellular
barcoding to label nuclei individually at the stage
of micrococcal nuclease digestion (which frag-
ments chromatin intonucleosomes)with immuno-
precipitation on pools of cells and subsequent
deconvolution of single-cell data after multiplex
library sequencing allow thousands of single
cells to be processed in single experiments (12)
(Fig. 2). Yet, although ~50% of sequencing reads
may fall within known peaks of H3K4me3 en-
richment (the archetypal mark of active pro-
moters), only ~5% of known peaks are detected
per cell, with data too sparse for productive de
novo peak calling.
We shall inevitably see technical improvements

in each of these chromatin profiling methods, as
well as incorporating them into multi-omic ap-
proaches. A challenge is to extract RNA from cell
lysates in a way that preserves both chromatin
state and RNA integrity, but with the sparsity of
data from current scATAC-seq, scDNase-seq, or
scChIP-seq methods, attainment of parallel data
on gene expression and chromatin state at specific
loci is challenging, and processing increasing num-
bers of cells may be necessary to obtain sufficient
convergent information. Any of the above meth-
ods in theory could be combined with bisulphite
sequencing to investigate DNAmethylation state,
which is not to underestimate the technical chal-
lenges thatmay need to be overcome in adding the
chemical steps involved in bisulphite treatment.

Readouts of gross chromatin
organization in single cells
Higher orders of chromosome organization in
interphase nuclei are represented by a number of
configurations: topologically associated domains
(TADs) divide the genome into structurally sep-
arate segments contained in loops and constrained
by boundary elements, and lamin-associated do-
mains (LADs) occupy the nuclear periphery. LADs
have been probed at the single-cell level by Dam-ID,
in which the Dam adenosine methyltransferase
is fused with lamin B1 (a constituent of the nuclear
lamina) and expressed in cells so that sites of in-
teraction are mapped from sequence tags after
DpnI digestion (34). Because LADs are megabase-
scale chromosome domains, with 1100 to 1400
domains present in a typical cell, only a low rate
of false negatives is expected. The extent of het-
erogeneity between cells thus allows a good
measure of the numbers of constitutive and
facultative LADs, as well as cooperativity be-
tween LADs; such data are not accessible from
population-based approaches. Dam-ID method-
ology could be applied to any other protein in-
teractingwithDNA, such as chromatin remodelers
and transcription factors. One caveat is that the
false-negative rate will increase as the domain of
interaction diminishes, or for proteins with very
transient interactions.
Hi-C data measures the proximity of DNA se-

quences in three-dimensional (3D) space on the
basis of ligation events in fixed nuclei. A variety of
optimizations have been introduced to increase
resolution of the data (35), as well as throughput
(36, 37), since the first report of a single-cell Hi-C
method (13). Using haploid cells, single-cell Hi-C
has allowed modeling of the 3D organization of
all chromosomes in individual cells (38) and
revealed how bulk-cell data obscures the dynam-
ic reorganization of chromosome compartments
during the cell cycle (36). Despite recent advances,
the resolution of scHi-C methods remains insuf-
ficient to interrogate contacts between specific
promoters and their enhancers, which awaits
progress inminiaturizing approaches to promoter-
capture Hi-C or complementation with functional
experiments, such as epigenome editing (39).

Scalability and limitation of
current methods

There are common challenges and limitations
that apply to several single-cell epigenomemeth-
ods. An important bottleneck is the currently
limited capture rate (e.g., up to ~40% for scBS-seq),
whichmeans that even if libraries are sequenced to
saturation, missing values are unavoidable (Fig. 3).
Other potential drawbacks are low mappability
rates (~20 to 30%) and high levels of PCR du-
plicates (15), in particular for deeply sequenced
libraries (16), which need to be considered when
analyzing the resulting data.
So far, epigenome-basedmethods tend to offer

lower throughput than scRNA-seq, which can al-
ready be scaled to tens or hundreds of thousands
of cells. Recent advances to perform single-cell
methylation profiling, ATAC-seq, and Hi-C using
combinatorial indexing (8, 28, 37) have narrowed
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this gap. However, in particular, multi-omics
methods that require a physical separation step
of the RNA andDNA remain limited tomedium-
throughput analyses of hundreds of cells (Fig. 2).
Another current challenge is to estimate and con-

trol for technical sources of variation. In single-
cell transcriptomics, the level of technical noise
can be estimated with spike-in standards, but
such normalization strategies are not established
for epigenome sequencing. A general strategy that

can be useful are negative and positive controls—
e.g., diluted bulk material used to create “pseudo
cells” or control wells that combine one cell
each from different species (16), which can be
processed alongside each batch of single cells.

Computational analysis to account for
missing information using pooling
strategies and imputation

Technological advances for assaying epigenetic
diversity at the single-cell level have gone hand-
in-hand with computational methods for inter-
preting the data generated (Fig. 3). A first critical
step in the computational analysis is the appro-
priate normalization of the sequencing data while
accounting for the typically high levels of noise
observed. The sparse coverage of processed single-
cell epigenome data sets requires careful consid-
eration in downstream analyses.
Protocols vary in their coverage and whether

missing data can be identified directly. Formeth-
ods that use a bisulphite conversion step, the
read coverage is independent of variation in DNA
methylation, and hence missing data can be
readily identified. For other methods, such as
single-cell ATAC-seq, this can be more difficult
because the absence or presence of sequence
reads is the primary readout of the assay. Dif-
ferent strategies to address the low coverage in
these data, such as aggregating read information
within regions, by combining reads in consecu-
tive sequence windows (15, 16, 40) or in annotated
genomic contexts, such as promoter regions, en-
hancers and the like have been proposed. How-
ever, there are trade-offs between spatial resolution
and coverage, parameters that may greatly affect
downstream analyses.
Depending on the question, it may be advan-

tageous to adjust for differences in global meth-
ylation, either at the whole-cell level or stratified
by genomic context (16). A second strategy is to
pool cells with similar epigenetic profiles, such as
with an initial clustering step to then aggregate
read information across cells within each cluster
(27). These average profiles can offer high spatial
resolution, however, at the cost that epigenetic
diversity can only be studied at the level of the
identified cell clusters (24). A third strategy com-
prisesmodel-based approaches to imputemissing
information with predictive models. Such strat-
egies have been proposed in the context of bulk
epigenome profiles (41, 42) and most recently
have been generalised for imputing single-cell
DNA methylation data (25). Additionally, we
note that parallel data from multi-omics exper-
iments will be associated with different patterns
of missing data. Because of cost and experimental
limitations, not all molecular layers will be as-
sayed in each cell, and hence new computational
methods need to handle heterogeneous designs
to impute entire molecular layers.

Interrogating single-cell
epigenome variation

Depending on the biological question at hand,
several downstream analyses can be considered.
Caution is required to consider the biological
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Fig. 2. Depth versus breadth: Multi-omics and cell-barcoding methods. Examples of different
technical approaches are shown. (Top) Single-cell nucleosome,methylation, and transcription sequencing
(scNMT-seq) (11) by which nucleosome accessibility, DNA methylation, and the transcriptome are read
simultaneously at considerable depth in each cell; however, with individual cells processed in parallel
but separately, cell numbers that can be currently analyzed in this way are limited to hundreds or
thousands. (Middle) Barcoding chromatin in individual cells encapsulated in oil droplets, followed by
pooling to bulk up material, enables thousands of cells to be processed while seeking to preserve signal-
to-noise ratio (12). (Bottom) Combinatorial-cell barcoding (8, 64), where readouts can be identified as
coming from individual cells by unique combinations of barcodes present in each cell.This approach can
be carried out on large numbers of cells (millions), but the depth of information per cell is limited.
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sources of variation that onemay expect in a given
study. For example, the cell cycle is a dominant
driver of gene expression variation in single cells
(43) but also manifests at other molecular layers,
including copy-number states and DNA methyla-
tion (9). Also, DNA replication dynamics need to
be taken into consideration during experimental
design and data analysis.
A starting point for many analyses can be tests

for differential epigenetic profiles between dif-
ferent cell clusters—for example, to identify dif-
ferentially methylated regions between cell types
or states (16). In cell populations without strong
substructure, it may be advantageous to quantify
the epigenetic diversity of individual loci with
the pairwise distance of globalmethylome (16) or
estimates of epigenetic variability between cells
at individual loci (15).
As multi-omics protocols become more widely

accessible, there are also exciting opportunities
to interrogate associations between different epi-
genetic layers and to examine associations with
the transcriptome. This allows the strength of
coupling between different regulatory layers to
be probed in great detail. Variation in coupling
strength—for example, between DNA methyla-
tion and transcription—is known from bulk
analyses, comparing pluripotent to somatic cell
types (44).
However, the variation in coupling strength

can be investigated with single-cell techniques
for classes of loci or individual loci between cells
or between different loci within the same cell.
Such variation has already been identified at
different levels, including individual loci such as
gene promoters and enhancers with epigenetic
variation associated with expression levels of in-
dividual genes, as well as global genome-wide cou-
plings between different layers (22). If multi-omics
methods are applied to hybrids or outbred indi-
viduals, it may be possible to assess allele-specific
methylation and expression, thereby aligning reg-
ulatory differences across molecular layers (23).
For other analyses, it remains an open question
how to best integrate data across different molec-
ular layers. Tying together different data modal-
ities will improve cell clustering, and the use of
epigenetic information in tandem with transcrip-
tional data will aid in reconstructing pseudotem-
poral orderings of cells (Fig. 4).

Adding a temporal dimension in
single-cell studies

Putting multidimensional information together
for each single cell gives insights not only into
cell identity and function but also, through the
use of different layers of the epigenome, into past
history and future potential (Fig. 4A). Imagine
that an otherwise stable DNA methylation mark
(for example, in an imprinted gene) has changed at
a specific developmental time point, which can be
recorded through lineage tracing by CRISPR
scarring (45–49) (Fig. 4B). This is an example in
which past history is recorded. Conversely, char-
acteristic DNA methylation patterns in induced
pluripotent stem cells (iPSCs) can be predictive
of the differentiation potential of these iPSCs

(50), an example of an epigenetic state revealing
future potential.
Different epigenetic marks have different sta-

bilities in time, providing the potential to record
various biological time scales. An extracellular
signal acting via intracellular signaling pathways
will affect transcription factor binding and thus
transcription. Because transcription factor binding
can be highly dynamic and nonprocessed tran-
scripts are usually short-lived, such signals may
reflect the shortest possible biological response
time scale. Conversely, though, some transcrip-
tion factors may bind throughout cell division
(51) and transmit epigenetic information to the
next cell generation. Different binding time scales
and their functional consequencesmay be revealed
by coupling the analysis to cell cycle state through
the transcriptome (43). Similarly, nucleosome ac-
cessibility in promoters (or other regulatory se-
quences) may occur before the chromatin opening
up (as may be the case with pioneer factors) or,
more conventionally, allow access to transcription
factors. Within one cell cycle, therefore, we can
reconstruct a signaling response at its cognate
promoter, giving rise to transcriptional initiation
followed by the processed transcript in the cyto-
plasm. We can discover multiple genomic dimen-
sions in which this signaling response plays out
within this single cell. It is currently possible to
reconstruct such multidimensional responses in
highly synchronized tissue culture systems but
not in the natural setting in vivo, let alone in
complex disease situations.

The applications with the most fundamental
potential for breakthroughs will also consider
epigenetic memory in the system. Some epige-
netic marks are heritable across cell divisions
(more so in somatic cells than in early embryos),
including 5mC DNA methylation, where the in-
heritance is very stable with a well-understood
mechanism. Others, such as H3K27me3 and
H3K9me2/me3, may also be inherited, although
perhapswith less stability and less fidelity.Wheth-
er histone marks associated with transcriptional
activation could also be heritable is an open ques-
tion. A key question here is to what extent epige-
netic marks are instructive (e.g., imprinting) or
follow transcriptional activation or repression to
lock in stabilization of cell fate decisions.
Lineage marking via single-cell sequencing

methods will allow us to follow the timing of
particular epigenetic changes with regard to the
states before the initiation of, during, and post
transcription. Furthermore, hairpin bisulphite se-
quencing (52, 53) (in which methylation infor-
mation is obtained from both DNA strands) in
single cells will identify how heritable methyla-
tion is at individual loci and how heterogeneous
or homogeneous such heritability is within a cell
population. Measurements of 5hmC, 5fC, and 5caC
across cell populations, together withmechanistic
modeling approaches (54, 55), will allow insights
into the generation of epigenetic heterogeneity
versus stable inheritance in early development,
aging, and disease. The exciting prospect of single-
cell epigenome editing (39) suggests that detailed
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Fig. 3. Multi-omics and computational methods. Shown are typical trade-offs between single-cell
RNA-seq, single-cell epigenome protocols, and multi-omics methods that provide readouts from
multiple molecular layers in parallel. Consequently, it is commonly required to integrate data from
different sequencing protocols. Raw sequence reads from these methods are deduplicated and
aggregated into locus-specific readouts, with an optional imputation step to complete missing
information. Associations between molecular layers can be used for completing missing data and
allow for discovering regulatory associations.
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functional testing of epigenetic marks in their
various roles may soon become a reality too.
Epigenetic information may also be used to

measure cell lineages (Fig. 4B). Lineage-tracing
methods using CRISPR scarring have been devised

(45–49), but it is not clear how accurately and
reliably they work in different biological settings.
Thus, DNA modifications may allow us to trace
lineages by marking a particular chromosome or
DNA strand, which is segregated into a particu-

lar cell type (17). This will be especially useful for
DNAmodifications that are not normally herita-
ble (such as 5hmC, 5fC, or 5caC).
Some heritable epigenetic marks may be func-

tionally neutral—i.e., set up in early development
but simply mechanically copied at each cell di-
vision. Because themaintenancemethylationma-
chinery has a finite error rate [1 in 25 cell divisions
per CpG, although this has only beenmeasured in
certain contexts (56)], every cell may harbor a
unique code of methylation sites that would al-
low tracking of its developmental trajectory. This
acts as if lineage weremarked by DNAmutations
(either natural ones or induced) (Fig. 4B). This
may allow noninvasive lineaging in the future
without genetic manipulation, which might be
particularly useful in human studies.
We have highlighted the different time scales

of variation of these different layers of the epi-
genome, as well as their interdependencies. It
is important to recognize that most of these are
from indirect measurements or inferences. In
due course, we may connect epigenome dimen-
sions by pseudotime measurements, allowing
us to formulate temporal connections and de-
pendencies. However, what is yet to materialize
are real-time in vivo recording systems of epi-
genetic states, ideally at a single-locus level. Hence
the single-cell epigenomics revolution has addi-
tional challenges to overcome. Our existing meth-
ods are already allowing us to zoom in on new
concepts of “cell fate”—for example, in develop-
mental systemswhere cell history can be recorded
in epigenetic marks. Yet their actions at key deci-
sion points require yet unknown mechanisms
(57, 58). This presumably requires new epige-
nomic codes for cell plasticity and future poten-
tial. Deeper insights into these rules will provide
not only a better understanding of living biolog-
ical systems but also new tools and new ways of
thinking about changing cell fate experimentally.
At the other end of the spectrum, we antic-

ipate information regarding the presumed de-
gradation of cell fate during aging. Models
involve either clonal competition or exhaustion
and hence a potential loss of cell heterogene-
ity in an aging tissue. Conversely, an increase
in heterogeneity may occur with a concomitant
loss of coherence of transcriptional networks
(59). Interestingly, programmed changes of the
epigenome during aging, particularly of the DNA
methylome, accurately record chronological age.
However, this “methylation aging clock” can be
accelerated or decelerated by biological interven-
tions that shorten or lengthen life span, respec-
tively (60–62). It remains to be seen how this
methylation clock plays out at the single-cell
level. As many human adult diseases, including
cancer, are associated with altered epigenome
patterns, individual cells may gradually and in a
potentially programmed way acquire disease risk
via changes in epigenetic marks during aging.
Conversely, single-cell multi-omics methods may
identify hidden cell states with potential for tis-
sue repair or rejuvenation.
As large-scale efforts are mapping all human

cells transcriptionally and spatially [e.g., the
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Fig. 4. Time scales of epigenetic heterogeneity at different layers and lineage tracing. (A) Shown
are different layers of information that can be recorded at least in principle by single-cell multi-omics,
from transcription factor binding and transcriptional responses to long-term epigenetic memory such as
is possible with DNA methylation. Rough time scales are indicated by colored bars—with shading indicating
transitions in information—and may range from seconds to years. With aging, fidelity of epigenetic
information such as DNA methylation may degrade, leading to increased cell-to-cell heterogeneity.
(B) Lineage tracing using genetic or epigenetic memory. Cell lineage can be traced by CRISPR scarring
approaches in which each cell and its descendants within a lineage are linked by unique mutations or
barcodes. DNAmodificationsmay also be used to track lineage based on their inheritance and on errors in their
maintenance at DNA replication. Nonheritable modifications (5hmC, 5fC, and 5caC) have a short-term
lineaging potential, whereas heritable modifications (5mC) have long-term noninvasive lineaging potential.
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Human Cell Atlas (63)], there is the prospect in
the future that epigenomics measurements, in
particular, will add unprecedented layers of in-
formation about memory of past experiences and
about future potential of cells in the human body.

Outlook

Imagine that we had at our disposal the tech-
niques for single-cell multi-omics, including the
ability to identify all key epigenetic modalities,
robustly and at an affordable cost. Imagine sim-
ilarly that we had the computational tools to
unravel and visualize connections between the
different molecular layers within and between
cells. Fromsuch advances,we anticipate answering
many questions in embryonic development (includ-
ing comparisons of various organisms).Wewould
like to know any epigenetic determinants of cell
fate and lineage decisions and their timing and/or
memory of such decisions.
Travelling back in time (i.e., generating iPSCs)

or across tissues (via transdifferentiation), we will
be able to see how each cell responds in terms of
erasing epigenetic memory and acquiring new
cell fate trajectories, especially those not part of
the normal developmental repertoire. We also an-
ticipate unraveling tissue-level heterogeneity.
Highly multiplexed methylome sequencing can
already identify cell types in a complex tissue such
as the brainwith similar accuracy as transcriptome
sequencing (27).
Finally, we aim to discover links between

epigenetic and genetic heterogeneity, showing
to what extent epigenetic change (particularly
in disease) is driven by underlying changes in
DNA sequence such as copy-number variation,
mutations, and rearrangements in cancer, or
themobility of selfishDNA elements. Conversely,
primary epimutations may underlie the initia-
tion of some diseases butmay subsequently elicit
more permanent genetic change that stabilizes
the disease phenotype.
These advances have implications for diagnos-

ing and understanding disease progression. We
envision that precancerous cell states may be

detected at an early stage in tissues by their single-
cell epigenome signatures, and other chronic
diseases may also reveal unique signatures of
progression. Single-cell epigenomic analyses might
allow for a biopsy of only a few cells or by capturing
small amounts of cell-freeDNA in circulation. Such
tools may also reveal cell populations in tissues
with the greatest potential for regeneration and
tissue repair.
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