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Systems	Biology	

• History	and	Definitions	
• Reductionism/	Genetic	Determination	
• Holism/	Emergentism/	Homeostasis	or	Robustness	
• Revolutionary	and	Evolutionary	Systems	Biology	
• Networks	and	Computational	Biology	
• Basic	Molecular	and	Cellular	Components	
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It is often said that biological systems, such as cells,
are ‘complex systems’. A popular notion of complex
systems is of very large numbers of simple and
identical elements interacting to produce ‘complex’
behaviours. The reality of biological systems is

somewhat different. Here large numbers of functionally
diverse, and frequently multifunctional, sets of elements
interact selectively and nonlinearly to produce coherent
rather than complex behaviours.

Unlike complex systems of simple elements, in which
functions emerge from the properties of the networks they
form rather than from any specific element, functions in
biological systems rely on a combination of the network 
and the specific elements involved. For example, p53 (a 
393-amino-acid protein sometimes called ‘the guardian of
genome’) acts as tumour suppressor because of its position
within a network of transcription factors. However, p53 is
activated, inhibited and degraded by modifications such as
phosphorylation, dephosphorylation and proteolytic
degradation, while its targets are selected by the different
modification patterns that exist; these are properties that
reflect the complexity of the element itself. Neither p53 nor
the network functions as a tumour suppressor in isolation.
In this way, biological systems might be better characterized
as symbiotic systems.

Molecular biology has uncovered a multitude of biologi-
cal facts, such as genome sequences and protein properties,
but this alone is not sufficient for interpreting biological 
systems. Cells, tissues, organs, organisms and ecological
webs are systems of components whose specific interactions
have been defined by evolution; thus a system-level under-
standing should be the prime goal of biology. Although
advances in accurate, quantitative experimental approaches
will doubtless continue, insights into the functioning of bio-
logical systems will not result from purely intuitive assaults.
This is because of the intrinsic complexity of biological sys-
tems. A combination of experimental and computational
approaches is expected to resolve this problem.

A two-pronged attack
Computational biology has two distinct branches: knowl-
edge discovery, or data-mining, which extracts the hidden
patterns from huge quantities of experimental data, form-
ing hypotheses as a result; and simulation-based analysis,
which tests hypotheses with in silico experiments, providing
predictions to be tested by in vitro and in vivo studies.

Knowledge discovery is used extensively within bio-
informatics for such tasks as the prediction of exon–intron
and protein structure from sequence1, and the inference of
gene regulatory networks from expression profile2–4. These
methods typically use predictions based on heuristics, on
statistical discriminators that often involve sophisticated
approaches (such as hidden Markov models) and on other
linguistic-based algorithms (see review in this issue by
Searls, pages 211–217).

In contrast, simulation attempts to predict the dynamics
of systems so that the validity of the underlying assumptions
can be tested. Detailed behaviours of computer-executable
models are first compared with experimental observation.
Inconsistency at this stage means that the assumptions that
represent our knowledge on the system under consideration
are at best incomplete. Models that survive initial validation
can then be used to make predictions to be tested by experi-
ments, as well as to explore questions that are not amenable
to experimental inquiry.

Although traditional bioinformatics has been used widely
for genome analysis, simulation-based approaches have
received little mainstream attention. This is now changing.
Current experimental molecular biology is now producing the
high-throughput quantitative data needed to support simula-
tion-based research. Combined with rapid progress of
genome and proteome projects, this is convincing increasing
numbers of researchers of the importance of a system-level
approach5. At the same time, substantial advances in software
and computational power have enabled the creation and
analysis of reasonably realistic yet intricate biological models.

There are still issues to be resolved, but computational
modelling and analysis are now able to provide useful 
biological insights and predictions for well understood 
targets such as bifurcation analysis of the cell cycle6,7, 
metabolic analysis8,9 or comparative studies of robustness of
biological oscillation circuits10.

It is crucial that individual research groups are able to
exchange their models and create commonly accepted
repositories and software environments that are available to
all. Systems Biology Markup Language (SBML;
http://www.sbml.org/), CellML (http://www.cellml.org/)
and the Systems Biology Workbench are examples of efforts
that aim to form a de facto standard and open software 
platform for modelling and analysis11,12. These significantly
increase the value of the new generation of databases 
concerned with biological pathways, such as the Kyoto
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Encyclopedia of Genes and Genomes (KEGG)13, Alliance for Cellular
Signaling (AfCS)14 and Signal Transduction Knowledge Environ-
ment (STKE)15, by enabling them to develop machine-executable
models, rather than mere human-readable forms.

Such changes are fuelling a renewed interest in a system-level
approach to biology, but we should not forget that this is an area with
a long history16,17, rooted as much as anywhere in classical physiology
(see review in this issue by Buchman, pages 246–251). However, the
close linkage between system-level understanding and molecular-
level knowledge was made possible only by the recent progress in
genomics and proteomics. The approach attempts to understand
biological systems as systems, specifically targeting the identification
of their structures and dynamics, and the establishment of methods
to control cellular behaviours by external stimuli and to design 
genetic circuits with desired properties. These aims will be achieved
only by combining computation, system analysis, new technologies
for comprehensive and quantitative measurements, and high-
throughput quantitative experimental data18,19.

Multiple faces of robustness
Among various scientific questions, one issue receiving considerable
attention is how robustness is achieved and how it evolves within 
various aspects of biological systems. Robust systems maintain their
state and functions against external and internal perturbations, and
robustness is an essential feature of biological systems, having been
studied since the earliest attempts at a system-oriented view (for
example, Cannon’s homeostasis and Weiner’s cybernetics16). Biolog-
ical systems have been found to be robust at a variety of levels from
genetic switches to physiological reactions (see review in this issue by
Buchman, pages 246–251).

Robust systems are both relatively insensitive to alterations of their
internal parameters and able to adapt to changes in their environment.
In highly robust systems, even damage to their very structure produces
only minor alterations in their behaviour. Such properties are achieved
through feedback, modularity, redundancy and structural stability.

A variety of feedback and feed-forward control is observed
throughout biology. For example, integral feedback is central to bac-
teria chemotaxis20–22. And p53-based cell-cycle arrest displays what is

known in the engineering field as ‘bang-bang control’, a subtype of
feedback control. Damage to DNA is sensed by proteins such as ATM
(for ataxia telangiectasia mutated, named after a disease in which this
enzyme is mutated) and DNA-dependent protein kinase, which acti-
vate the p53 protein. Active p53 then transactivates p21, which results
in G1 arrest; this state is released when DNA damage is repaired, thus
forming a feedback loop.

Cells themselves provide the most obvious form of biological
modularity by physically partitioning off biochemical reactions.
However, biochemical networks within cells also form modular
compartments isolated by spatial localization23, anchoring of 
proteins to plasma membranes and by dynamics.

Cells also provide redundancy, with many autonomous units 
carrying out identical roles. But redundancy also appears at other 
levels by having multiple genes that encode similar proteins, or multi-
ple networks with complementary functions. For example, Per1, Per2
and Per3 genes encode proteins in the circadian oscillator, but 
knock-out of one or two of these produces no visible phenotype. The
Cln gene family form redundant pairs for the cell cycle24. The stringent
response of Escherichia coli activates alternative metabolic dynamics
depending upon the availability of lactose and glucose25.

Structurally stable network configurations increase insensitivity
to parameter changes, noise and minor mutations. For example, 
elegant experiments on the archetypal genetic switch — the lambda
phage decision circuit — have shown it to be robust against changes
in binding affinity of promoters and repressors; its stable switching
action arises from the structure of its network, rather than the specif-
ic affinities of its binding site26. Additionally, a number of networks
for biological oscillations and transcriptional regulations have been
shown to be tolerant against noise (ref. 27; and see review in this issue
by Rao and colleagues, pages 231–237). But only computer 
simulation could have shown the degree to which the gene regulatory
networks for segmentation during Drosophila embryogenesis
remain robust over a large range of kinetic parameters28,29.

The robustness of a system is not always to an organism’s 
advantage. Cancer cells are extremely robust for their own growth
and survival against various perturbations. They continue to 
proliferate, driven by the engine of the cell cycle, eliminating 
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Figure 1 Linkage of a basic systems-biology research cycle with drug discovery and treatment cycles. Systems biology is an integrated process of computational modelling,
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communication with their external environment, thus making it
insensitive against external perturbations. In addition, many anti-
cancer drugs are rendered ineffective by the normal functioning of a
patient’s body, including defence systems such as the metabolism of
xenobiotics (most notably by cytochrome P450), the brain–blood
barrier, and the dynamics of gene regulatory circuits, which can
adjust the concentration of drug targets through feedback 
mechanisms and redundancy. To establish treatments that move
patients from a stable but diseased state to a healthy one will require
an in-depth, system-level understanding of biological robustness.

Although the general principles of robust systems are well estab-
lished, there remain a number of unresolved issues concerning their
evolution and execution in specific biological systems, and how they
can be manipulated or designed. Control theory has been used to
provide a theoretical underpinning of some robust systems, such as
adaptation through negative feedback21. However, this approach has
limitations. For example, current control theory assumes that target
values or statuses are provided initially for the systems designer,
whereas in biology such targets are created and revised continuously
by the system itself. Such self-determined evolution is beyond the
scope of current control theory.

No free lunch
Although robustness is critical in assuring the survival of a biological
system, it does not come without cost. Carlson and Doyle emphasize
the “robust, yet fragile” nature of complex systems exhibiting highly
optimized tolerance30,31. Systems designed or evolved to be robust
against common or known perturbations can often be fragile to new
perturbations.

Another view on the vulnerability of complex network comes
from a statistical perspective32–34. Comparative studies on robustness
of large-scale networks show that scale-free networks (also known as
‘small world’ or Erdös–Rényi networks) are more robust than 
randomly connected networks against random failure of their com-
ponents34. However, scale-free networks are more vulnerable against
malfunction of the few highly connected nodes that function as hubs.

Scale-free networks can form by growth such that new nodes are
connected preferentially to nodes that are already highly connected.
Barabasi and colleagues claim that protein–protein interaction 
networks, which constitute the protein universe (see review in this
issue by Koonin and colleagues, pages 218–223), are scale-free32,35

and that mutations in highly connected proteins are more likely to be
lethal than are mutations in less-connected nodes33. Although they
estimated connectivity from yeast two-hybrid data, which are notori-
ously noisy, this hypothesis is intuitively attractive. For example, the
p53 protein is one of the most connected hubs in the protein universe,
and its mutations cause serious damage to cellular functions, 
particularly in repair of DNA damage and tumour suppression36.

Nevertheless, some of the claims for scale-free networks are still
controversial37, and evidence for mechanisms leading to preferential
attachment in biological systems remains equivocal. Furthermore,
yeast two-hybrid assays produce many false-positive outcomes, and
the current hand-crafted pathway maps may be heavily biased
towards connection to functionally important genes simply because
these have been popular targets for research.

Even when these shortcomings are surpassed, such statistics-
based theories — despite providing insights on macroscopic proper-
ties of the network — will still have difficulty making predictions
about specific interactions. It is analogous to telling a stock-market
investor that “one in 50 companies will go bankrupt”, advice that is of
little help if you are unable to identify which one. The challenge for
statistical theories is to identify how they can be linked to specific
behaviours and so make useful predictions.

Design patterns of functional modules
Just as the principles behind robust networks can be classified into
several types, so too can the various functional circuits or modules

from which they are assembled, such as genetic switches, flip-flops,
logic gates, amplifiers and oscillators. Good examples come from the
mechanisms of biochemical oscillations (see review in this issue by
Goldbeter, pages 238–245), which have been the focus of numerous
groups38–41. These studies have facilitated their classification into 
several schemes, such as substrate-depletion oscillators, positive
feedback loops, the Goodwin oscillator and time-delayed negative
feedback oscillators41. Similar attempts have also been made for other
functional networks. Jordan and colleagues have identified various
examples of multitasking in signal transduction42; Bhalla and Iyengar
reported several circuits that may function as temporal information
stores (that is, memory devices)43; and Rao and colleagues have
uncovered several circuits that mitigate the effect of noise and exploit
it for specific functions (see review in this issue, pages 231–237).

Although these functional networks have analogues in electronic
and process engineering, they have been formed by evolution, which
makes it unlikely that any kind of ‘first principle’ underlies their
design. However, a set of principles can be envisaged and identified
through studying the structure and function of biological circuits,
and their origin at the system level44–46. What are their basic 
functional building blocks? What are their dynamical properties and
operating principles? How has each module evolved? And how can
they be adapted or designed for alternative applications?

Recently, a systematic, high-throughput computational study
was carried out by Shen-Orr and colleagues, which identified com-
mon motifs in the gene regulatory networks of E. coli using the Regu-
lonDB database47. They found that feed-forward loops, single-input
modules and dense overlapping regulons appeared frequently. While
this study only used a gene regulation database, this type of approach
can be augmented to include protein–protein and protein–DNA
interactions to systematically identify network design patterns from
large-scale data.

Such data, combined with function-driven identification of circuit
patterns, will allow the creation of a large repository of functional bio-
logical networks, so enabling the systematic analysis of design patterns
and their evolution. We already know of cases where the same circuit
patterns and homologous genes produce similar system behaviours,
but with unrelated physiological outcomes. We also know of cases
where the same circuit patterns use different sets of genes to attain
similar system behaviours, and where identical functions are achieved
with degenerate paths involving different circuit patterns and 
different genes46. More systematic surveys will be needed to determine
how many evolutionary conserved circuits exist, in what functions
and how they relate to the evolution of genes. It may be that functional
circuits should be considered the units of evolution.

Systems drug and treatment discovery
The systems biology approach, with its combination of computational,
experimental and observational enquiry, is highly relevant to drug 
discovery and the optimization of medical treatment regimes for indi-
vidual patients. Although the analysis of individual single nucleotide
polymorphisms is expected to reveal individual genetic susceptibilities
to all forms of pathological condition, it may be impossible to identify
such relationships when complex interactions are involved.

Consider a hypothetical example where variations of gene A
induce a certain disease. Susceptibility relationships may not be
apparent if circuits exist to compensate for the effects of the variability.
Polymorphisms in gene A will be linked to disease susceptibility only if
these compensatory circuits break down for some reason. A more
mechanistic, systems-based analysis will be necessary to elucidate
more complex relationships involving multiple genes that may create
new opportunities for drug discovery and treatment optimization.

Computer simulation and analysis, along with traditional bioinfor-
matics approaches, have frequently been proposed to significantly
increase the efficiency of drug discovery48–50. At present, empirical
ADME/Tox (absorption distribution metabolism excretion/toxicity)
and pharmacokinetic predictions have been used with some success.
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For example, a human intestinal absorption model based on 
correlations between the passive permeation measurement of over 
300 compounds and known structural features, such as hydrogen-bond
donors, hydrogen-bond acceptors and molecular weight, has been used
to predict the absorption of novel compounds by the human intestine51.
However, such models are not easily converted for use in other 
situations and they often require extensive data sets in order to address
specific questions. What is needed are reliable, mechanism-based
ADME/Tox and pharmacokinetic models52–56, built on molecular-level
models of cells, that are more easily transferable and accountable than
are traditional, empirical, quantitative structure–activity relations.

Scaling up
So far, most systems biology simulations have tended to target relatively
small sub-networks within cells, such as the feedback circuit for bacteria
chemotaxis20,21, the circadian rhythm57,58, parts of signal-transduction
pathways43,59, simplified models of the cell cycle7,60,61 and red blood
cells62–64. Notable larger simulations have attempted to model bacterial
metabolic networks for analysis of metabolic control62,63 and flux 
balance8,65, but these deal with steady-state rather than dynamic behav-
iour. Recently, research has begun on larger-scale simulations. At the
level of the biochemical network, simulation of the epidermal growth
factor (EGF) signal-transduction cascade has been carried out. The
simulation involves over 100 equations and kinetic parameters and will
be used to predict complex behaviours of the pathway, as well as to iden-
tify roles of external and internal EGF receptors59. The physiome project
is an ambitious attempt to create virtual organs that represent essential
features of organs in silico66,67. Simulation of the heart was one of the
early attempts in this direction, integrating multiple scales of models
from genetics to physiology68. Even whole-patient models for specific
disease, such as obesity and diabetes, are being developed for prediction
of disease development and drug discovery.

Building a full-scale patient model, or even a whole-cell or organ
model, is a challenging enterprise. Multiple aspects of biological
processes have to be integrated and the model predictions must 
be verified by biological and clinical data, which are at best sparse 
for this purpose. Integrating heterogeneous simulation models is a 
non-trivial research topic by itself, requiring integration of data of
multiple scales, resolutions and modalities.

Simulation often requires integration of multiple hierarchies of
models that are orders of magnitude different in terms of scale and 
qualitative properties (for example, gene regulations, biochemical 
networks, intercellular communications, tissue, organ and patient).
Although some processes can be modelled by either stochastic compu-
tation or differential equations alone, many require a combination of
both methods. But some biochemical processes take place within a 
millisecond whereas others can take hours or days. Additionally, 
biological processes often involve the interaction of different types of
process, such as biochemical networks coupled to protein transport,
chromosome dynamics, cell migration or morphological changes in 
tissues. Although biochemical networks may be reasonably modelled
using differential equations and stochastic simulation, many cell 
biological phenomena require calculation of structural dynamics,
deformation of elastic bodies, spring-mass models and other physical
processes.

Nevertheless, development of precision models and their 
applications to ADME/Tox models are expected to revolutionize the
process of drug discovery by providing a capability for multiple-
target identification and high-throughput virtual screening of 
compounds. Furthermore, target identification using cellular 
models may provide desirable structures for candidate compounds
by applying multiple constraints to parallel virtual screening54, 
rationalizing drug discovery into a more systematic process (Fig. 1).

Systems therapy
Surpassing its scope for efficient improvements in the current 
paradigm of drug discovery and treatment, the introduction of a 

system-oriented view may drastically change the way treatments are
conducted. Two somewhat speculative scenarios illustrate these
opportunities.

Consider a feedback compensation circuit involving a drug target
protein. Changes in the concentration of the protein resulting from
drug administration may be neutralized by feedback control. High
dosages of drugs will need to be administered to overcome this com-
pensation mechanism, but this could produce serious side effects.
Alternatively, small dosages of drugs could mitigate the feedback
mechanism, so that the effect on the target protein will not be 
neutralized. Considering the p53 system, if there is abnormal overex-
pression of MDM2 (a protein that regulates p53), simply increasing
p53 transcription may not restore the system to normal, as the exces-
sive MDM2 protein will quickly ubiquitinate p53, targeting it for
destruction. Additionally, p53 itself transactivates MDM2. 
MDM2 activity must be suspended or reduced to a normal level, at
least temporarily, to make p53 stimulation effective in inducing 
cell-cycle arrest or apoptosis. The highly effective administration of
multiple drug regimes can be accomplished only with a system-level
analysis of the dynamics of gene regulatory circuits.

A far more futuristic approach proposes the introduction of 
functional genetic circuits to control cellular dynamics in vivo (see
review in this issue by Hasty and colleagues, pages 224–230). Already,
a set of basic functional circuits, such as oscillators and toggle 
switches, has been constructed and its viability confirmed in E. coli
(refs 69–71; and see review by Hasty and colleagues). Computer 
simulation and comprehensive analysis will be needed to ensure that
such circuits function as intended and do not result in significant
side-effects. In the future, perhaps a genetic circuit can be devised to
sense the level of p53 protein when DNA is damaged and switch on
circuits to further increase transcription of p53.

The application of systems biology to medical practice is the
future of medicine. Its realization will see drug discovery and the
design of multiple drug therapies and therapeutic gene circuits being
pursued just as occurs now with modern, complex engineering prod-
ucts — through iterative cycles of hypothesis and simulation-driven
processes (Fig. 1). Although the road ahead is long and winding, it
leads to a future where biology and medicine are transformed into
precision engineering. ■■
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In debates between holism and reductionism in biology, from the early twentieth century to more recent
re-enactments involving genetic reductionism, developmental systems theory or systems biology, the
role of chance e the presence of theories invoking chance as a strong explanatory principle e is hardly
ever acknowledged. Conversely, Darwinian models of chance and selection (Dennett, 1995; Kupiec, 1996,
2009) sit awkwardly with reductionist and holistic concepts, which they alternately challenge or approve
of. I suggest that the juxtaposition of chance and the holismereductionism pair (at multiple levels,
ontological and methodological, pertaining to the vision of scientific practice as well as to the founda-
tions of a vision of Nature, implicit or explicit) allows the theorist to shed some new light on these
perennial tensions in the conceptualisation of Life.
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Interest shifts.from an intelligence that shaped things once for
all to the particular intelligences which things are even now
shaping (Dewey, 1910/2007, p. 10)
1 The ‘classic’ authors Smuts, von Neumann and von Bertalanffy all waver in
between statements of holism as a total systemic standpoint (with no particular
reference to a special status for living entities) and holism as an approach or model
which sheds particular light on embryology and how organisms are not mere
machines (with reference to teleology and the ‘historical’ or ‘learned’ character of
organisms). These authors also specify abstract terms on which ‘merely mechanical
aggregates’ are different from genuine wholes, including chemical compounds, and
then suddenly specify that biological organisms are the exemplars of “creative
wholes,” as Smuts calls them (wholes which create structures different from their
1. Introduction

The juxtaposition of chance with the more familiar pair of
holism and reductionism in biology may at first sight seem rather
surprising. Chance is both an ancient philosophical problem, as
addressed e quite differently e by Aristotle, Lucretius or Diderot
(Gigandet, 2002; Wolfe, 2010c; Pépin, 2012); a concept closely
linked to the emergence of ‘modern’ biology, from Darwin to the
study of genetic mutations; today it is discussed in a new way on
both the experimental and theoretical planes, particularly in the
more manipulable form of stochasticity (Kupiec et al., 2009/2011;
Kupiec, 2010). Holism is a term that always carries with it a residual
dimension of mystery, referring initially to a set of positions that
goes back to Aristotle and Hegel, then e most relevantly for our
topic here e to a position in theoretical biology inspired by general
systems theory (Smuts,1926/1999; Ash,1995); in amore existential
sense, it is also associated with the ‘organicism’ of Kurt Goldstein
(Goldstein, 1995). Holism has also been revived more recently in
analytic philosophy with Robert Brandom and John McDowell (for
recent analyses of holism in metaphysics, philosophy of mind and
1@gmail.com.

All rights reserved.
the philosophy of language see Esfeld,1999 and Block,1998). But for
our purposes ‘holism’ is a certain type of claim about how specifi-
cally living beings e organisms overall, but particularly live ones e
should be considered as wholes, even if there is no rigorous, clear-
cut distinction or relation between holism, systems theory and
specifically organismic claims about the uniqueness of living
beings.1

Briefly put, models appealing to chance are (philosophically)
anti-essentialist: they reject the appeal to higher-level, irreducible
properties of a system by retracing the causal process which
generated them, based on stochastic processes. It seems intuitively
right e and empirically indeed to be the case e that models
favouring the role of chance tend to be compatible with reduction,
or reductionism as an ontological and/or explanatory position
according to which for any given Whole there will always be
constituents or parts) (Smuts, 1926/1999, pp. 140e141). The best general discussion
of holism in early twentieth-century science is Ash (1995). See also Peterson (2010),
which is forthcoming in book form from Springer (Series in History, Philosophy and
Theory of the Life Sciences).
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subjacent components which themselves can explain, with or
without ‘bonuses’ such as bridge laws or structural features, the
overall function of this Whole. But little attention has been paid to
this relation between chance, anti-essentialism and reduction.

For instance, a Darwinian model of chance and selection
(Dennett, 1995; Kupiec, 1996) seems to be in conflict with
a systemic holism as put forth in Varela and his partisans (Weber
and Varela, 2002; Rudrauf et al., 2003), who tend to insist on the
irreducible individuality of systems (or worse, a metaphysics of
Life) rather than their production through stochastic processes, or
similarly in their insistence on the existence of a foundational
centre or Self in living systems (Wolfe, 2010b). In contrast, this
postulate seems absent from the work of Moreno and his collabo-
rators (Ruiz-Mirazo et al., 2000), which shows that it is possible to
articulate an organisational e and hence weakly holistic e model
without adjoining it to the individualism or anti-Darwinism of
a Varela (Bechtel, 2007). I suggest that the juxtaposition of chance
with the holismereductionism pair (at multiple levels, ontological
andmethodological, pertaining to the vision of scientific practice as
well as to the foundations of a vision of Nature, implicit or explicit)
allows the theorist to shed some new light on these perennial
tensions in the conceptualisation of Life.
2.

Whenwe think of the role of chance in biologye the presence of
chance, or more restrictively, ‘stochastic processes’ as productive in
biology (and I leave aside the question, ‘productive of what?’ e of
order? of particular organisms? of structures enabling the gener-
ation of organisms? e in order to merely stress: the idea that
a chance and selection model is productive) we often think of
Darwin. We can augment his ideas of variation and natural selec-
tion (in which chance plays the role of producing what sort of
variation will occur in organisms living in a given environment, on
which natural selectionwill then act) with later developments such
as random mutations, genetic drift e the idea that most genetic
variation we observe at the molecular level is not to be accounted
for in terms of selection, but rather as a consequence of mutation
and (random) genetic drift, in which the fixation of genes in pop-
ulations is a purely stochastic process (Kimura, 1983), etc. At that
point one will typically enter into a ‘more or less’ discussion: is
a particular factor decisive or not? Are its effects real or apparent?
How many of these effects make a cause the cause of a phenom-
enon? But if we consider instead the attitudes towards the concept
of chancewithin a schematic summary of the history of philosophy,
in addition to debates about whether the world is the product of
necessity or chance (with a predominant denial that chance can
serve as any sort of explanatory factor, paradigmatically in Aris-
totle2), we find a different feature: a distinctly radical dimension of
chance. The latter attitude is radical in the sense that it is
destructive or at least deflationary: it says, ‘show me a complex
phenomenon A and I will show you how chance/variation-and-
selection/stochastic processes B have produced it’.

Thinkers such as Lucretius, Diderot, more recently Daniel Den-
nett and e centrally to this essay e Jean-Jacques Kupiec have
actively insisted on the role of chance or a fundamental random-
ness at the heart of nature, as either ‘productive of order’ or in any
2 To give just one example, when Aristotle discusses how it is that organisms
come to be as organised, stable wholes, he clearly states, “organic development is
either for the sake of something [i.e. according to a final cause, CW] or by chance; it
is not by chance (since chance outcomes are irregular whereas organic outcomes
regular); therefore organic development is for the sake of something” (Aristotle,
1984, II.8, 198b34e199b7).
case amore basic, ‘genuine’ level of reality than the perceived forms
and species of our experience. Conversely, numerous other thinkers
of some eminence (Aristotle and Kant come to mind) have warned
against the dangers of a theory which grants such a productive and
fundamental role to chance, in the name of the stability or integrity
of Forms, of the organism (as in Hans Jonas, e.g. Jonas, 1966, pp.
74e92) or of the person: if, so these thinkers argue, we open the
door to explanations by chance, then none of the entities we
depend on for a meaningful life can remain. In all cases here, what
is at issue is chance as a feature of the world, not as a feature of our
knowledge conditions (as in unpredictability or novelty understood
as epistemological categories). What happens if we try and
confront these aspects of the history of philosophy, with some key
moments in theoretical biology? The confrontation reveals
a certain instability or, differently put, a degree of conceptual
incommensurability. That is, the introduction of chance renders the
traditional opposition between holism and reductionism more
unstable e less clear-cut.

We are familiar with various forms of this opposition, particu-
larly, as regards the present context, that between holism as the
insistence on the irreducible organizational dimension of systems
(whether in the sense of autopoiesis, the more recent Develop-
mental Systems Theory or DST, as in Oyama, 1985/2000, or the role
of developmentwhich ‘trumps’ reductive genetic explanations), and
reductionism as a series of factually rather distinct possible claims:
that ‘you are your biochemistry’ (Loeb, 1912), that one should focus
on reduction towards the molecular level (molecular biology or
cellular neuroscience rather than cognitive neuroscience, Bickle,
2006) or towards the genetic level (Monod, Dawkins, Dennett,
etc.). But it should be clear that in fact they are not logical opposites;
the opposition is less monolithic than it seems. Even a classic of
genetic reductionism like Monod can move within one sentence
from proclaiming genetic reductionism, “Thus defined, the theory of
the genetic code is the fundamental basis of biology” to amuchmore
flexible position, with anti-determinist or at least non-determinist
tones: “this does not mean, of course, that the complex structures
and functions of organisms can be deduced from [the theory of the
genetic code], nor even that they are always directly analysable on
themolecular level” (Monod, 1970, p. 12; Monod,1971, p. xii). Again,
there is no real contradiction here, especially if we consider that
there is a difference between the claim of genetic determinism and
that of genetic reductionism: the latter is a more flexible claim. As
Gayon suggests, genetic reductionism “does not claim that genes
wholly determine the genesis of organismic traits, but that the
explanation of these traits must significantly include genetic
factors.” On this view, “the best explanation of a biological trait is
that which specifies the way in which genes determine this trait in
a given organismic and environmental context” (Gayon, 2009/2011,
p. 81/117). Reduction here is neither a strict ontological claim about
what is real andwhat should be eliminated fromour vision of Nature
nor a strict nomological claim about inter-theoretic reduction
between sets of laws. It is, Gayon suggests, more of a heuristic claim
about how to account for a biological phenomenon.

Conversely, organisationalmodels are not adverse to defining the
systems that compose the organisational wholes in which they are
interested, in a mechanistic fashion (whether or not this is overtly
reductionist; Bickle, 2006, p. 430; Bechtel, 2007, p. 270). That is,
organisational models essentially articulate together key insights
frommechanistic science and the holistic or ‘organismic’ critiques of
mechanism. More precisely, they combine the mechanistic explan-
atory programme to study (by reduction, modelling and compo-
nential analysis) the structures at work in organisms and the
organicist (holist) standpoint which minimally “remind[s] mecha-
nists of the shortfalls of the mechanistic accounts on offer,” for ideas
such as “negative feedback, self-organising positive feedback and



3 Elementary fairness leads me to specify that Oyama herself explicitly states that
her position weakens the postulate common to what she calls e in a partly met-
ahistorical way e preformationism and epigenesis, namely, the postulate that
matter cannot acquire a biological form without there being an external source of
this form. But it seems more interesting to me to present the tensions between
‘sophisticated’, nuanced theorists than between caricatural, dogmatic ones.

4 However, Kupiec approvingly cites the neural Darwinism of Changeux, then
Edelman, which precisely seems to make the mistake of re-essentialising
Darwinism as an explanatory principle (Kupiec, 2009, p. 106).
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cyclic organisation are critical to explaining the phenomena exhibi-
ted by living organisms” (Bechtel, 2007, pp. 296e297). Differently
put, “system thinking does not imply forgetting about the material
mechanisms that are crucial to trigger off a biological type of
phenomenon/behaviour; rather, it means putting the emphasis on
the interactive processes that make it up, that is, on the dynamic
organization in which biomolecules (or, rather, their precursors)
actually get integrated” (Ruiz-Mirazo and Moreno, 2004, p. 238).

But what of chance? It enables us to move away from the
constant back-and-forth between reductionist models and more
holistic models (strict genetic inheritance versus ecological inher-
itance, selfish genes versus organisms, genomics versus Evo-Devo
and so on), in a kind of ‘triangulation’. What Kupiec called
‘cellular Darwinism’ and now more expansively is calling ‘onto-
phylogenesis’ (a term somewhat reminiscent of Buss, 1987, who
also felt that evolutionary accounts of phylogenesis needed to be
supplemented with accounts of ontogenesis, the emergence of
individuals; Kupiec’s idea is to be more Darwinian than Darwin,
and explain, not just the origin of species but the origin of individ-
uals through variation and selection; see summary in Laplane,
2011) is as different from classic genetic reductionism as it is
from the classic anti-reductionist positions which he suspects are
too holistic (using the term in a more pejorative sense to mean
views which are insufficiently grounded in experimental science).
Indeed, instead of treating them as binary opposites, Kupiec finds
these positions to be complementary types of mistakes:

Since genetic determinism is reductionist, holism would at first
sight seem to be incompatible with it. Nevertheless, the two
concepts unite in affirming the objective reality of order. In both
cases a first principle is involved which structures the world and
directs processes. In genetic determinism, the principle of order
from order comes into play through the stereospecificity of the
molecules, while in holism, the creative principle, less well
defined and with a variety of names, creates organised wholes
(Kupiec, 2009, p. 77).

I’ll return in closing to the challenge presented here towards any
strong notion of order, but for now wish to focus more on where
this view fits in relation to these ‘mistaken positions’ it challenges.

3.

Curiously, if we map out these positions in theoretical biology,
they bear a striking resemblance to the landscape in contemporary
moral philosophy e specifically regarding freedom versus deter-
minism. A brief comparison should make this obvious. In analytic
philosophy, the basic positions in the debate over whether we are
free agents or simple parts of a deterministic universe, are usually
presented as follows (with each of these obviously coming in
different forms, weak or strong, pure or hybrid, etc.):

A: libertarianism (not to be confused with the political or economic
doctrines which bear this name). Morally, this is the view that
we are absolutely free, that agents respond to reasons, not
causes, and are self-governing (rather than influenced by their
genes, their environment or what they had for breakfast). The
libertarian may or may not accept that Nature is governed by
causal processes, but she asserts that our existence as moral
agents has nothing to do with these forms of causality. Biolog-
ically, this corresponds to a view found in German Idealist
philosophy of nature (e.g. Hegel’s), but also in Hans Jonas, in
Varela and other thinkers calling either for a return to Aristo-
telianism or to a Romantic conception of Nature. They believe
that ‘Life’ is entirely separate from physical science. There may
or may not be a possible science of life on this view, but if there
is, it will not resemble the science of Monod and Jacob but
rather that of Driesch, the Baldwin effect and Margulis. Some-
times, however, these take the form of amore sophisticated, less
metaphysically laden view which is still a form of organicism,
without necessarily being what Monod and Kupiec call
‘animism’: for instance, the distinguished theorist of develop-
mental systems, Susan Oyama, speaks of “the organism as
layered vital reality,” and insists on “the organism as a locus of
agency” (Oyama, 1985/2000, p. 162, 2000, p. 95).3

B: determinism is the most straightforward case here, in morals as
in biological thought. It is the idea, whether or not we take it in
its specifically Laplacian form, that there is a kind of grid on
which all things are located (or more metaphysically, a grid
including all future possibilities), such that causal, or mechan-
ical, or atomic concepts exhaustively account for the behaviour
of all such entities. Morally, it is the absolute opposite of the idea
of freedom in the sense that I am the originator of my actions;
scientifically, it supports the idea that there are absolute
correspondences, whether between genes and behaviour, or
laws of physics, etc. In early modern thought, when Hobbes
claims that everything is matter and motion, including the
thoughts in my head, this is a ‘necessitarian’ (determinist) view.
Biologically, the most pure statement of determinism is to say
that the phenotype is the expression of the genotype.

C: compatibilism is the most complex and the most interesting
position, both in moral thought, where it involves recognising
a degree of determinism while also arguing that we have what
Dennett called some ‘elbow room’ within a deterministic
universe. Spinoza’s idea that the more I come to be aware of the
causal processes within me and without me, the freer I am, is
a compatibilist idea. The idea that I am governed by my beliefs,
desires and conditioning rather than strictly by laws of physics
(a view held by Hume, Moritz Schlick and A.J. Ayer amongst
others) is a compatibilist idea. What is the analogue to compa-
tibilism in the biological sphere? Precisely, the anti-essentialist
privileging of chance (Lucretius, Diderot, Darwin, Dewey,
Kupiec), which recognises the existence of causality without
defending causal fundamentalism (a pluralism of causes, then).
Indeed, to the criticism which might say, if we simply replace
traditional essences by another concept called ‘chance’, aren’t
we still being essentialists?, one can reply that in both Darwin
and Kupiec, chance, variation and selection are all factors4:

Each cell, although working for its own good, is subordinate to
the whole. It does not enjoy total freedom as its freedom is
limited in that the cell is constrained to differentiate in a way
appropriate to the place it occupies in the society of cells
(Kupiec, 2009, p. 124)

And of course if we think back to Claude Bernard, who popu-
larized the term ‘determinism’ in the first place (Gayon, 2009/2011;
Pépin, 2012), the relation is actually stronger than one of analogy,
for Bernard makes a literal usage of ‘freedom’ and ‘determinism’ as
descriptions both of biological entities and of methodological rules
for dealing with such entities (Bernard, 1865/1927, Part II, chapter
II). Like Jacques Loeb in the early twentieth century, Bernard seeks
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to give analytic, mechanistic accounts of living systemswhile at the
same time doing justice to their integrative features. But with
respect to anti-essentialism, the idea is that position (C), which in
moral philosophy would be compatibilism, here in biological
theory amounts to the rejection both of genocentric essentialism
and of holistic, systemic essentialism.

4.

This anti-essentialism entails, or rather is expressed crucially in
the fact that, notably unlike Schrödinger in What is Life? (to name
a famous, and perhaps foundational example; Schrödinger, 1944),
Kupiec does not recognise the existence of something like
a program; “Because of the stochastic nature of protein interaction
and gene expression, [Kupiec] says, there can be no Aristotelian
form or programme to give order to life and ward off entropic chaos
and death” (Werner, 2009, p. 35). Overall, the argument founded on
chance and selection is anti-essentialist per definitionem because
the primacy of chance over structure is the exact opposite of the
Aristotelian insistence on the primacy of form over matter (Kupiec,
1999). Evolution is not an essentialist business, for species are
populational constructs (and organisms are not essence either,
Wolfe, 2010b). On a more pragmatic level, we can say with Ere-
shefsky that “Positing biological essences does not illuminate bio-
logical practice nor does it help us understand how science works”
(Ereshefsky, 2010, p. 684). But Kupiec’s claim is stronger:

modern biology is still impregnated with pre-scientific essen-
tialism, hindering its development. This essentialism presents the
Form as the prime entity and one that it seems impossible to go
beyond, andgives rise to the contradiction in geneticdeterminism.
We shall see that this impasse originates in the belief we have in
the realityof the species.Weare blindedbywhat seems absolutely
obvious, and this leads us to see the species as the insurmountable
horizon of biological thought (Kupiec, 2009, p. 177).

And this puts us on a metaphysical plane, which enables me to
relate Kupiec’s ‘Darwinian’ anti-essentialism to a more strictly
philosophical cousin, Althusser’s ‘Lucretian’ anti-essentialism. If
Lucretius believed that the world was made up of atoms and their
random swerves (clinamen) e which introduces a dimension of
chance into what was otherwise a fairly static view of atomism e

the late Althusser, in his posthumously published writings, speaks
of a “materialism of the encounter,” where the latter term refers to
the sudden ‘encounter’ between atoms originally described by
Epicurus and Lucretius:

theencounterdoesn’t createanyof the realityof theworld,which
is nothing but agglomerated atoms, but it grants reality to the
atoms themselves, which without the deviation and encounter
would be nothing but abstract elements, without any tangible
existence. The atoms’ very existence is dependent on the devia-
tion and the encounter (Althusser, 1994, pp. 541e542).5

There are no essences here, no Platonic forms or first principles
like Aristotle’s noûs (‘mind’ or ‘intellect’) which is prior to all
contingent natural forms: “since nothing which is accidental is
prior to what is per se, it is clear that no accidental cause can be
prior to a cause per se. Spontaneity and chance, therefore, are
posterior to noûs and nature” (Aristotle, 1984, II.6, 198a7e10); there
are encounters and their effects.

But the specifically biological anti-essentialism also makes
a different point: that information itself is a kind of essence. Here
5 For English translations see Althusser (2006), and for extensive commentary
see Bourdin (2005).
the criticism is quite similar to that of, e.g. Susan Oyama, who
writes that “when atheistic evolutionists deify information they
seem to lack the courage of their materialist convictions” (Oyama,
2009, p. 43). But if we recall my distinction between the three
basic positions A, B and C, Oyama’s critique of the informational
model of the gene belonged to (A), which opposed the intrinsic
features of living beings to the ‘disembodied’ character of infor-
mation (a criticism of a view as disembodied means the position
argued for belongs to the family of theories defending ‘embodi-
ment’, as discussed e.g. in Shapiro, 2007). In contrast, ‘cellular
Darwinism’ makes no claims about the uniqueness of organisms
faced with the rest of the physical world.

Granted, not all the criticisms of ‘disembodiment’ belong to that
shopworn category, ‘mysterious vitalism’ (while in any case
vitalism exists and has existed in far more varied forms than biol-
ogists or philosophers of biology ever seem to notice; Oyama, 2010;
Wolfe, 2011). That is, Oyama and others can state that the obsession
with information theory dating back to Schrödinger leads people to
lose sight of key features of, say, development, without this state-
ment at all invokingmysterious, extra-causal forces like entelechies
e although a prominent theorist of embodiment and former
collaborator of Varela’s, Evan Thompson, does reintroduce the
metaphysical crispation that one might have hoped to have
dispensed with, when he argues that “Life is not physical in the
standard materialist sense of purely external structure and func-
tion. Life realises a kind of interiority, the interiority of selfhood and
sense-making” (Thompson, 2007, p. 238). But Kupiec’s criticism is
different. When he criticises genetics for its vision of ontogenesis as
a unidirectional process leading from DNA to the phenotype (the
expression of genetic information), he does so in the name of
Darwinism, in that sense challenging the integrity of the Modern
Synthesis (Kupiec and Sonigo, 2000, p. 88; Schaeffer, 2007, p. 173).

Both Darwin and Claude Bernard are inspirations for this anti-
essentialist attitude towards the status of biological entities,
which are de-substantialized here (as discussed in the ‘five argu-
ments’ which open Chapter 2 of Kupiec, 2009) or processualized;
Bernard often insisted that the novel properties he was describing
(ultimately the milieu intérieur or what we have come to call
homeostasis) were not the properties of a special kind of substance
(which would have been vitalism, in his view) but rather were
properties of certain kinds of relations (Bernard, 1865/1927, p. 66).
In contemporary biology and close to Kupiec, a key moment was
Lewontin’s work, in which the organism becomes a porte-manteau
concept, a place-holder in between gene, population and
ecosystem (which themselves are strictly processual concepts as
well); there is no privileging of any particular unit of selection as
more ‘real’ or ‘irreducible’ than any other, in a selection process
which involves nothing other than phenotypic variation, differen-
tial phenotypic fitnesses (depending on environments), and the
heritability of fitness (Lewontin, 1970, p. 1); “just as there is no
organism without an environment, so there is no environment
without an organism” (Lewontin, 1983/1985, p. 99).

Because after all if we maintain, on a substantialist view, that
organisms are something special e norganisms, in Julian Huxley’s
ironic phrase describing Haldane’s reaction to his own mechanist
views6 e we are guilty, or may be guilty, of “spiritualising matter,”
to borrow an expression from the eighteenth-century materialist
philosopher La Mettrie e this mistake being akin to what Kupiec
“Dr. Haldane called himself an organicist, which implied being anti-mechanist
and yet not a mystic vitalist e I never quite grasped what he really meant. At any
rate it led to some passages at arms. As I was describing some experiment which
demanded a mechanistic explanation, he burst out with ‘But it’s a norganism, my
dear young fellow, a norganism’!” (Huxley, 1971, p. 138).
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calls ‘animism’. In the first pages of his notorious work L’Homme-
Machine, La Mettrie charged that Leibnizians “with their
Monads,. have spiritualised matter rather than materialising the
soul” (de La Mettrie, 1748/1960, p. 149), the irony being that
precisely some of these versions of the Leibnizian monads, turned
into ‘molecules’ or ‘seeds of matter’, in fact became, notably in
Maupertuis, early theories of genetic information (Wolfe, 2010a).
Animism, spiritualising matter, mysterious embodiment: all of
these are more or less identified in Kupiec’s deflationary,
Darwinian perspective which, as I shall discuss in closing, puts him
closer to the reductionist standpoint.

5.

I suggested earlier that my proposed triangulation between
holism, reductionism and chance produces some curious effects.
Indeed, from Lucretius to Diderot, Darwin and Tyndall7 and onto
Dennett and Kupiec, the type of biological theory that asserts the
primacy of chance is reductionist in the sense that it rejects the
existence of all irreducible totalities (including notions of design
and order), without however being identical with classic forms of
reductionism e which are historically diverse: Cartesian mecha-
nism, biochemically inspired ‘vulgar materialism’ in the nineteenth
century (Vogt, Büchner) or the revival of atomism, as stated for
instance by Emil Du Bois-Reymond:

Natural science e or, more definitely, knowledge of the physical
world with the aid of and in the sense of theoretical natural
science e means the reduction of all change, in the physical
world to movements of atoms produced independently of time
by their central forces; or, in other words, natural science is the
resolution of natural processes into the mechanics of atoms (Du
Bois-Reymond, 1874, p. 17)e or of course the more recent
genetic or molecular reductionism, crisply described by David
Hull as follows: “both scientists and philosophers take onto-
logical reduction for granted. Organisms are ‘nothing but’
atoms, and that is that” (Hull, 1981, p. 282).

Why is the Darwinian-inspired form of reductionism different
from the above cases? Because they all amount to so many “onto-
logical commitments” in Quine’s sense (an ontological commitment
means a commitment towards the existence of a particular set of
objects: one thinkermaybelieve in the existence of tables, chairs but
also mathematical entities as real, while another might ‘commit’ to
all three of these plus unicorns, so that their respective commit-
ments correspond to a type of statementwhich is only true if objects
of this type exist; Quine, 1961, p. 8, 12). The other forms of reduc-
tionism all are committed to a traditional distinction between the
essential and the contingent, permanence and change . whereas
theories founded on chance are by definition, anti-essentialist.

Recall the comparison I sketched out above, between Kupiec’s
Darwinian invocation of chance contra essences, and Althusser’s
Lucretian invocation of the “random encounters” of molecules. One
might object that the first is a scientific claim, in contrast to the
second which is a philosophical usage of an ancient text e which
itself seamlessly combined physics and metaphysics. But it seems
that for Kupiec, as for Quine whom he does not mention, “ontology
is part of the body of science itself and cannot be separated from it”
7 John Tyndall (1820e1893) was an ideologist of Darwinism who in 1874 gave
a very influential lecture at the British Association for the Advancement of Science
in Belfast e thereafter known as the ‘Belfast Address’ (Tyndall, 1874) e arguing for
science against religion, but also making specific points about evolutionary theory
and its impact on our thinking, as a demystifying force against teleology and other
ideas; very much what Dennett was to describe as a “universal acid” (Dennett, 1995,
63f.).
(Quine, 1961, p. 45, note 20, quoting Meyerson, 1908/1951). And in
both cases, the Lucretian/Darwinian insistence on chance as
explanatory has (philosophically) anti-essentialist consequences e
what Dennett called a “universal acid” or a “universal solvent,” in
the sense of a method that dissolves many of our naïve precon-
ceptions about the world, the objects that inhabit it as well our
place in it (Dennett, 1995, 63f., p. 521). Of course, Dennett’s way of
putting it keeps us in the safe zone where science is a reliable
provider of truths (or practical regularities) and common sense or
‘folk psychology’ is like a naughty child that occasionally has to be
called back to order. In contrast, there is a different kind of radi-
calism implicit in the Lucretian project of “emptying the world of
any substantiality, any necessity, any form that would be consti-
tutive of its being e preventing any attempt to recreate a first
philosophy” (Bourdin, 2005, p. 142). Granted, Kupiec’s target is not
Plato or Descartes or Hegel, but rather a specifically biological
essentialism. But, aside from the general Quinean point about the
continuum onwhich both ontology and science are located, we can
also specifically note that in dealing with the form/matter pair, the
problem of ‘information’ and the dangers of the ‘spiritualisation of
matter’, metaphysics is never far off.

The ontophylogenetic theory (Kupiec, 2009), in which chance is
primary, seems closer to reductionism than to holism, as described
so far. But it certainly seeks to find a ‘third way’ between the two:

Ontophylogenesis allows us to escape from the fetters created
by these two types of theory in which biological thought has
been trapped throughout its history; and if it provides this new
perspective, it is because it totally renounces specificity to make
room for probability. It does not depend on any principle of
order which may be inherent in matter or given a priori. The
organism is produced in its context by a non-finalist process in
which environmental constraints act on intrinsically probabi-
listic molecular and cellular mechanisms. (Kupiec, 2009, p. 203)

The concept of ontophylogenesis, as its name indicates, fuses
ontogenesis (the production of the individual) and phylogenesis
(the production of the species); for Kupiec, this means (i) that life
relies on intrisically stochastic processes, (ii) that natural selection
takes place in the internal environment and (iii) that it is the causal
agent for the formation of the organism. Leo Buss was perhaps the
first to observe that “The Modem Synthesis has not generated
a theory of ontogeny” (Buss, 1987, p. 25), and he too stated, in the
preface to his book, that he could not understand why one cannot
be a holist and a reductionist at the same time (Buss, 1987, p. vii,
referring to John Tyler Bonner). However, Buss sees this as a kind of
broadening of the Darwinian construct, different to Kupiec, whose
radical, deflationary instincts steer him away from ‘holistic
Darwinism’ and other odd constructs of the past twenty years of
biological theory. Kupiec, despite his criticisms of genetic reduc-
tionism, is more ‘reduction-friendly’ than most of these thinkers
seeking to expand the remit of Darwinism e be it through devel-
opment, cultural evolution, niche selection or other means.
6.

One may ask at this point, what happens to the organism in this
triangulation (where we seem to be moving in the direction of
a kind of enhanced reductionism rather than holism)? At first, we
get perhaps too strong a form of demystification (that is, reduction),
with Kupiec’s frequent accusations of ‘animism’ e that holism is
animistic in the sense that it attributes an inherent creative force or
activity to matter itself e which risk losing sight, not of the
mysterious norganism or the organism as the bearer of an internal
‘subjectivity’ and ‘temporality’ which remove from it from the



8 D’Holbach (or Diderot, who is known to have contributed a good deal to the
book) adds in a note to this passage, that “the molecules of matter may be
compared to loaded dice, since they always produce certain pre-determined effects;
as these molecules vary essentially, in themselves and in their combinations, they
are loaded in infinitely various ways” (D’Holbach, 1990, p. 159, note 41).

C.T. Wolfe / Progress in Biophysics and Molecular Biology 110 (2012) 113e120118
physical world, but at the very least, of the functional integration of
organisms.

Consider the case of teleology. Kupiec wheels out the old, reli-
able war machine of the Scientific Revolution with its heroic
demystification of the world (as bearer of, e.g. occult qualities) and
rejection of final causes, along with animism (Kupiec, 2009, p. 69).
And it may be useful to dispel any residual concepts of a ‘finalistic’
teleology, which is often anthropomorphic, like that defended by
the organismic biologist E.S. Russell:

The organism strives to persist in its own being, and to reach its
normal completion or actualization, This striving is not as a rule
a conscious one, nor is there often any foresight of the end, but it
exists all the same, as the very core of the organism’s being
(Russell, 1950, p. 108, citing his own earlier work The Directed-
ness of Organic Activities).

But it is simple enough to defend a weaker form of teleology, in
which e in a classic sort of example e the moth’s stripes or the
polar bear’s colour can be teleologically described e in a weak
teleological sensee as pointing to the camouflaging as leading to the
(past) natural selection of their colour; not to a strong teleological
claim that this camouflage predicts something about the future.
And it seems dogmatic to reject the existence of a weaker sense of
an inherent teleology in organisms, including their functional
integration (Ruse, 1989, p. 1066). Surely Kupiec, as a Darwinian,
could have allowed for at least as much as teleology in the bio-
logical world as Darwin did, not least given that if there is any
teleology in Darwin’s world, “it is only because there is also a great
deal of chance and accident in it” (Depew and Weber, 1996, p. 147).
The argument against ‘animism’ is also too strong in the sense that
it cannot do justice to the difference between organisational
models (in the sense of Moreno et al.) as distinct from the more
vitalistic, subjectivist models of organism like Varela’s, which, like
Goldstein, privilege interiority over a ‘mere spatiality’ (patently
obvious inWeber and Varela, 2002; Rudrauf et al., 2003), calling for
“an expanded notion of the physical to account for the organism or
living being” (Thompson, 2007, p. 238). Organisational models, like
Kupiec’s own ontophylogenesis, are not in the business of foun-
dationalist ontological commitments.

However, on the other hand we also get an interesting kind of
residual vitalism (in the non-pejorative sense in which this term
also applies to Claude Bernard, who after all is something of a father
figure in the analysis of ontophylogenesis). For Bernard knew how
to play a double game, both reductionist and vitalist, depending on
the level of analysis (Kupiec, 2009, sections 6.1, 6.2; Coleman, 1985,
on Bernard). Bernard could almost be a selfish-gene theorist when
he says that “organs and systems do not exist for themselves, but for
the cells, for the innumerable anatomical elements which comprise
the organic edifice” (Bernard,1879/1885, I, p. 358). The equivalent in
Kupiec would be this anti-organicist statement: “there is no final
aim in the organisation established of creating the organism for its
own sake as an individual unit. It is the consequence of a process
which ensures as best it can the life of cells” (Kupiec, 2009, p. 124).
But Bernard also has more vitalistic moments:

[W]hat distinguishes a living machine is not the nature of its
physico-chemical properties, complex as they may be, but
rather the creation of the machine which develops under our
eyes in conditions proper to itself and according to a definite
idea which expresses the living being’s nature and the very
essence of life (Bernard, 1865/1927, p. 93).

The more Darwinian emphasis in Kupiec, like in Lewontin (or
Dennett or Dewey in their respective contexts) means that the
question of ‘what is an organism?’ (or a “living machine” in Ber-
nard’s terms) is non-operative. Neither the questions posed by the
theory nor the types of answer it seeks for, involve definitions of
what an organism is; there is no particular insistence, e.g., on the
idea that organisms are integrated entities rather than collections of
discrete objects (Gould and Lewontin, 1979, p. 585). We are closer
here to the processual character of Lewontin’s interactionism, as
described above ewhere the organism is simply a place-holder for
an intermediate location between various levels of a given system,
including genes and environment. A more vitalist thinker would
object here that by leaving ontology so far behind, we end up in
a “night in which all cows are black” (Hegel, 1807/1979, p. 9), like
functionalism in the philosophy of mind, in which, as memorably
expressed by its great defender Hilary Putnam, “we could be made
of Swiss cheese and it wouldn’t matter” (Putnam, 1975, p. 291; for
some critical assessment of functionalism see Wolfe, 2006). That is,
we end with a biophysics, a computational model, a mathematical
model rather than with an embodied analysis.

7. Conclusion

The confrontation between chance, holism and reductionism
e their triangulation, as I have called it, namely, the attempt to
evaluate Kupiec’s new brand of Darwinism in terms of its way of
positioning itself with respect to these ‘families’ of theoretical
positions e produces a de-essentialised vision of Nature in general
and the status of living beings in particular, without however
entirely overcoming the need to address the latter status. Most
interesting perhaps is what happens to the concept of determinism.
For in the end, even if I initially noted the parallel between liber-
tarianism, determinism and compatibilism on the one hand and
their biological analogues (say, autopoiesis/organicism, genetic
determinism and work such as Lewontin’s and Kupiec’s), what is
really happening is a more subtle, more embodied reconstruction
of certain components of determinism.

Determinism is less strictly opposed to stochasticity than one
often hears. As Levins and Lewontin note, “the entire development
of molecular biology shows the continuing power of simple
deterministic models of the ‘bête-machine’ nor is there the
slightest reason to introduce stochasticity into models of, say, how
an increase in adrenalin secretion will affect the concentration of
sugar in the blood” (Levins and Lewontin, 1980, p. 70); “thus
stochastic processes may be the basis of deterministic process and
deterministic the basis of stochastic. They do not exclude each
other” (Levins and Lewontin, 1980, p. 72). But the sort of deter-
minism at work in either Levins and Lewontin or Kupiec is a far cry
from Dawkins’ claim that we are “gigantic lumbering robots” pro-
grammed by our genes (Dawkins, 1976, p. 21; useful discussion in
Godfrey-Smith, 2001). Kupiec’s reappropriation of Darwinism away
from the Modern Synthesis leads him to reject the ‘phenotype as
expression of the genotype’ conception, in a way which injects
Lucretian elements into the Darwinian framework. Similarly, the
concept of reduction is still at work here, but not in such an onto-
logically strict sense; more as a heuristic (Gayon, 2009/2011). Like
Buss, Kupiec clearly feels that “the theory of evolution has never
proven a static construct” (Buss, 1987, p. 196).

Conversely, chance is not just an ‘empty word’, a word “devoid
of meaning” as classic determinists would have it (e.g. D’Holbach,
1990, II.v, p. 1588); it has more creativity attached and, perhaps,



C.T. Wolfe / Progress in Biophysics and Molecular Biology 110 (2012) 113e120 119
a kind of ontological reality (for discussion see Merlin, 2009/2011).
Kupiec often insists that ‘cellular Darwinism’ is meant to break
away from the opposition between holism and reductionism,
between topedown and bottomeup perspectives. But this applies
also to the equally venerable opposition between chance and
determinism, which in some cases is a false dichotomy (Wolfe,
2010c). For what looks like order at one level of organisation may
look like disorder at another level; “notions such as those of
‘direction,’ ‘organisation’ or ‘randomness’ should be explicitly
relativised to the unit in a hierarchy where they become relevant”
(Falk and Sarkar, 1992, p. 470). Granted, from the standpoint of
biology this privileging of chance need not entail either a holistic or
a reductionist outlook, and conversely, emphasis on complex
variation and selection models, taking Darwinism into, e.g. systems
dynamics can be found elsewhere (Bickhard and Campbell, 2003);
but I am speaking in conceptual terms e and as noted, sometimes
Kupiec also seems to be making a contribution to natural philos-
ophy, much as Monod or Mayr did before him, and, albeit differ-
ently, as Oyama also does today.9 But to be clear, I am not claiming
that what we learn here is a ‘new theory of chance’; rather, it is an
anti-essentialist vision of organisms or living systems which navi-
gates between various excesses (holism and reductionism), using
an appeal to chance, stochasticity and generally Darwinian
concepts as a background.

Lastly, what I’ve called the Lucretian elements in Kupiec’s
Darwinism also explain its deliberate demystifying tone, chal-
lenging our anthropomorphic conceptions e of what a species is
(following Darwin) or even an individual, over which there is after
all so little consensus. This challenging aspect matches up with
what Dennett called the “universal acid” aspect of evolutionary
theory, which, oddly enough, Hans Jonas had also noted, a genera-
tion earlier e and in his conceptual world this became “existen-
tialism”: “nineteenth-century evolutionism, which completed the
Copernican revolution in ontology, is an apocryphal ancestor (along
with the more official ones) of present-day existentialism” (Jonas,
1966, p. 47). Indeed, Dennett too acknowledges that evolutionary
theory can have the effect of making most of our intuitions about
life seem absurd (Dennett, 1995, p. 153). But whether we identify
this type of thinking as Lucretian, Darwinian or existentialist, we
should clearly see its challenge to hyper-rationalist or architectonic
conceptions of order: the anti-essentialist dimension implies
a rejection or at least a cautionary attitude, towards both the faith in
the absolute, autonomous existence of higher-level systems (as
found often in organicist theory) and the faith in the absolute
explanatory power of componential analysis (as found always in
reductionism).

Recall Kupiec’s point that both reductionism (specifically,
genetic determinism) and holism posit “a first principle.which
structures the world and directs processes,” a “principle of order”
(Kupiec, 2009, p. 77). Contemplating Kupiec’s work today, I am
reminded of Goethe’s rather pitiful confession of fear, faced with
the Lucretian anarchy of Diderot’s worlde he doubtless would have
felt the same about Darwin; and today about Kupiec. Reacting to
the materialist Diderot (who he also admired, and whose novel Le
Neveu de Rameau he translated into German), Goethe, thinker of
morphogenesis, Urpflanze and a hierarchy in Nature, wrote:
“Astonishing and excellent Diderot, why always use your great
intellectual powers to produce disorder rather than order?”
(Goethe 1798/1998, 1996, p. 196). This disorder is that of the living
world in its unpredictability e teratological, transformist,
classically-Darwinian or cellular-Darwinian.
9 I thank both reviewers for remarks leading me to see this point.
Acknowledgements

I thank Thomas Pradeu for his critical remarks on an earlier
draft, and I benefited greatly from the reviewers’ comments.

References

Althusser, L., 1994. In: Matheron, F. (Ed.), 1994. Écrits philosophiques et politiques,
vol. 1. Stock/IMEC, Paris.

Althusser, L., 2006. G.M. Goshgarian (Trans.). In: Matheron, F., Corpet, O. (Eds.),
Philosophy of the Encounter: Later Writings, 1978e1987. Verso, London.

Aristotle, 1984. Physics. In: Barnes, J. (Ed.), 1984. The Complete Works of Aristotle,
vol. 1. Princeton University Press, Princeton.

Ash, M.G., 1995. Gestalt Psychology in German Culture. Cambridge University Press,
Cambridge.

Bechtel, W., 2007. Biological mechanisms: organized to maintain autonomy. In:
Boogerd, F., Bruggeman, F.J., Hofmeyr, J.-H.S., Westerhoff, H.V. (Eds.), Systems
Biology: Philosophical Foundations. Elsevier, Amsterdam, pp. 269e302.

Bernard, C., 1865/1927. An Introduction to the Study of Experimental Medicine.
Henry Schuman, New York.

Bernard, C., 1879/1885. Leçons sur les phénomènes de la vie communs aux animaux
et aux végétaux, vol. 1. J.-B. Baillière, Paris.

Bickhard, M.H., Campbell, D.T., 2003. Variations in variation and selection: the
ubiquity of the variation-and-selective-retention ratchet in emergent organi-
zational complexity. Found. Sci. 8, 215e282. doi:10.1023/A:1025046917589.

Bickle, J., 2006. Reducing mind to molecular pathways: explicating the reduc-
tionism implicit in current cellular and molecular neuroscience. Synthese 151,
411e434. doi:10.1007/s11229-006-9015-2.

Block, N., 1998. Holism: mental and semantic. In: Craig, E. (Ed.), Routledge Ency-
clopedia of Philosophy. Routledge, London, pp. 488e493.

Bourdin, J.-C., 2005. La rencontre du matérialisme et de l’aléatoire chez Louis
Althusser. Multitudes 21 (2), 139e147. doi:10.3917/mult.021.0139. http://www.
cairn.info/revue-multitudes-2005-2-page-139.htm.

Buss, L.W.,1987. The Evolution of Individuality. Princeton University Press, Princeton.
Coleman, W., 1985. The cognitive basis of the discipline: Claude Bernard on phys-

iology. Isis 76, 49e70. doi:10.1086/353737.
Dawkins, R., 1976. The Selfish Gene. Oxford University Press, Oxford.
de La Mettrie J.O., 1748/1960. L’Homme-Machine. Vartanian, A. (Ed.), Princeton

University Press, Princeton.
Dennett, D.C., 1995. Darwin’s Dangerous Idea. Simon & Schuster, New York.
Depew, D., Weber, B., 1996. Darwinism Evolving: Systems Dynamics and the

Genealogy of Natural Selection. MIT Press, Cambridge, Mass.
Dewey, J., 1910/2007. The influence of Darwin on philosophy. In: Hickman, L.,

Browning, D. (Eds.), The Influence of Darwin on Philosophy and Other Essays.
Southern Illinois Press, Carbondale, IL, pp. 5e12.

Du Bois-Reymond, E., 1874. The limits of our knowledge of nature (original publi-
cation 1872). Popular Science Monthly 5, 17e32.

Ereshefsky, M., 2010. What’s wrong with the new biological essentialism. Phil. Sci.
77 (5), 674e685. Stable URL: http://www.jstor.org/stable/10.1086/656545.

Esfeld, M., 1999. Physicalism and ontological holism. Metaphilosophy 30 (4),
319e337. http://dx.doi.org/10.1111/1467-9973.00141.

Falk, R., Sarkar, S., 1992. Harmony from discord. Biol. Phil. 7 (4), 463e472.
doi:10.1007/BF00130064.

Gayon, J., 2009/2011. Déterminisme génétique, déterminisme bernardien, déter-
minisme laplacien. In: Gandrillon, O., Kupiec, J.J., Morange, M. (Eds.), Le hasard
au cœur de la cellule. Syllepse, Paris, pp. 79e90, new edition, Editions Matéri-
ologiques, Paris, pp. 115e129.

Gigandet, A., 2002. Lucrèce vu en songe. Diderot, Le rêve de D’Alembert et le De
rerum natura. Rev. Mét. Mor. 35 (3), 415e427. doi:10.3917/rmm.023.0415.

Godfrey-Smith, P., 2001. Three kinds of adaptationism. In: Orzack, S.H., Sober, E.
(Eds.), Adaptationism and Optimality. Cambridge University Press, Cambridge,
pp. 335e357.

Goethe, J.W., 1798/1998. Diderots Versuch über die Malerei. In: Apel, F. (Ed.),
Goethe, Ästhetische Schriften, 1771e1805. Deutscher Klassiker Verlag, Frank-
furt, pp. 559e608 (Sämtliche Werke, Bd. 18).

Goethe, J.W., 1996. Écrits sur l’art. J.-M. Schaeffer (Trans.). GF-Flammarion, Paris.
Goldstein, K., 1995. The Organism: a Holistic Approach to Biology Derived from

Pathological Data in Man (original publication 1934). American Book Company,
New York. ; reprint, Zone Books, New York.

Gould, S., Lewontin, R., 1979. The Spandrels of San Marco and the Panglossian
paradigm: a critique of the adaptationist programme. Proc. Roy. Soc. Lond. B
Biol. Sci. 205, 581e598. doi:10.1098/rspb.1979.0086.

D’Holbach, B.P.-H.T., 1990. Système de la Nature ou des lois du monde physique et
du monde moral (original publication 1770). In: Boulad-Ayoub, J. (Ed.). Fayard-
‘Corpus’, Paris.

Hegel, G.W.F., 1807/1979. Phenomenology of Spirit (Trans.) A.V. Miller. Oxford
University Press, Oxford.

Hull, D., 1981. Philosophy and biology. In: Fløistad, G. (Ed.), 1981. Contemporary
Philosophy: a New Survey, vol. 2. Martinus Nijhoff, The Hague, pp. 281e316.

Huxley, J., 1971. Memories. Harper & Row, New York.
Jonas, H., 1966. Is god a mathematician? The meaning of metabolism. In: Jonas, H.

(Ed.), The Phenomenon of Life. Towards a Philosophical Biology. Harper & Row/
Dell, New York, pp. 64e98.

http://www.cairn.info/revue-multitudes-2005-2-page-139.htm
http://www.cairn.info/revue-multitudes-2005-2-page-139.htm
http://www.jstor.org/stable/10.1086/656545
http://dx.doi.org/10.1111/1467-9973.00141


C.T. Wolfe / Progress in Biophysics and Molecular Biology 110 (2012) 113e120120
Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University
Press, Cambridge.

Kupiec, J.-J., 1996. A chance-selection model for cell differentiation. Cell Death
Differ. 3, 385e390.

Kupiec, J.-J., 1999. L’influence de la philosophie d’Aristote sur l’élaboration de la
théorie de l’évolution et sur la génétique. Rev. Eur. Sci. Soc. 37 (115), 89e116.
Stable URL: http://www.jstor.org/stable/40370372.

Kupiec, J.-J., 2009. The Origin of Individuals. World Scientific, Singapore.
Kupiec, J.-J., 2010. On the lack of specificity of proteins and its consequences for

a theory of biological organization. Prog. Bioph. Mol. Bio. 102, 45e52.
doi:10.1016/j.pbiomolbio.2009.11.002.

Kupiec, J.-J., Sonigo, P., 2000. Ni Dieu, ni gène. Éditions du Seuil, Paris.
Kupiec, J.-J., Gandrillon, O., Morange, M., Silberstein, M. (Eds.), 2009/2011. Le hasard

au cœur de la cellule. Probabilités, déterminisme, génétique. Syllepse, Paris. new
expanded edition, Editions Matériologiques, Paris.

Laplane, L., 2011. Le mystère de la genèse des individus. Critique 764e765,
143e152.

Levins, R., Lewontin, R.C., 1980. Dialectics and reductionism in ecology. Synthese 43
(1), 47e78. doi:10.1007/BF00413856.

Lewontin, R.C., 1970. The units of selection. Ann. Rev. Ecol. Syst. 1, 1e18. doi:10.1146/
annurev.es.01.110170.000245.

Lewontin, R.C., 1983/1985. The Organism as the Subject and Object of Evolution. In:
Levins, R., Lewontin, R.C. (Eds.), The Dialectical Biologist. Harvard University
Press, Cambridge, Mass., pp. 85e106.

Loeb, J., 1912. The Mechanistic Conception of Life: Biological Essays. University of
Chicago Press, Chicago.

Merlin, F., 2009/2011. Pour une interprétation objective des probabilités dans
les modèles stochastiques de l’expression génétique. In: Gandrillon, O.,
Kupiec, J.-J., Morange, M. (Eds.), Le hasard au cœur de la cellule. Syllepse,
Paris, pp. 79e90, new edition, Editions Matériologiques, Paris, pp.
215e252.

Meyerson, E., 1908/1951. Identité et réalité. Vrin, Paris.
Monod, J., 1970. Le Hasard et la nécessité. Essai sur la philosophie naturelle de la

biologie moderne. Éditions du Seuil, Paris.
Monod, J., 1971. Chance and Necessity: an Essay on the Natural Philosophy of

Modern Biology. Alfred A. Knopf, New York.
Oyama, S., 1985/2000. The Ontogeny of Information: Developmental Systems and

Evolution, 2nd revised ed. Duke University Press, Durham, NC.
Oyama, S., 2000. Evolution’s Eye: a Systems View of the Biology-Culture Divide.

Duke University Press, Durham, NC.
Oyama, S., 2009. Compromising positions: the minding of matter. In:

Barberousse, A., Pradeu, T., et al. (Eds.), Mapping the Future of Biology. Evolving
Concepts and Theories. Springer, Dordrecht, pp. 27e45.

Oyama, S., 2010. Biologists behaving badly: vitalism and the language of language.
Hist. Phil. Life Sci. 32 (2e3), 401e423.

Pépin, F., 2012. Claude Bernard et Laplace: d’un déterminisme physique vers un
déterminisme proprement biologique ? In: Charbonnat, P., Pépin, F. (Eds.),
Matière première 2: Le déterminisme entre sciences et philosophie. Éditions
Matériologiques [materiologiques.com], Paris, pp. 41e79.
Pépin, F., 2012. The randomness of life. A philosophical approach inspired from the
enlightenment. Prog. Bioph. Mol. Bio. 110, 121e128.

Peterson, E.L., 2010. Holism and evolution in biology and Anthropology: the chal-
lenge of Gregory Bateson and C. H. Waddington to biological Orthodoxy,
1924e1980. PhD Dissertation, University of Notre Dame, Program in history and
philosophy of science.

Putnam, H., 1975. Philosophy and our mental life. In: Putnam, Mind, Language, and
Reality. Philosophical Papers, vol. 2. Cambridge University Press, Cambridge,
pp. 291e303.

Quine, W.V.O., 1961. From a Logical Point of View, second ed., Harvard University
Press, Cambridge, Mass.

Rudrauf, D., Lutz, A., Cosmelli, D., Lachaux, J.-P., Le Van Quyen, M., 2003. From
autopoiesis to neurophenomenology: Francisco Varela’s exploration of the
biophysics of being. Biol. Res. 36 (1), 27e65.

Ruiz-Mirazo, K., Moreno, A., 2004. Basic autonomy as a fundamental step in the
synthesis of life. Artif. Life 10, 235e259. doi:10.1162/1064546041255584.

Ruiz-Mirazo, K., Etxeberria, A., Moreno, A., Ibáñez, J., 2000. Organisms and their
place in biology. Theor. Biosci. 119, 209e233. doi:10.1007/s12064-000-0017-1.

Ruse, M., 1989. Do organisms exist? Amer. Zool. 29, 1061e1066. doi:10.1093/icb/
29.3.1061.

Russell, E.S., 1950. The ‘Drive’ element in life. Brit. Jour. Phil. Sci. 1 (2), 108e116.
Stable URL: http://www.jstor.org/stable/685806.

Schaeffer, J.-M., 2007. La fin de l’exception humaine. Gallimard-NRF, Paris.
Schrödinger, E., 1944. What Is Life? The Physical Aspect of the Living Cell.

Cambridge University Press, Cambridge.
Shapiro, L., 2007. The embodied cognition research programme. Philos. Compass 2

(2), 338e346. doi:10.1111/j.1747-9991.2007.00064.
Smuts, J.C., 1926/1999. Holism and Evolution. Sierra Sunrise Books, ShermanOaks, CA.
Thompson, E., 2007. Mind in Life: Biology, Phenomenology, and the Sciences of

Mind. Harvard University Press, Cambridge, Mass.
Tyndall, J., 1874. Address Delivered Before the British Association Assembled at

Belfast, with Additions. Longmans, Green, and Co., London. Online at URL.
http://www.victorianweb.org/science/science_texts/belfast.html.

Weber, A., Varela, F.J., 2002. Life after Kant: natural purposes and the autopoietic
foundations of biological individuality. Phen. Cog. Sci. 1, 97e125. doi:10.1023/
A:1020368120174.

Werner, E., 2009. Evolutionaryembryos. Nature 460 (2), 35e36. doi:10.1038/460035a.
Wolfe, C.T., 2006. Un matérialisme désincarné: la théorie de l’identité cerveau-

esprit. Matière Première 1, 77e100.
Wolfe, C.T., 2010a. Endowed molecules and emergent organization: the

Maupertuis-Diderot debate. Early Sci. Med. 15, 38e65. http://dx.doi.org/10.
1163/138374210X12589831573063.

Wolfe, C.T., 2010b. Do organisms have an ontological status? Hist. Phil. Life Sci. 32
(2e3), 195e232.

Wolfe, C.T., 2010c. Un colpo di dadi non cancelleràmai il caso: il determinismo
lucreziano dopo Locke. In: Mormino, G., Morfino, V., del Lucchese, F. (Eds.),
Lucrezio e la modernità. Bibliopolis, Naples, pp. 235e251.

Wolfe, C.T., 2011. Vitalism. In: Gargaud, M., et al. (Eds.), Encyclopedia of Astrobi-
ology. Springer, Berlin, pp. 1749e1750.

http://www.jstor.org/stable/40370372
http://www.jstor.org/stable/685806
http://www.victorianweb.org/science/science_texts/belfast.html
http://dx.doi.org/10.1163/138374210X12589831573063
http://dx.doi.org/10.1163/138374210X12589831573063


Letter to the editor: “Systems biology versus reductionism in cell physiology”
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TO THE EDITOR: The following is a response to the editorial
comment of Prihandoko and Tobin (15) about our recent paper
in American Journal of Physiology-Cell Physiology (2), which
addresses a key question in modeling of signaling networks:
How to assign the protein kinases (from the entire 521-member
kinome list) that are responsible for each measurable phosphor-
ylation event in a given cell type. In our study, we used
vasopressin-stimulated phosphorylation of the water channel
protein, aquaporin-2, at serine-256 as an example because of its
importance to the physiology of collecting duct principal cells.
We thank Prihandoko and Tobin for their thorough and well
thought out summary of our paper. We write now to provide
additional clarification regarding the epistemological approach,
which was based on a systems biological framework rather
than on reductionist principles. Understanding the two ways of
doing experiments is aided by a bit of history.

Attention to the problem of how to make practical scientific
inferences from scientific observations peaked in 19th century
with John Stuart Mill’s book “A System of Logic” (12; see
chapter “Of the Four Methods of Scientific Inquiry”). Mill’s
work described several approaches built from two fundamental
methods, viz. the “method of difference” and the “method of
agreement.” From the viewpoint of modern biology, the former
method is the basis of reductionist approaches and became
dominant in the 20th century. The latter method is the basis of
the newly resurgent systems biology approach. We can con-
ceptualize the method of difference as the standard hypothesis-
driven experiment in which a given variable is altered and
another variable is observed. This approach thrived because it
has often been feasible to make the targeted measurements
needed and because statistical methods were developed early in
the 20th century by Fisher and others to analyze such data (14).
However, reductionist approaches have drawn fire in recent
years because of perceived bias in publication (7). Critics claim
that positive results from reductionist experiments are publish-
able (often whether true-positive or false-positive), while negative
results are not. In addition, the statistical approach to analysis of
reductionist data draws conclusions one experiment at a time, and
does not generally utilize prior information to draw conclusions
(4, 14), a problem that is circumvented in systems biological
approaches. The latter, roughly equivalent to Mill’s method of
agreement, looks broadly for correlations in comprehensive
data sets and builds models based on these correlations. Com-
prehensive methodologies including large-scale proteomics,
DNA microarrays, and “next generation” DNA sequencing
have only recently become feasible because of the availability
of genome-wide sequence data needed for mapping. Thus,
biological approaches based on Mill’s method of agreement

(systems biology approaches), heretofore impractical, have in
the 21st century become feasible. Concomitantly, statistical
methodologies for analysis of comprehensive data sets have
followed, e.g., the use of Bayesian statistics. Our study (2)
utilized the systems approach as summarized in the next two
paragraphs. The commentary (15) appeared to retell the story
that we presented as a series of separately interpreted reduc-
tionist experiments, thus losing the major message of our
paper, viz. that Bayes’ theorem can be used to integrate
multiple imperfect data sets to provide deeper, stronger con-
clusions than could be expected without data integration.

Our previous study in AJP-Cell (5) showed, using mass
spectrometry, that protein kinases are low fidelity enzymes and
when combined with prior observations (11) suggested that
protein kinases gain specificity in the cell chiefly through
factors that cause them to colocalize with specific substrates.
From this and other studies, it was already clear that we can
rely only on very general specificity constraints, basically
whether they phosphorylate tyrosines or serines/theonines, and
whether the latter are basophilic, acidophilic, or proline-di-
rected. Thus, the question of what protein kinase(s) phosphor-
ylate serine-256 of aquaporin-2 was not answerable simply by
looking at the amino acid sequence surrounding it. More
information was needed. To address the question, we inte-
grated prior information from several sources using Bayes’
theorem to rank all 521 kinases in the rat genome with regard
to the probability that they phosphorylate serine-256 of aqua-
porin-2 in the rat inner medullary collecting duct (IMCD). This
included data gleaned from prior large-scale (proteomic or
transcriptomic) experiments in the IMCD. This Bayes’ ap-
proach allowed us to utilize data, which in isolation did not
answer the question, but narrowed the choices. For example,
transcriptomics experiments divided the 521 protein kinase
genes into those that were expressed in IMCD and those that
were not detectable, and thus were unlikely to play a regulatory
role regardless of kinase specificity. Use of Bayes’ theorem to
integrate information from many sources is not new; it was
used for example to establish the conclusion that smoking is
harmful to health in the 1950s (3). However, as far as we can
tell, the use of Bayes’ theorem to integrate multiple data sets in
cell physiology is novel and it is therefore surprising that it was
not explicitly discussed in the Prihandoko and Tobin commen-
tary.

Using the Bayesian integration of prior data as a launching
point, our study (2) addressed whether addition of inhibitor
data could sharpen the Bayesian estimates. Protein kinase
inhibitors have been used in physiology for many decades,
always with tacit recognition that they inhibit multiple kinases
in addition to the nominal target kinase. Now, the International
Centre for Kinase Profiling (ICKP, http://www.kinase-screen.mr-
c.ac.uk/kinase-inhibitors) has provided profiling data for many
commonly used protein kinase inhibitors. This comprehensive
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data set identifies which kinases are and which kinases are not
inhibited by a given small-molecule kinase inhibitor, and esti-
mates the percentage of kinase activity remaining for relevant
inhibitor concentrations. The ICKP data give new life to the use
of inhibitors in physiological experiments by its comprehen-
sive nature. It allowed phosphorylation data from immunoblot-
ting of IMCD suspensions to be integrated with prior data
using Bayes’ theorem, thereby significantly improving dis-
crimination among candidate kinases involved in aquaporin-2
phosphorylation at serine-256. The overall Bayes’ analysis
shows that the conventional wisdom, that protein kinase A
phosphorylates this site in the collecting duct cell, is not any
better supported by the data than roles for several other
basophilic protein kinases including calcium/calmodulin-de-
pendent protein kinase 2� (Camk2d) and protein kinase B-�
(Akt1). In fact, the top ranked protein kinase in the Bayes’
analysis, calcium/calmodulin-dependent protein kinase 2�, was
shown in mass spectrometry experiments to be as potent in
phosphorylating aquaporin-2 in vitro as was protein kinase A,
or more so.

In summary, our paper used a systems biological approach
involving application of Bayes’ theorem to integrate multiple
data sets. Such an approach appears to be new to cell physi-
ology and appears to provide significant advantages for certain
physiological problems such as the assignment of kinases to
phosphorylation sites. We as authors recognize that the onus is
on us to provide a persuasive argument for the systems ap-
proach. It may indeed be difficult for many biologists to
embrace systems biology after a 100 years of reductionism.
Toward that end, we invite the interested reader to view our
previous writings about systems biology in AJP- Cell (8, 9) as
well as recent articles by others in this journal (1, 6, 10, 13, 16).
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Abstract
We put together a special issue on current approaches in systems biology with a focus on mathematical modeling of meta-
bolic networks. Mathematical models have increasingly been used to unravel molecular mechanisms of complex dynamic 
biological processes. We here provide a short introduction into the topics covered in this special issue, highlighting current 
developments and challenges.

Keywords  Systems biology · Mathematical modeling · Metabolic pathway analysis · Network dynamics · Multi-scale 
modeling

Systems biology has a wide range of definitions and cov-
ers an even wider range of different approaches and topics. 
We here refer to systems biology as an area of research that 
uses mathematical modelling in tight interconnection with 
experimental approaches to understand the mechanisms 
of complex biological systems and predict their behav-
iour across scales—molecular-to-organismal. This special 
issue focuses on metabolic modelling within this context 
where topics range from single-cell systems to multi-tissue 
and whole-body models. There are generally two different 
approaches to metabolic modelling. One is the dynamical 
modelling of detailed targeted pathways using kinetic rate 
laws, which allows us to describe steady-state fluxes and the 
dynamics of metabolite concentrations. As kinetic rates are 
often measured only for a limited number of reactions, these 
models usually cover only a small part of cellular metabo-
lism. These approaches are also often used to describe signal 

transduction pathways. Interestingly, most dynamic models 
to date have been built for higher eukaryotes, mainly mam-
mals. In contrast, whole cell or genome-wide metabolic 
models are still mainly used to analyze microbial systems. 
Genome-scale modelling approaches describe the whole-cell 
metabolic networks using methods known as ‘constraint-
based metabolic modelling’. The latter are largely based 
on the assumption of evolutionary optimality of cellular 
metabolism. The disadvantage of these models is that the 
concentration of modelled internal metabolites—those that 
do not represent sources or sinks to the system—cannot 
be considered independently from each other. In addition, 
simulations of this type strongly depend on the particular 
assumptions made about optimization and corresponding 
optimization functions used to constrain the solution space. 
To overcome these limitations, more research groups have 
engaged ‘hybrid modelling approaches’, either scaling up of 
dynamic models or simplifying genome-scale models. Tar-
geting the latter, the review provided by Singh and Lercher 
[1] discusses model reduction strategies that shall enable 
detailed dynamic description of genome-scale metabolism 
through model reduction.

Notwithstanding drawbacks, both dynamic- and genome-
scale metabolic modelling approaches have been very suc-
cessful in both biotechnology and for the prediction of meta-
bolic alteration in disease. A number of different approaches 
and model systems, ranging from bacteria to human, are 
presented in this special issue:

De Groot et  al. [2] analyze general metabolic fea-
tures of model organisms, such as Escherichia coli and 
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Saccharomyces cerevisiae. By comparing several models 
available to date, they identify modelling constraints that 
lead to the robust prediction of the often-discussed coun-
terintuitive effect of overflow metabolism. In contrast, 
Park et al. [3] discuss why pathogenetic bacteria such as 
pseudomonads in isolation or bacterial communities often 
behave differently than the model organisms and show that 
their (evolutionary) success may be achieved through the 
adaptation of alternative metabolic strategies with respect 
to nutrient usage. The reviews by Ewald et al. [4] and Pecht 
et al. [5] build upon multicellular and multi-species sys-
tems by reviewing current modelling approaches to study 
host–pathogen interactions.

In recent years, there has been a concerted effort to 
improve our understanding of the metabolism of multicel-
lular eukaryotes, such as humans or plants. Although exam-
ples of genome-scale modelling exist for these systems, their 
predictive capacity still remains behind those for single-cell 
organisms. Thus, dynamic metabolic modelling approaches 
describing specific pathways of interest are very common. 
As an example, Mazat et al. [6] provide a review of model-
ling approaches and current knowledge of ROS production 
in mitochondria. While there are fewer plant studies com-
pared to human and mammalian ones, an increasing number 
of systems biology studies are looking into resistance of 
plants to environmental stress and accompanying metabolic/
nutritional changes. In this respect, Holzheu and Kummer 
[7] review current modelling approaches used to study the 
model plant Arabidopsis thaliana and provide examples on 
how they have increased our understanding of plant metabo-
lism and their potential for agricultural and medical practice.

Most models to date only target one level of organization, 
and real multiscale approaches are still limited. One reason 
is that the level of detail needs to be adjusted when going 
from single cell, over multicellular systems and tissues to the 
whole-body level, which requires to make assumptions that 
in turn may limit the predictive capacity and the possibilities 
for emerging behaviour. As part of this special issue, Shaw 
and Cheung [8] discuss the advantages and disadvantages of 
multi-tissue whole-plant modelling approaches in compari-
son with single-tissue approaches.

Challenges for multiscale modelling approaches do not 
only arise from limitations in our ability to mathematically 
represent a biological system. The challenges are inher-
ent to the complex biology observed in many of our study 
systems and from limitations imposed from experimental 
observation. Different techniques need to be used to study 
different levels of organization. Sometimes, experimental 
data are only available from in vitro studies, while in vivo 
measurement can be very different or impossible. This topic 
is discussed in the review provided by Clarelli et al. [9], 
which emphasizes these limitations in the context of predict-
ing in vivo antibiotic responses.

The reviews provided in this special issue cover differ-
ent methods and examples, in which systems biology was 
used to further our understanding of biology. Many more 
have been developed in recent years, covering all levels of 
organization, time scales as well as using different mathemat-
ical approaches, ranging from cellular automata to logical 
networks. As the field has expanded and more researchers 
have started using systems biology approaches in their work, 
the number of meetings covering systems biology has also 
increased. For example, the conferences of the International 
Study Group for Systems Biology (ISGSB—isgsb​.org), 
which also served as the seed for this special issue, are held 
on a biannual basis, whereas the larger International Con-
ference in Systems Biology (ICSB) is held every year. The 
next ISGSB conference will be held in Stellenbosch, South 
Africa, from the 14–19 September 2020, whereas the next 
ICSB will be held in Connecticut from 10–16 October 2020 
(http://icsb2​020.biosc​ience​-ct.net/).
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Student	1	-	 Ref	#1	above	
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	 	 -How	can	this	approach	help	medicine?	
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	 	 -What	is	mechanical	deformation?	
	 	 -How	are	gene	networks	involved?	
	
Student	3	-		 Ref	#3	above	 	
	 	 -What	is	emergence?	
	 	 -How	can	synthetic	biology	be	used?	
	 	 -What	are	the	insights	provided	in	systems	biology?	
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Systems Biology

Definition
History
Theory
Paradigm Shift
Parameters

Systems biology is a comprehensive quantitative analysis of the manner in 
which all the components of a biological system interact functionally over 
time. Such an analysis is executed by an interdisciplinary team of 
investigators that is also capable of developing required technologies and 
computational tools. In this model, biology dictates what new technology 
and computational tools should be developed, and, once developed, these 
tools open new frontiers in biology for exploration. Thus, biology drives 
technology and computation, and, in turn, technology and computation 
revolutionize biology.

“systems biology is the study of an organism, viewed
as an integrated and interacting network of genes, proteins
and biochemical reactions which give rise to life” (Hood
2005).

Systems Biology Theory

Evolutionary Systems Biology- Extension of classical biology paradigm with new 
technology

Revolutionary Systems Biology- New paradigm shift in biology with altered 
perspective on causal relationships and systems
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Evolutionary Systems Biology History

Systems biology extension current paradigm and history of biology with new technology

300BC Aristotle, System has 4 properties or causes: Material, Formal, Efficient,Teleological
200AD Galen (Roman Physician), Teleological important role in organism function
1500s Fernel, Systematic approach Anatomy
1600s Harvey, Physiology, Cell Biology, Circulation
1700s Newton, Physics leads to mechanistic determinism to explain systems

La Mettrie, Define Biological Machine (eg Clock)
1800s Bernard, Father physiology and integration biological systems (milieu interieur)
1900s Cannon, Biological equalibrium and homeostatsis

-Discovery DNA/Structure/Genes (Molecular Biology)
-Computational Biology (non-equalibrium thermodynamics and kinetics metabolism)

2000s  -Genome Sequence
-Omics Technology

Evolutionary System Biology Definitions

Extension of traditional biological paradigm

Marc Kirchner 2005

“Systems biology is the study of the behavior of complex biological organization and 
processes in terms of the molecular constituents”

Westerhoff and Alberghina 2005

Systems biology is “nothing but good old physiology” or that is “molecular biology claiming 
additional money”

Sorger 2005

“System biology aim is to build numerical models of biological processes and test the 
models experimentally”

Scientific Paradigm Shift
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Revolutionary Systems Biology History

Jan Smuts (1870-1950), South Africa, Defined-Holism (Tendency in nature to form wholes 
that are greater than the sum of the parts through creative evolution)

Alfred Whitehead (1861-1947), USA, Defined- Organisms (Philosophy of organism to 
explain the complexity of natural processes- including biological organisms)

Ludwig von Bertalanffy (1901-1972), Austria,  Defined- Disequalibrium (Biological 
organisms are open systems, which respond to changes in environment, such that dis 
equalibrium is state of living organism and equalibrium is death)

Norbert Wiener (1894-1964), USA,  Defined- Cybernetics  (Application mathematics to 
explain biological mechanisms)

Joseph Woodger (1894-1981), UK,  Defined- Bauplan (Bauplan as the essential structural 
plan or morphology of an organism body plan, eg vertebrates)

Conrad Waddington (1905-1975), Scotland,  Defined- Epigenetics (Discuss later)
Walter Elsasser (1904-1991), Hungarian, Defined- Biotonic (Laws not reducible to physical 

or chemical laws)

1980s  Theoretical Biology Holism (Elsasser and Laszlo) (Butterfly Effect)
Chaos Theory (Mathematical approach complex systems)

1990s  High throughput sequencing and expansion epigenetic area
2000s  Sequence genome and transcriptome (Omics technologies)

Revolutionary Definitions for Systems Biology
Leroy Hood (2005)
“The inter-relationships of all the elements in a system rather than studying them one at a 

time”
Methodological Approach-
1) Develop simple descriptive, graphical, or mathematical model of how system functions
2) Identify and define the various components of the system and their state (eg omics)
3) Disturb the system with external perturbation and document changes in the components
4) Integration of the two data sets from step 3 and comparison to model in step 1
5) Adjust model until harmony or conjunction exists between data and model

Hiroaki Kitano (2002)
Four factors for comprehensive systems biology definition
1) System Structure, organization of components (macromolecules, genes, cells, tissues etc
2) System Dynamics, interactions between or relationships of the various hierarchical levels 

over time
3) Systems Control Method, regulatory mechanisms involved in the maintenance of the 

organizational hierarchy
4) Systems Design Method, hierarchical organization with specific properties and manipulate
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Reductionism
The view that the ultimate scientific understanding of a range of phenomena is to be 

gained exclusively from looking at the constituents of these phenomena and their 
properties

Ontological Reductionism

That complex phenomena are reducible to or determinable by simpler entities and 
forces that compose them  (eg genetic determinism) and (bottom-up or upward 
causation)

Methodological Reductionism

Reducing wholes to parts and explaining the higher levels in terms of lower ones as the 
ultimate direction for all scientific research  (eg physics)

Epistemological Reductionism

Reduction of scientific knowledge, whether in terms of theories, laws, or explanations, 
from a higher level of organization to that of a lower or more basic one

The fall and rise of pharmacology--(re-)defining the discipline?
Winquist RJ, Mullane K, Williams M.
Biochem Pharmacol. 2014 Jan 1;87(1):4-24. 

Abstract

Pharmacology is an integrative discipline that originated from activities, now nearly 7000 years old, 
to identify therapeutics from natural product sources. Research in the 19th Century that focused on 
the Law of Mass Action (LMA) demonstrated that compound effects were dose-/concentration-
dependent eventually leading to the receptor concept, now a century old, that remains the key to 
understanding disease causality and drug action. As pharmacology evolved in the 20th Century 
through successive biochemical, molecular and genomic eras, the precision in understanding 
receptor function at the molecular level increased and while providing important insights, led to an 
overtly reductionistic emphasis. This resulted in the generation of data lacking physiological context 
that ignored the LMA and was not integrated at the tissue/whole organism level. 

However, 
concerns regarding the disconnect between basic research efforts and the approval of new drugs to 
treat 21st Century disease tsunamis, e.g., neurodegeneration, metabolic syndrome, etc. has led to 
the reemergence of pharmacology, its rise, often in the semantic guise of systems biology. Against 
a background of limited training in pharmacology, this has resulted in issues in experimental 
replication with a bioinformatics emphasis that often has a limited relationship to reality. The 
integration of newer technologies within a pharmacological context where research is driven by 
testable hypotheses rather than technology, together with renewed efforts in teaching 
pharmacology, is anticipated to improve the focus and relevance of biomedical research and lead to 
novel therapeutics that will contain health care costs. 

Neuropharmacology beyond reductionism - A likely prospect.
Margineanu DG.
Biosystems. 2016 Mar;141:1-9.

Abstract

Neuropharmacology had several major past successes, but the last few decades did not witness
any leap forward in the drug treatment of brain disorders. Moreover, current drugs used in
neurology and psychiatry alleviate the symptoms, while hardly curing any cause of disease,
basically because the etiology of most neuro-psychic syndromes is but poorly known. This review
argues that this largely derives from the unbalanced prevalence in neuroscience of the analytic
reductionist approach, focused on the cellular and molecular level, while the understanding of
integrated brain activities remains flimsier. The decline of drug discovery output in the last decades,
quite obvious in neuropharmacology, coincided with the advent of the single target-focused search
of potent ligands selective for a well-defined protein, deemed critical in a given pathology. However,
all the widespread neuro-psychic troubles are multi-mechanistic and polygenic, their complex
etiology making unsuited the single-target drug discovery. An evolving approach, based on systems
biology considers that a disease expresses a disturbance of the network of interactions underlying
organismic functions, rather than alteration of single molecular components. Accordingly, systems
pharmacology seeks to restore a disturbed network via multi-targeted drugs. This review notices
that neuropharmacology in fact relies on drugs which are multi-target, this feature having occurred
just because those drugs were selected by phenotypic screening in vivo, or emerged from
serendipitous clinical observations. The novel systems pharmacology aims, however, to devise ab
initio multi-target drugs that will appropriately act on multiple molecular entities. Though this is a
task much more complex than the single-target strategy, major informatics resources and
computational tools for the systemic approach of drug discovery are already set forth and their
rapid progress forecasts promising outcomes for neuropharmacology.

Overcoming the Newtonian paradigm: the unfinished project of theoretical biology 
from a Schellingian perspective.
Gare A.
Prog Biophys Mol Biol. 2013 Sep;113(1):5-24

Abstract

Defending Robert Rosen's claim that in every confrontation between physics and biology 
it is physics that has always had to give ground, it is shown that many of the most 
important advances in mathematics and physics over the last two centuries have 
followed from Schelling's demand for a new physics that could make the emergence of 
life intelligible. Consequently, 

. This history is used to identify and defend a fragmented 
but progressive tradition of anti-reductionist biomathematics. It is shown that the 
mathematico-physico-chemical morphology research program, the biosemiotics
movement, and the relational biology of Rosen, although they have developed 
independently of each other, are built on and advance this anti-reductionist tradition of 
thought. It is suggested that understanding this history and its relationship to the broader 
history of post-Newtonian science could provide guidance for and justify both the 
integration of these strands and radically new work in post-reductionist biomathematics. 



7

Holism  (Revolutionary Systems Biology)

The living world consists in a reality that can be understood only in its global and 
inseparable unity.  The whole is fundamental, not any one level.  The whole is greater 
than the sum of its parts or of its levels.

Ontological Holism
Putting together the parts will not produce the wholes (such as living systems) or 
account for their properties and behaviors.  Downward causation claims that higher 
order entities determine causally the properties or behavior of lower-level entities.

Methodological Holism
That life can only be understood by studying it as a whole.  The world is disordered and 
it recognized that each hierarchical level requires its own research strategy not 
reducible  to the methodological strategy below it.

Epistemological Holism
Complex wholes are considered not to be understandable from the mere knowledge of 
the behavior of the parts in isolation; only properties of the system as a whole may 
offer understanding.

From Reductionism to Holism: Systems-oriented Approaches in Cancer Research
Kienle G, Kiene H. 
Glob Adv Health Med. 2012 Nov;1(5):68-77.

"Life-bearing molecules" versus "life-embodying systems": Two contrasting views on the what-is-life (WIL) problem 
persisting from the early days of molecular biology to the post-genomic cell- and organism-level biology
Naoki Sato
Biosystems. 2018 May;167:24-32.

So what do we really mean when we say that systems biology is holistic?
Gatherer D.
BMC Syst Biol. 2010 Mar 12;4:22.

Abstract

Background: An old debate has undergone a resurgence in systems biology: that of
reductionism versus holism. At least 35 articles in the systems biology literature since 2003 have
touched on this issue. The histories of holism and reductionism in the philosophy of biology are
reviewed, and the current debate in systems biology is placed in context.

Results: Inter-theoretic reductionism in the strict sense envisaged by its creators from the 1930s
to the 1960s is largely impractical in biology, and was effectively abandoned by the early 1970s
in favour of a more piecemeal approach using individual reductive explanations. Classical holism
was a stillborn theory of the 1920s, but the term survived in several fields as a loose umbrella
designation for various kinds of anti-reductionism which often differ markedly. Several of these
different anti-reductionisms are on display in the holistic rhetoric of the recent systems biology
literature. This debate also coincides with a time when interesting arguments are being proposed
within the philosophy of biology for a new kind of reductionism.

Conclusions: Engaging more deeply with these issues should sharpen our ideas concerning
the philosophy of systems biology and its future best methodology. As with previous decisive
moments in the history of biology, only those theories that immediately suggest relatively easy
experiments will be winners.
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Holism, Chinese Medicine and Systems Ideologies: Rewriting the Past to Imagine the Future
Volker Scheid

In: The Edinburgh Companion to the Critical Medical Humanities. Edinburgh: Edinburgh University Press; 2016 Jun 30. Chapter 3.
Wellcome Trust–Funded Monographs and Book Chapters.

As a Buddhist intellectual, Zhang Taiyan employed the notion of karma as a tool for understanding historical process 
independent of the ideologies of progress and linear time that the West was then imposing on China. In this view, history is 
produced by the activity of karmic seeds (業種 bijia). These seeds are brought to fruition through action, producing karmic fruits 
(業果 vipaka), which in turn become seeds for new fruits and so on. Existence is perfumed by these seeds, which produce habits 
that have karmic consequences. This karmic cycle or samsara (輪迴 lunhui) can only be broken by bringing into awareness and 
then transcending the conditioning brought forth by the karmic seeds.

The continued presence of non-modern practices like Chinese medicine in the modern world invariably brings us face to face 
with precisely the questions that Zhang Taiyan sought to resolve. They have not yet been rendered obsolete as tradition, nor 
have they been completely assimilated to the modern. It is therein that their value lies. The interdisciplinary orientation and 
openness to constant redefinition the medical humanities claim for themselves make it an ideal space in which critique of the
kind inspired by Zhang Taiyan or Max Horkheimer may be enacted. The possibility for doing so, however, depends on the 
discipline’s willingness to engage critically with its own karmic seeds and their fruits. If the medical humanities truly intend to 
become a space for critique rather than mere criticism, its practitioners will need to find ways of moving beyond the modern 
constitution that defines and constrains them, not least through their one-sided attachment to biomedicine.

The present chapter argues that opening ourselves up to non-modern medical traditions, not as objects of inquiry but as 
resources for thinking critically about the fundamental issues of our time, presents an opportunity for doing precisely that.

The new holism: P4 systems medicine and the medicalization of health and life itself
Vogt H, Hofmann B, Getz L. 
Med Health Care Philos. 2016 Jun;19(2):307-23.

From Reductionism to Holism: Toward a More Complete View of Development Through Genome Engineering
Rebecca K Delker and Richard S Mann  
Adv Exp Med Biol. 2017;1016:45-74.

Complexity and the reductionism-holism debate in systems biology
Fulvio Mazzocchi
Wiley Interdiscip Rev Syst Biol Med. Sep-Oct 2012;4(5):413-27.
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Genetic Determinism

The view that genes (genotype) cause traits (phenotype)

Genetic determinism also referred to as- Geneticism, Genetic Essentialism and 
Genetic Fatalism

Strong Genetic Determinism- genotype “always” dictates phenotype

Weak Genetic Determinism- genotype “sometimes” dictates phenotype, also 
potentials or predispositions

Classical Genetics (Mendel)  to  Molecular Genetics (DNA)  to  Molecular Biology

Two applications of network-
based analyses of GWAS. (a) 
GWAS analysis computes the 
association between a SNP 
and case/control, reporting a 
P-value for each SNP. (b) 
Casual gene identification is 
the problem of identifying a 
single causal gene (circled in 
red) for the phenotype from a 
larger locus of candidate 
genes that is significantly 
associated with the 
phenotype. (c) Causal 
network identification is the 
problem of finding a group of 
interacting genes (e.g. a 
signaling pathway or protein 
complex) containing SNPs 
that distinguish cases and 
controls.
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Systems Genetic Analyses Highlight a TGFβ-FOXO3 Dependent Striatal Astrocyte Network 
Conserved across Species and Associated with Stress, Sleep, and Huntington's Disease.
Scarpa JR, Jiang P, Losic B, Readhead B, Gao VD, Dudley JT, Vitaterna MH, Turek FW, Kasarskis A.
PLoS Genet. 2016 Jul 8;12(7):e1006137.

Network-specific pathology and functional characterization of CN Thistle2 module.
(A,B) Differential connectivity analysis reveals network-level alterations (light purple) that were not observed by previous differential
expression analysis in the same cohort1 (dark purple). (B) Venn diagrams depict the number of genes identified by differential
connectivity (light purple) and differential expression analyses (dark purple), as well as their overlap. (C) CN modules showing
enrichment for previously published cell-type specific gene signatures identified by FACS (F) and in situ hybridization (I) experiments.
Fisher’s exact test odds ratios are plotted only for modules with P < 0.05, two-sided, Bonferroni corrected. (D) Circos plot depicting
FOXO3 as the top TF associated with Thistle2 in CN; rings are numbered 1 (outermost) to 5 (innermost). TF binding site enrichment
scores are depicted in rings 2, 3, and 4 (Z score, Fisher’s score, and Composite Rank, respectively). Ring 5 depicts the differential
expression profile of each TF in HD (-log10(P)). Blue histogram height (ring 1) reflects the cumulative scores of each TF based upon
rings 2–5, with taller heights depicts greater relevance to Thistle2.

Molecular genetic variation of animals and plants under domestication 
Andersson L, Purugganan M. 
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2122150119. 

Weight Stigma Reduction and Genetic Determinism.
Hilbert A.
PLoS One. 2016 Sep 15;11(9):e0162993.

Abstract

One major approach to weight stigma reduction consists of decreasing beliefs about the personal
controllability of-and responsibility for-obesity by educating about its biogenetic causes. Evidence
on the efficacy of this approach is mixed, and it remains unclear whether this would create a
deterministic view, potentially leading to detrimental side-effects. Two independent studies from
Germany using randomized designs with delayed-intervention control groups served to (1) develop
and pilot a brief, interactive stigma reduction intervention to educate N = 128 university students on
gene × environment interactions in the etiology of obesity; and to (2) evaluate this intervention in
the general population (N = 128) and determine mechanisms of change. The results showed (1)
decreased weight stigma and controllability beliefs two weeks post-intervention in a student sample;
and (2) decreased internal attributions and increased genetic attributions, knowledge, and
deterministic beliefs four weeks post-intervention in a population sample. Lower weight stigma was
longitudinally predicted by a decrease in controllability beliefs and an increase in the belief in
genetic determinism, especially in women. The results underline the usefulness of a brief,
interactive intervention promoting an interactionist view of obesity to reduce weight stigma, at least
in the short term, lending support to the mechanisms of change derived from attribution theory. The
increase in genetic determinism that occurred despite the intervention's gene × environment focus
had no detrimental side-effect on weight stigma, but instead contributed to its reduction. Further
research is warranted on the effects of how biogenetic causal information influences weight
management behavior of individuals with obesity.
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After geneticization.
Arribas-Ayllon M.
Soc Sci Med. 2016 Jun;159:132-9. 

Abstract

The concept of geneticization belongs to a style of thinking within the social sciences that refers to
wide-ranging processes and consequences of genetic knowledge. Lippman's original use of the
term was political, anticipating the onerous consequences of genetic reductionism and determinism,
while more recent engagements emphasise the productivity and heterogeneity of genetic concepts,
practices and technologies. This paper reconstructs the geneticization concept, tracing it back to
early political critiques of medicine. The argument is made that geneticization belongs to a style of
constructionist thinking that obscures and exaggerates the essentializing effects of genetic
knowledge. Following Hacking's advice, we need a more literal sense of construction in terms of
'assembly' to give a clearer account of the relationship between processes and products. Using the
'assemblage' concept to explore the social ontology of genetics, the paper reviews three areas of
the empirical literature on geneticization - disease classification, clinical practice and biosociality - to
show that a new style of thinking has appeared within the social sciences. In the final assessment,
the conditions that gave rise to geneticization are now obsolete. While it may serve as a useful
ritual of debate, conceptually geneticization offers a limited account of the heterogeneity of socio-
technical change.

Epigenetics

Waddington (1940s) coined term to describe environment-gene interactions that 
promote phenotype.

Non-genetic factors in the control of developmental processes and phenotype (? anti-
genetic determinism)

Art Riggs (1996), defined as “mitotically and/or meiotically heritable changes in gene 
function that cannot be explained by changes in DNA sequence”

Epigenetics represents for many systems biologists a promise for control of biological 
phenomena unfulfilled by genetic determinism (Silverman 2004)

Epigenetics

Molecular factors/processes around the 
DNA that regulate genome activity, 
independent of DNA sequence, and are 
mitotically stable 
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Epigenetic Mechanisms of 
Gene Regulation

-DNA Methylation
-Histone Modification
-Chromatin Structure
-DNA Organization into 

Domains (eg Loops)
-Nuclear Compartmentalization 

(eg nuclear matrix)
-Noncoding functional RNAs

Functional genomic assays to annotate enhancer-promoter interactions genome-wide 
Leung AK, Yao L, Yu H. 
Hum Mol Genet. 2022 Aug 26:ddac204. 

Mechanism and Emergence

Mechanism-

Glennan 2002- “is a complex system that produces that behavior by the interaction of 
a number of parts, where the interactions between parts can be characterized by 
direct, invariant, change relating generalizations”

Machamer, Darden, Craver 2000- “are intities and activities organized such that they 
are productive of regular changes from start or set-up to finish or termination 
conditions” (A to B to C)

Mechanisms are especially open to investigation particularly through experimentation
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Emergence. Complex systems display properties, often called “emergent 
properties,” that are not demonstrated by their individual parts and cannot 
be predicted even with full understanding of the parts alone. For example, 
understanding the properties of hydrogen and oxygen does not allow us to 
predict the properties of water. Life is an example of an emergent property. 
It is not inherent in DNA, RNA, proteins, carbohydrates, or lipids but is a 
consequence of their actions and interactions. A comprehensive 
understanding of such emergent properties requires systems-level 
perspectives and cannot be gleaned from simple reductionist approaches.

“What is the difference between a live cat and a dead
one? One scientific answer is systems biology. A live cat
is the emergent behavior of the system incorporating those
parts.”

Emergence of biological organization through thermodynamic inversion.
Kompanichenko V.
Front Biosci (Elite Ed). 2014 Jan 1;6:208-24.
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Emergence, Retention and Selection: A Trilogy of Origination for Functional De Novo 
Proteins from Ancestral LncRNAs in Primates.
Chen JY, Shen QS, Zhou WZ, et al.
PLoS Genet. 2015 Jul 15;11(7):e1005391. 

De novo protein-coding genes originating from lncRNAs.
(A) Computational pipeline for ab inito identification and meta-analysis of de novo genes in the hominoid lineage. (B) Number of de novo genes
on the phylogenetic tree, with the branch length proportional to the divergence time. (C) Stacked histogram showing the percentage of de novo
gene orthologs that also show expression in chimpanzee or rhesus macaque. (D) Boxplot showing relative expression levels of the transcripts
and their nearby regions corresponding to de novo genes (orthologs) in human (chimpanzee or macaque). The nearby regions are defined as
upstream and downstream regions with equal length to the corresponding genes. For each region, the relative expression was calculated by
normalizing the expression level of this region with the sum of the expression levels of the genic region and the nearby regions. (E) Percentage
of splicing junctions with supporting RNA-Seq reads in human, chimpanzee and rhesus macaque. (F) For each pair of tissues, Spearman
correlation coefficients were computed separately, and the extent of tissue-specific differences in de novo gene expressions are shown (based
on the color scale). Dotted lines highlight parallel comparisons between two different species.

Contextual organismality: Beyond pattern to process in the emergence of 
organisms.
Díaz-Muñoz SL, Boddy AM, Dantas G, Waters CM, Bronstein JL.
Evolution. 2016 Dec;70(12):2669-2677. 

The cooperation-conflict space is useful to visualize and evaluate potentially organismal interactions. Panel (A)
illustrates organismality space (after Queller and Strassmann 2009) and some of the potential paths (numbered
1–4) organisms can move through under changing ecological contexts, such as development, resource
availability, population size, and species interactions. In Panel (B), we provide examples of movement across
organismal space in honey bee colonies (blue) and groups of microbial cells (red). In both examples, the cloud
plot depicts the movement over “organismality space” and the labels represent the context that facilitates this
change. The shading around the points is meant to convey the possibility of small changes in cooperation-conflict
in any context.

Protein interaction networks in neurodegenerative diseases: From physiological function to aggregation
Calabrese G, Molzahn C, Mayor T. 
J Biol Chem. 2022 Jul;298(7):102062. Homeostasis vs Robustness 

Homeostasis-

Claude Bernard (1800s)- “internal milieu’s constancy”

Cannon (1939)- “steady states in the body…..a condition that may vary, but is 
relatively constant”

Miglani (2006)- “a mechanism for promoting the stability of phenotypic expression of 
a genotype when grown over a wide range of environments”
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Illustration of environmental influences and the effect of perturbations on inner dynamics. In (A), two environments 
are shown (rich and minimal media). Plots adapted from (Freilich et al., 2010). In (B), a current state of an internal 
control can be modified by small or large perturbations (thick black arrows) pushing the agent–internal dynamics 
within the current boundary of attraction or far from it. NN, neural network. See main text for further details. 

Robustness. Biological systems maintain phenotypic stability in the face of 
diverse perturbations imposed by the environment, stochastic events, and 
genetic variation. Robustness often arises through positive and negative 
feedback loops and other forms of control that constrain a gene’s output. 
This feedback insulates the system from fluctuations imposed on it by the 
environment. Positive feedback, in general, enhances sensitivity, whereas 
negative feedback can dampen noise and reject perturbations. Robustness 
is an inherent property of all biological systems and is strongly favored by 
evolution.

Robustness as an organizational principle

Robustness enables the system to maintain its functionalities 
against external and internal perturbations. This property has 
been widely observed across many species, from the level of 
gene transcription to the level of systemic homeostasis.
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Illustration of redundancy (A) and distributed robustness (B). Plots show a hypothetical 
organization in which an upstream signal from the upper white circles is processed by a 
number of intermediate components (dark circles) to a downstream effector (lower white 
circles). 



17



18

Developmental Plasticity and Robustness of a Nematode Mouth-Form Polyphenism.
Sieriebriennikov B, Sommer RJ.
Front Genet. 2018 Sep 11;9:382.

Molecular mechanisms underlying leaf development, morphological diversification, and beyond
Nakayama H, Leichty AR, Sinha NR. 
Cell. 2022 Jul 4;34(7):2534-2548.

Quantitative metabolic fluxes regulated by trans-omic networks
Ohno S, Uematsu S, Kuroda S.
Biochem J. 2022 Mar 31;479(6):787-804. 

Complex regulation of metabolic flux

Three main techniques to determine metabolic fluxes
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Modularity. A further characteristic of complex systems is their 
modularity. Multiple useful definitions of a module exist. To an engineer, 
a module is a functional unit, a collection of parts that interact together 
to perform a distinct function. Such a module would have distinct inputs, 
things it is sensitive to, and outputs, things it controls. To a biologist, a 
module in a network is a set of nodes that have strong interactions and a 
common function. Modularity can contribute to both robustness of the 
entire system, by confining damage to separable parts, and to evolution, 
by simply rewiring modules. Furthermore, modularity decreases the risk 
of failure of the system by preventing the spread of damage in one part of 
the network throughout the entire network.
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Top-down models in biology: explanation and control of complex living systems above the molecular level.
Pezzulo G, Levin M.
J R Soc Interface. 2016 Nov;13(124).

Structure and Assembly of the Bacterial Flagellum 
Al-Otaibi NS, Bergeron JRC. 
Subcell Biochem. 2022;99:395-420. 
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Emerging landscape of molecular interaction networks: Opportunities, challenges and prospects 
Panditrao G, Bhowmick R, Meena C, Sarkar RR. 
J Biosci. 2022;47:24. PMID: 36210749 Review. “Epigenetics and Systems Biology”
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Biol 476/576 
Schedule/Lecture Outline –

Spring	2023–	Epigenetics	and	Systems	Biology	
Lecture	Outline	–	Systems	Biology	
Michael	K.	Skinner	–	Biol	476/576	
CUE	418	&	Zoom	
10:35-11:50	am,	Tuesday/Thursday	(January	10,	12	&	17)	Introduction		
Weeks	1	and	2	
	

Systems	Biology	

• History	and	Definitions	
• Reductionism/	Genetic	Determination	
• Holism/	Emergentism/	Homeostasis	or	Robustness	
• Revolutionary	and	Evolutionary	Systems	Biology	
• Networks	and	Computational	Biology	
• Basic	Molecular	and	Cellular	Components	

	
	

Required	Reading	
	
Kitano	H.	(2002)	Computational	systems	biology.	Nature	420(6912):206-10.	
	
Wolfe	CT.	Chance	between	holism	and	reductionism:	tensions	in	the	conceptualisation	of	Life.	
Prog	Biophys	Mol	Biol.	2012	Sep;110(1):113-20.	
	
Knepper	et	al.	(2014)	Systems	biology	versus	reductionism	in	cell	physiology.		Am	J	Physiol	Cell	
Phisiol	307:C308-C309.	
	
Zupanic	A,	Bernstein	HC,	Heiland	I.	Systems	biology:	current	status	and	challenges.	Cell	Mol	Life	
Sci.	2020	Feb;77(3):379-380.	
	

	
Background	Book	References		

	
James	A.	Marcum	(2009)	The	Conceptual	Foundations	of	Systems	Biology,	Nova	Science	
Publishers,	Inc.	
	
Eberhard	Voit	(2012)	A	First	Course	in	Systems	Biology,	Garland	Science	
	
Capra	and	Luisi	(2014)	The	Systems	View	of	Life,	Cambridge	University	Press.	
	
Leonie	Ringrose	(2017)	Epigenetics	and	Systems	Biology,	Academic	Press	
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Computational approaches leveraging integrated connections of multi-omic data toward 
clinical applications. 
Demirel HC, Arici MK, Tuncbag N.
Mol Omics. 2022 Jan 17;18(1):7-18. 
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A paradigm shift in medicine: A comprehensive review of network-based approaches
Conte F, Fiscon G, Licursi V, Bizzarri D, D'Antò T, Farina L, Paci P. 
Biochim Biophys Acta Gene Regul Mech. 2020 Jun;1863(6):194416.

Computational Biology

• Mathematical modeling
• Data set analysis to develop models

Computational Models

• Model Scope  (mathematical elements)

• Model Statement  (equations)

• System State  (dynamic, snapshot)

• Variables, Parameters and Constants

• Model Behavior (environmental and internal processes)

• Model Assignment (biology described mathematical)

• Data Integration  (omics data)
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Synthetic biology and regulatory networks: where metabolic systems biology meets control 
engineering.
He F, Murabito E, Westerhoff HV.
J R Soc Interface. 2016 Apr;13(117). 

An unbranched metabolic pathway under hierarchical regulation. (a) The first enzyme is regulated through both transcriptional
repression and allosteric activity inhibition by the end product. Enzymes in other steps might also be regulated through gene
expression (in dashed arrows), but this is not explicitly considered here. TF denotes transcription factor. (b) The hierarchical supply–
demand representation of the pathway (a). The lower part represents the classical metabolic supply–demand system, in which only
the metabolic regulation (in this case allosteric inhibition) is considered. The letter ‘X’ denotes the penultimate product xn, still in
pathway. The supply is catalysed by enzyme Es (i.e. e1 here or enzymes stemming from an entire operon). (c) Illustration of the
steady-state properties of a supply–demand system in terms of changes in the flux, intermediate concentration and elasticity
coefficients.
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Parameter Estimations

• Regression  (minimum of the function)
• Estimators  (distance measure)
• Maximum likelihood estimation  (Gaussian noise)
• Identifiability  (landscape in parameter space)
• Bootstrapping  (sampling and noisy data)
• Cross Validation  (model fitting and prediction)
• Baysian Parameter Estimation  (parameter not fixed, random variables)
• Local and Global Optimization 
• Machine Learning Algorithms  (simulations)

(Mathematica /  Matlab  /  Systems Biology Markup Language, SBML)

Patterning with activator-inhibitor systems. (A) Local activation and lateral 
inhibition generates spatially heterogeneous patterns. (B) Interactions between 
black and yellow pigment cells produce Turing patterns in zebrafish skin. Mutual 
inhibition between them functions as self-activation for the yellow cells. Each 
yellow cell activates distant black cells. Therefore, inhibition of the yellow cell by 
the black cell works as a lateral inhibition. (C) Different modeling approaches to 
spontaneous pattern formation.

Patterning with signaling gradients. (A) Schematic of early fruit fly embryo showing the maternal gradient of Bicoid 
protein at cycle 13 that directs the formation of precise target gene domains such as hunchback and knirps. (B) 
Proposed gene regulatory network showing cross-regulation of target genes (9). The four genes are also under 
control of Bicoid and other players. t, time. 
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Parameter Estimations

• Regression  (minimum of the function)
• Estimators  (distance measure)
• Maximum likelihood estimation  (Gaussian noise)
• Identifiability  (landscape in parameter space)
• Bootstrapping  (sampling and noisy data)
• Cross Validation  (model fitting and prediction)
• Baysian Parameter Estimation  (parameter not fixed, random variables)
• Local and Global Optimization 
• Genetic Algorithms  (simulations)

(Mathematica /  Matlab  /  Systems Biology Markup Language, SBML)

Parameter Estimations

• Regression  (minimum of the function)
• Estimators  (distance measure)
• Maximum likelihood estimation  (Gaussian noise)
• Identifiability  (landscape in parameter space)
• Bootstrapping  (sampling and noisy data)
• Cross Validation  (model fitting and prediction)
• Baysian Parameter Estimation  (parameter not fixed, random variables)
• Local and Global Optimization 
• Genetic Algorithms  (simulations)

(Mathematica /  Matlab  /  Systems Biology Markup Language, SBML)
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Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex 
biological systems
Kuchling F, Friston K, Georgiev G, Levin M.
Phys Life Rev. 2020 Jul;33:88-108.

Schematic of variational Bayesian simulation of morphogenesis
illustrated via a type of regenerative patterning observed in
planarian flatworms and other organisms. A: When dissecting
out the center piece of a planarian flatworm, the constituent cells
will remodel into a new worm. Here, cells that form different
tissue types were grouped together as one cell in the simulation
for simplicity, with the cell signaling types defined in Fig. 3. B:
Expected Signal concentrations (background color) at each final
position (colored stars) in the target morphology encodes the
cellular model of inference, with the color coding from A. C: Cells
are constantly comparing their sensed signal concentrations to
their expectations by minimizing their free energy functional,
which effectively aims to reduce the prediction error defined in
equation (47) (dashed lines) on expected sensory states s
defined in equation (40) (continuous lines).

Parameter Estimations

• Regression  (minimum of the function)
• Estimators  (distance measure)
• Maximum likelihood estimation  (Gaussian noise)
• Identifiability  (landscape in parameter space)
• Bootstrapping  (sampling and noisy data)
• Cross Validation  (model fitting and prediction)
• Baysian Parameter Estimation  (parameter not fixed, random variables)
• Local and Global Optimization 
• Genetic Algorithms  (simulations)

(Mathematica /  Matlab  /  Systems Biology Markup Language, SBML)

Machine Learning Modeling

• Large data set with manipulations

• Test data set with known outcomes parameters  (learning data set)

• Mathematical Algorithm development from training set

• Refine Algorithm development with large data set

• Final Algorithm should be correct with training set and reveal new biology insight

Bifurcation diagrams for the deterministic reaction rate equations.
The diagrams are constructed using XPPAUT for equations (1)–(13) and the parameter values given in Results. Numbers of 
reporter protein molecules produced are plotted against the natural logarithm of the external signal ln(k14/k15), in the a) 
autoregulated and b) constitutive cases, showing a bistable and graded response respectively. Bold lines denote stable solutions
and dashed lines denote unstable solutions. doi:10.1371/journal.pcbi.1002396.g003
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Methods of information theory and algorithmic complexity for network biology.
Zenil H, Kiani NA, Tegnér J.
Semin Cell Dev Biol. 2016 Mar;51:32-43.

Abstract

We survey and introduce concepts and tools located at the intersection of information
theory and network biology. We show that Shannon's information entropy,
compressibility and algorithmic complexity quantify different local and global aspects of
synthetic and biological data. We show examples such as the emergence of giant
components in Erdös-Rényi random graphs, and the recovery of topological properties
from numerical kinetic properties simulating gene expression data. We provide exact
theoretical calculations, numerical approximations and error estimations of entropy,
algorithmic probability and Kolmogorov complexity for different types of graphs,
characterizing their variant and invariant properties. We introduce formal definitions of
complexity for both labeled and unlabeled graphs and prove that the Kolmogorov
complexity of a labeled graph is a good approximation of its unlabeled Kolmogorov
complexity and thus a robust definition of graph complexity.
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Parameter Estimations

• Regression  (minimum of the function)
• Estimators  (distance measure)
• Maximum likelihood estimation  (Gaussian noise)
• Identifiability  (landscape in parameter space)
• Bootstrapping  (sampling and noisy data)
• Cross Validation  (model fitting and prediction)
• Baysian Parameter Estimation  (parameter not fixed, random variables)
• Local and Global Optimization 
• Genetic Algorithms  (simulations)

(Mathematica /  Matlab  /  Systems Biology Markup Language, SBML)

Networks 

• Modules
• Nodes
• Clusters
• Interactomes
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Computational solutions for spatial transcriptomics 
Kleino I, Frolovaitė P, Suomi T, Elo LL. 
Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. 

1. Feedback is an essential part of molecular networks. It allows the cell to adjust the 
repertoire of functional proteins to current needs.

2. A FL is primarily characterized by its sign: negative feedback for maintaining 
homeostasis, positive feedback for obtaining ultrasensitivity or multiple stable 

states of the cellular composition.

3. Negative feedback can cause oscillations if signal propagation around the FL is 
sufficiently slow. High Hill coefficients, additional positive FLs, or saturated 
degradation facilitates oscillations in a negative FL.

4. Positive feedback can come from strong self-activation of a gene, from mutual 
repression between proteins, or by autocatalytic processes. In all cases one can 
obtain bistability if reactions involve some sort of cooperativity.

5. Metabolism of small molecules is characterized by a separation of scales. Typically, 
the intracellular pool of available small molecules is much smaller than the total 
amount of small molecules consumed during one cell generation.

6. Combinations of FLs in small-molecule uptake and metabolism can result in new 
behavioral features that are significantly different from a simple sum of the 
behaviors of single loops.

Summary Points
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1. Feedback is an essential part of molecular networks. It allows the cell to adjust the 
repertoire of functional proteins to current needs.

2. A FL is primarily characterized by its sign: negative feedback for maintaining 
homeostasis, positive feedback for obtaining ultrasensitivity or multiple stable 

states of the cellular composition.

3. Negative feedback can cause oscillations if signal propagation around the FL is 
sufficiently slow. High Hill coefficients, additional positive FLs, or saturated 
degradation facilitates oscillations in a negative FL.

4. Positive feedback can come from strong self-activation of a gene, from mutual 
repression between proteins, or by autocatalytic processes. In all cases one can 
obtain bistability if reactions involve some sort of cooperativity.

5. Metabolism of small molecules is characterized by a separation of scales. Typically, 
the intracellular pool of available small molecules is much smaller than the total 
amount of small molecules consumed during one cell generation.

6. Combinations of FLs in small-molecule uptake and metabolism can result in new 
behavioral features that are significantly different from a simple sum of the 
behaviors of single loops.

Summary Points

(a) A network of 750 nodes was generated by means of the PS model, with target
average node degree 2m = 10, scaling exponent γ = 2.75 and network temperature T = 0.
The network is embedded to the hyperbolic plane H2 An external file that holds a picture,
illustration, etc. Object name is srep30108-m31.jpg with LaBNE to reveal the angular
position of the nodes in the hyperbolic circle containing the network. (b) Finally, the
radial coordinates of the nodes are assigned, so that they resemble the rank of each
node according to its degree. By the colour of the nodes, which highlights their angular
coordinates, one can note that the embedding by LaBNE is rotated by some degrees
with respect to the actual node angular coordinates obtained with the PS model. This
does not impact the hyperbolic, distance-dependent connection probabilities, because
distances are invariant under rotations. Edges in the raw embedding by LaBNE are not
shown for clarity.
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Note that to embed a network G to H2, the truncated spectral decomposition of L is used. 
This gives the closest approximation to the eigen-decomposition by a matrix λk+1 of 
rank λ k + 1 and ensures that the computational complexity of LaBNE is O(N2).

Efficient embedding of complex networks to hyperbolic space via their Laplacian.
Alanis-Lobato G, Mier P, Andrade-Navarro MA.
Sci Rep. 2016 Jul 22;6:30108.

1. Feedback is an essential part of molecular networks. It allows the cell to adjust the 
repertoire of functional proteins to current needs.

2. A FL is primarily characterized by its sign: negative feedback for maintaining 
homeostasis, positive feedback for obtaining ultrasensitivity or multiple stable 

states of the cellular composition.

3. Negative feedback can cause oscillations if signal propagation around the FL is 
sufficiently slow. High Hill coefficients, additional positive FLs, or saturated 
degradation facilitates oscillations in a negative FL.

4. Positive feedback can come from strong self-activation of a gene, from mutual 
repression between proteins, or by autocatalytic processes. In all cases one can 
obtain bistability if reactions involve some sort of cooperativity.

5. Metabolism of small molecules is characterized by a separation of scales. Typically, 
the intracellular pool of available small molecules is much smaller than the total 
amount of small molecules consumed during one cell generation.

6. Combinations of FLs in small-molecule uptake and metabolism can result in new 
behavioral features that are significantly different from a simple sum of the 
behaviors of single loops.

Summary Points
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Transcription network in bacteria
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Network Application Examples

(a) Gene regulatory 
network for Drosophila 
gap genes, showing 
relationship between 
input genes (Bcd, Cad, 
Hb, Tll) and output genes 
(Kni,Hb,Kr,Gt). (After 
figure 1 of Papatsenko 
and Levine (2011)). (b) 
Concentration of Gap 
genes along the anterior 
posterior axis of the 
embryo. Model was fitted 
to this data. Hb, 
hunchback; Gt, giant; Kr, 
Kruppel; Kni, Knirps.

The (r)evolution of gene regulatory networks controlling Arabidopsis plant 
reproduction: a two-decade history.



40

A Network Biology Approach to Understanding the Tissue-Specific Roles of Non-Coding RNAs in Arthritis
Ali SA, Pastrello C, Kaur N, Peffers MJ, Ormseth MJ, Jurisica I.
Front Endocrinol (Lausanne). 2021 Nov 3;12:744747. 

A schematic of the network perturbations of one neural degenerative network over the 20 weeks of 
the progression of this disease in a mouse model. The red nodes indicate mRNAs that have 
become disease perturbed as compared with the brain transcripts of normal mice. The spreading of 
the disease-perturbed networks at the three different times points is striking – indicating the 
progressive disease perturbation of this neurodegenerative network.

Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders
Parikshak NN, Gandal MJ, Geschwind DH.
Nat Rev Genet. 2015 Aug;16(8):441-58.
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Metabolomics and Multi-Omics Integration: A Survey of Computational Methods and Resources
Eicher T, Kinnebrew G, Patt A, Spencer K, Ying K, Ma Q, Machiraju R, Mathé AEA. 
Metabolites. 2020 May 15;10(5):202.
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Leveraging User-Friendly Network Approaches to Extract Knowledge From High-Throughput Omics Datasets 
Pablo Ivan Pereira Ramos, Luis Willian Pacheco Arge, Nicholas Costa Barroso Lima, Kiyoshi F Fukutani, Artur Trancoso L de Queiroz
Front Genet. 2019 Nov 13;10:1120. 
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Use of comparative genomics approaches to characterize interspecies 
differences in response to environmental chemicals: 

challenges, opportunities, and research needs.

Interspecies comparisons and human relevance — a modified parallelogram approach for integrating in vivo, in vitro, and 
computational approaches in interspecies extrapolation of toxicity perturbation. The parallelogram approach proposed by Nesnow 
(2004) and referred to by the National Research Council ( National Research Council, 2006) is modified here by the incorporation of 
computational comparative genomics approaches. Using rat and human as examples: 1) a rat network perturbation model is 
developed based on in vivo data; 2) the rat and human networks are computationally compared; 3) differences and similarities found 
by the interspecies network comparison are tested via human in vitro assays (e.g., primary human cell lines); 4) quantified in vitro 
perturbations are mapped back to the compared networks; and, 5) human in vivo outcomes are inferred. In addition, rat in vivo
assays, driven by network-based hypotheses or otherwise (as represented by the white arrows), can inform the rat network model 
and the compared network model.

Toward Engineering Biosystems With Emergent Collective Functions
Front Bioeng Biotechnol. 2020 Jun 26;8:705.
Thomas E Gorochowski, Sabine Hauert, Jan-Ulrich Kreft, et al.
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OpenWorm: overview and recent advances in integrative biological simulation of Caenorhabditis elegans.
Sarma GP, Lee CW, Portegys T, Ghayoomie V, et al.
Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758). 
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Network biology bridges the gaps between quantitative genetics and multi-omics to map complex diseases
Wu S, Chen D, Snyder MP. 
Curr Opin Chem Biol. 2022 Feb;66:102101. 

Colin  Macilwain
Systems Biology: Evolving into the Mainstream
Cell Volume 144, Issue 6 2011 839 - 841
http://dx.doi.org/10.1016/j.cell.2011.02.044
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