
Spring	2023	–	Epigenetics	and	Systems	Biology	
Lecture	Outline		(Systems	Biology)	
Michael	K.	Skinner	–	Biol	476/576	
CUE	418,	10:35-11:50	am,	Tuesdays	&	Thursdays	
January	24	&	February	31,	2023	
Weeks	3	and	4		
	

Systems	Biology	(Components	&	Technology)	

Components	 (DNA,	Expression,	Cellular,	Organ,	Physiology,	Organism,	Differentiation,		 	
	 	 Development,	Phenotype,	Evolution)	
	
Technology	 (Genomics,	Transcriptomes,	Proteomics)	
	 	 (Interaction,	Signaling,	Metabolism)	
	
Omics	 	 (Data	Processing	and	Resources)	
	
	

Required	Reading	
	
ENCODE	(2012)	ENCODE	Explained.	Nature	489:52-55.	
	
Tavassoly	I,	Goldfarb	J,	Iyengar	R.	(2018)	Essays	Biochem.	62(4):487-500.		
	
	

Literature	
	
Uesaka	K,	Oka	H,	Kato	R,	Kanie	K,	Kojima	T,	Tsugawa	H,	Toda	Y,	Horinouchi	T.	Bioinformatics	in	

bioscience	and	bioengineering:	Recent	advances,	applications,	and	perspectives.	J	Biosci	
Bioeng.	2022	Sep	17:S1389-1723(22)00229-8.		

Ke	Y,	Jian-Yuan	H,	Ping	Z,	Yue	W,	Na	X,	Jian	Y,	Kai-Xuan	L,	Yi-Fan	S,	Han-Bin	L,	Rong	L.	The	
progressive	application	of	single-cell	RNA	sequencing	technology	in	cardiovascular	diseases.	

Biomed	Pharmacother.	2022	Oct;154:113604.		
Zhao	X,	Lan	Y,	Chen	D.	Exploring	long	non-coding	RNA	networks	from	single	cell	omics	data.	

Comput	Struct	Biotechnol	J.	2022	Aug	4;20:4381-4389.		
Fan	J.	Literature	Mining	of	Disease	Associated	Noncoding	RNA	in	the	Omics	Era.	Molecules.	2022	

Jul	23;27(15):4710.		
Rey	F,	Melo	T,	Lopes	D,	Couto	D,	Marques	F,	Domingues	MR.	Applications	of	lipidomics	in	marine	

organisms:	progress,	challenges	and	future	perspectives.	Mol	Omics.	2022	Jun	13;18(5):357-
386.		

Vahabi	N,	Michailidis	G.	Unsupervised	Multi-Omics	Data	Integration	Methods:	A	Comprehensive	
Review.	Front	Genet.	2022	Mar	22;13:854752.		

Basavarajappa	DS,	Padam	KSR,	Chakrabarty	S,	An	NK,	Radhakrishnan	R.	The	regulatory	role	of	
HOX	interacting	lncRNA	in	oral	cancer-An	in	silico	analysis.	J	Oral	Pathol	Med.	2022	
Sep;51(8):684-693.		

Chatterjee	G,	Negi	S,	Basu	S,	Faintuch	J,	O'Donovan	A,	Shukla	P.	Microbiome	systems	biology	
advancements	for	natural	well-being.	Sci	Total	Environ.	2022	Sep	10;838(Pt	2):155915.		



Vallet	SD,	Berthollier	C,	Ricard-Blum	S.	The	glycosaminoglycan	interactome	2.0.	Am	J	Physiol	Cell	
Physiol.	2022	Jun	1;322(6):C1271-C1278.		

Dahiya	UR,	Heemers	HV.	Analyzing	the	Androgen	Receptor	Interactome	in	Prostate	Cancer:	
Implications	for	Therapeutic	Intervention.	Cells.	2022	Mar	9;11(6):936.		

Ricard-Blum	S,	Perez	S.	Glycosaminoglycan	interaction	networks	and	databases.	Curr	Opin	Struct	
Biol.	2022	Jun;74:102355.		

Ali	SA,	Peffers	MJ,	Ormseth	MJ,	Jurisica	I,	Kapoor	M.	The	non-coding	RNA	interactome	in	joint	
health	and	disease.	Nat	Rev	Rheumatol.	2021	Nov;17(11):692-705.		

Potapov	I,	García-Prat	L,	Ravichandran	S,	Muñoz-Cánoves	P,	Del	Sol	A.	Computational	modelling	of	
stem	cell-niche	interactions	facilitates	discovery	of	strategies	to	enhance	tissue	regeneration	
and	counteract	ageing.	FEBS	J.	2022	Mar;289(6):1486-1491.		

Ashok	G,	Ramaiah	S.	A	critical	review	of	datasets	and	computational	suites	for	improving	cancer	
theranostics	and	biomarker	discovery.	Med	Oncol.	2022	Sep	29;39(12):206.		

Misra	P,	Jadhav	AR,	Bapat	SA.	Single-cell	sequencing:	A	cutting	edge	tool	in	molecular	medical	
research.	Med	J	Armed	Forces	India.	2022	Sep;78(Suppl	1):S7-S13.		

Rodrigues	KF,	Yong	WTL,	Bhuiyan	MSA,	Siddiquee	S,	Shah	MD,	Venmathi	Maran	BA.	Current	
Understanding	on	the	Genetic	Basis	of	Key	Metabolic	Disorders:	A	Review.	Biology	(Basel).	
2022	Sep	2;11(9):1308.		

Gao	C,	Shen	X,	Tan	Y,	Chen	S.	Pathogenesis,	therapeutic	strategies	and	biomarker	development	
based	on	"omics"	analysis	related	to	microglia	in	Alzheimer's	disease.	J	Neuroinflammation.	
2022	Sep	4;19(1):215.		

Parvathy	Dharshini	SA,	Sneha	NP,	Yesudhas	D,	Kulandaisamy	A,	Rangaswamy	U,	Shanmugam	A,	
Taguchi	YH,	Gromiha	MM.	Exploring	plausible	therapeutic	targets	for	Alzheimer's	disease	
using	multi-omics	approach,	machine	learning	and	docking.	Curr	Top	Med	Chem.	2022	Sep	2.	
Online	ahead	of	print.		

Mo	H,	Breitling	R,	Francavilla	C,	Schwartz	JM.	Data	integration	and	mechanistic	modelling	for	
breast	cancer	biology:	Current	state	and	future	directions.	Curr	Opin	Endocr	Metab	Res.	2022	
Jun;24:None.		

Madrid-Paredes	A,	Martín	J,	Márquez	A.	-Omic	Approaches	and	Treatment	Response	in	
Rheumatoid	Arthritis.	Pharmaceutics.	2022	Aug	8;14(8):1648.		

Marmolejo-Garza	A,	Medeiros-Furquim	T,	Rao	R,	Eggen	BJL,	Boddeke	E,	Dolga	AM.	Transcriptomic	
and	epigenomic	landscapes	of	Alzheimer's	disease	evidence	mitochondrial-related	pathways.	
Biochim	Biophys	Acta	Mol	Cell	Res.	2022	Oct;1869(10):119326.		

Zanotti	S,	Boot	GF,	Coto-Llerena	M,	Gallon	J,	Hess	GF,	Soysal	SD,	Kollmar	O,	Ng	CKY,	Piscuoglio	S.	
The	Role	of	Chronic	Liver	Diseases	in	the	Emergence	and	Recurrence	of	Hepatocellular	
Carcinoma:	An	Omics	Perspective.	Front	Med	(Lausanne).	2022	Jun	24;9:888850.		

Llavanera	M,	Delgado-Bermúdez	A,	Ribas-Maynou	J,	Salas-Huetos	A,	Yeste	M.	A	systematic	review	
identifying	fertility	biomarkers	in	semen:	a	clinical	approach	through	Omics	to	diagnose	male	
infertility.	Fertil	Steril.	2022	Aug;118(2):291-313.		

Nevedomskaya	E,	Haendler	B.	From	Omics	to	Multi-Omics	Approaches	for	In-Depth	Analysis	of	the	
Molecular	Mechanisms	of	Prostate	Cancer.	Int	J	Mol	Sci.	2022	Jun	3;23(11):6281.		

Pandita	D,	Pandita	A.	Omics	Technology	for	the	Promotion	of	Nutraceuticals	and	Functional	Foods.	
Front	Physiol.	2022	May	13;13:817247.		

Núñez-Rios	DL,	Martínez-Magaña	JJ,	Nagamatsu	ST,	Andrade-Brito	DE,	Forero	DA,	Orozco-Castaño	
CA,	Montalvo-Ortiz	JL.	Central	and	Peripheral	Immune	Dysregulation	in	Posttraumatic	Stress	
Disorder:	Convergent	Multi-Omics	Evidence.	Biomedicines.	2022	May	10;10(5):1107.		



Heikkinen	A,	Bollepalli	S,	Ollikainen	M.		The	potential	of	DNA	methylation	as	a	biomarker	for	
obesity	and	smoking.	J	Intern	Med.	2022	Sep;292(3):390-408.		

Gómez-Cebrián	N,	Poveda	JL,	Pineda-Lucena	A,	Puchades-Carrasco	L.	Metabolic	Phenotyping	in	
Prostate	Cancer	Using	Multi-Omics	Approaches.	Cancers	(Basel).	2022	Jan	25;14(3):596.		

Bueschbell	B,	Caniceiro	AB,	Suzano	PMS,	Machuqueiro	M,	Rosário-Ferreira	N,	Moreira	IS.		Network	
biology	and	artificial	intelligence	drive	the	understanding	of	the	multidrug	resistance	
phenotype	in	cancer.	Drug	Resist	Updat.	2022	Jan;60:100811.		

Rani	S,	Chandna	P.	Multiomics	Analysis-Based	Biomarkers	in	Diagnosis	of	Polycystic	Ovary	
Syndrome.	Reprod	Sci.	2022	Jan	27.	doi:	10.1007/s43032-022-00863-9.	Online	ahead	of	print.		

Li	C,	Gao	Z,	Su	B,	Xu	G,	Lin	X.	Data	analysis	methods	for	defining	biomarkers	from	omics	data.	Anal	
Bioanal	Chem.	2022	Jan;414(1):235-250.		

Cantó-Pastor	A,	Mason	GA,	Brady	SM,	Provart	NJ.	Arabidopsis	bioinformatics:	tools	and	strategies.	
Plant	J.	2021	Dec;108(6):1585-1596.		

Labbaf	Z,	Petratou	K,	Ermlich	L,	Backer	W,	Tarbashevich	K,	Reichman-Fried	M,	Luschnig	S,	Schulte-
Merker	S,	Raz	E.	A	robust	and	tunable	system	for	targeted	cell	ablation	in	developing	embryos.	
Dev	Cell.	2022	Aug	22;57(16):2026-2040.e5.		

Pistollato	F,	Bal-Price	A,	Coecke	S,	Parvatam	S,	Pamies	D,	Czysz	K,	Hao	J,	Kee	K,	Teo	AKK,	Niu	S,	
Wilmes	A,	Smirnova	L,	Freund	C,	Mummery	C,	Stacey	G.	Quality	criteria	for	in	vitro	human	
pluripotent	stem	cell-derived	models	of	tissue-based	cells.	Reprod	Toxicol.	2022	Sep;112:36-
50.		

Weng	Z,	Wang	Y,	Ouchi	T,	Liu	H,	Qiao	X,	Wu	C,	Zhao	Z,	Li	L,	Li	B.	Mesenchymal	Stem/Stromal	Cell	
Senescence:	Hallmarks,	Mechanisms,	and	Combating	Strategies.	Stem	Cells	Transl	Med.	2022	
Apr	29;11(4):356-371.		

Holtzer	L,	Wesseling-Rozendaal	Y,	Verhaegh	W,	van	de	Stolpe	A.	Measurement	of	activity	of	
developmental	signal	transduction	pathways	to	quantify	stem	cell	pluripotency	and	
phenotypically	characterize	differentiated	cells.	Stem	Cell	Res.	2022	May;61:102748.		

Gifre-Renom	L,	Daems	M,	Luttun	A,	Jones	EAV.	Organ-Specific	Endothelial	Cell	Differentiation	and	
Impact	of	Microenvironmental	Cues	on	Endothelial	Heterogeneity.	Int	J	Mol	Sci.	2022	Jan	
27;23(3):1477.		

Chang	X,	Gu	M,	Tchieu	J.	Harnessing	the	Power	of	Stem	Cell	Models	to	Study	Shared	Genetic	
Variants	in	Congenital	Heart	Diseases	and	Neurodevelopmental	Disorders.	Cells.	2022	Jan	
28;11(3):460.		

Tabrizi	ZB,	Ahmed	NS,	Horder	JL,	Storr	SJ,	Benest	AV.	Transcription	Factor	Control	of	Lymphatic	
Quiescence	and	Maturation	of	Lymphatic	Neovessels	in	Development	and	Physiology.	Front	
Physiol.	2021	Nov	2;12:672987.		

Park	J,	Lee	K,	Kim	K,	Yi	SJ.	The	role	of	histone	modifications:	from	neurodevelopment	to	
neurodiseases.	Signal	Transduct	Target	Ther.	2022	Jul	6;7(1):217.		

Montero	JA,	Lorda-Diez	CI,	Hurle	JM.	Regulation	of	Developmental	Cell	Death	in	the	Animal	
Kingdom:	A	Critical	Analysis	of	Epigenetic	versus	Genetic	Factors.	Int	J	Mol	Sci.	2022	Jan	
21;23(3):1154.		

Mohajer	N,	Joloya	EM,	Seo	J,	Shioda	T,	Blumberg	B.	Epigenetic	Transgenerational	Inheritance	of	
the	Effects	of	Obesogen	Exposure.	Front	Endocrinol	(Lausanne).	2021	Dec	16;12:787580.	doi:	
10.3389/fendo.2021.787580.	eCollection	2021.	PMID:	34975759	Free	PMC	article.	Review.	

Boulgakov	AA,	Ellington	AD,	Marcotte	EM.	Bringing	Microscopy-By-Sequencing	into	View.	Trends	
Biotechnol.	2020	Feb;38(2):154-162.	



Martins	C,	Dreij	K,	Costa	PM.	The	State-of-the	Art	of	Environmental	Toxicogenomics:	Challenges	
and	Perspectives	of	"Omics"	Approaches	Directed	to	Toxicant	Mixtures.	Int	J	Environ	Res	
Public	Health.	2019	Nov	26;16(23):4718.	

Balamurali	D,	Stoll	M.	Non-Coding	RNA	Databases	in	Cardiovascular	Research.	Noncoding	RNA.	
2020	Sep	2;6(3):35.	

Choi	JY,	Lee	YCG.	Double-edged	sword:	The	evolutionary	consequences	of	the	epigenetic	silencing	
of	transposable	elements.	PLoS	Genet.	2020	Jul	16;16(7):e1008872.	

Matsuyama	H,	Suzuki	HI.	Systems	and	Synthetic	microRNA	Biology:	From	Biogenesis	to	Disease	
Pathogenesis.		Int	J	Mol	Sci.	2019	Dec	24;21(1):132.	

Schmidt	CA,	Matera	AG.	tRNA	introns:	Presence,	processing,	and	purpose.	Wiley	Interdiscip	Rev	
RNA.	2020	May;11(3):e1583.	

Choudhury	NR,	Heikel	G,	Michlewski	G.	TRIM25	and	its	emerging	RNA-binding	roles	in	antiviral	
defense.	Wiley	Interdiscip	Rev	RNA.	2020	Jul;11(4):e1588.	

Hovland	AS,	Rothstein	M,	Simoes-Costa	M.	Network	architecture	and	regulatory	logic	in	neural	
crest	development.	Wiley	Interdiscip	Rev	Syst	Biol	Med.	2020	Mar;12(2):e1468.	

Ayyar	VS,	Jusko	WJ.	Transitioning	from	Basic	toward	Systems	Pharmacodynamic	Models:	Lessons	
from	Corticosteroids.	Pharmacol	Rev.	2020	Apr;72(2):414-438.	

Gasparini	S,	Licursi	V,	Presutti	C,	Mannironi	C.	The	Secret	Garden	of	Neuronal	circRNAs.	Cells.	
2020	Jul	31;9(8):1815.	

Jessus	C,	Munro	C	,	Houliston	E.	Managing	the	Oocyte	Meiotic	Arrest-Lessons	from	Frogs	and	
Jellyfish.	Cells.	2020	May	7;9(5):1150.	

Blutt	SE,	Klein	OD,	Donowitz	M,	Shroyer	N,	Guha	C,	Estes		MK.	Use	of	organoids	to	study	
regenerative	responses	to	intestinal	damage.	Am	J	Physiol	Gastrointest	Liver	Physiol.	2019	Dec	
1;317(6):G845-G852.	

Williams	JW,	Winkels	H,	Durant	CP,	Zaitsev		K,	Ghosheh		Y,	Ley	K.	Single	Cell	RNA	Sequencing	in	
Atherosclerosis	Research.	Circ	Res.	2020	Apr	24;126(9):1112-1126.	

Guzmán-Herrera	A,	Mao	Y.	Polarity	during	tissue	repair,	a	multiscale	problem.	Curr	Opin	Cell	Biol.	
2020	Feb;62:31-36.	

Hollin	T,	Gupta	M,	Lenz	T,	Le	Roch		KG.	Dynamic	Chromatin	Structure	and	Epigenetics	Control	the	
Fate	of	Malaria	Parasites.	Trends	Genet.	2020	Sep	25;S0168-9525(20)30239-0.	

Mukund	K,	Subramaniam	S.	Skeletal	muscle:	A	review	of	molecular	structure	and	function,	in	
health	and	disease.	Wiley	Interdiscip	Rev	Syst	Biol	Med.	2020	Jan;12(1):e1462.	

Akbari	M,	Hassan-Zadeh	V.	The	inflammatory	effect	of	epigenetic	factors	and	modifications	in	type	
2	diabetes.	Inflammopharmacology.	2020	Apr;28(2):345-362.	

Bhattacharyya	S,	Munshi	NV.	Development	of	the	Cardiac	Conduction	System.	Cold	Spring	Harb	
Perspect	Biol.	2020	Jan	27;a037408.	

Selaru	A,	Dinescu	S,	Costache	M.	The	Cellular	and	Molecular	Patterns	Involved	in	the	Neural	
Differentiation	of	Adipose-Derived	Stem	Cells.	Adv	Exp	Med	Biol.	2020;1298:23-41.	

Dragomir	MP,	Moisoiu	V,	Manaila	R,	et	al.	A	Holistic	Perspective:	Exosomes	Shuttle	between	
Nerves	and	Immune	Cells	in	the	Tumor	Microenvironment.	J	Clin	Med.	2020	Oct	
31;9(11):E3529.	

Baghban	R,	Roshangar	L,	Jahanban-Esfahlan	R,	et	al.	Tumor	microenvironment	complexity	and	
therapeutic	implications	at	a	glance.	Cell	Commun	Signal.	2020	Apr	7;18(1):59.	

Infante	T,	Francone	M,	De	Rimini	ML,	et	al.	Machine	learning	and	network	medicine:	a	novel	
approach	for	precision	medicine	and	personalized	therapy	in	cardiomyopathies.	J	Cardiovasc	
Med	(Hagerstown).	2020	Sep	3.	



Saper	G,	Hess	H.	Synthetic	Systems	Powered	by	Biological	Molecular	Motors.	Chem	Rev.3270	2020	
Jan	8;120(1):288-309.	

Lindsey	AR.	Sensing,	Signaling,	and	Secretion:	A	Review	and	Analysis	of	Systems	for	Regulating	
Host	Interaction	in	Wolbachia.	Genes	(Basel).	2020	Jul	16;11(7):813.	

Bubac	CM,	Miller	JM,	Coltman	DW.	The	genetic	basis	of	animal	behavioural	diversity	in	natural	
populations.	Mol	Ecol.	2020	Jun;29(11):1957-1971.	

Berrios	DC,	Galazka	J,	Grigorev	K,	Gebre	S,	Costes	SV.	NASA	GeneLab:	interfaces	for	the	exploration	
of	space	omics	data.	Nucleic	Acids	Res.	2020	Oct	20;gkaa887.	

Flynn	JM,	Hubley	R,	Goubert	C,	Rosen	J,	Clark	AG,	Feschotte	C,	Smit	AF.	RepeatModeler2	for	
automated	genomic	discovery	of	transposable	element	families.	Proc	Natl	Acad	Sci	U	S	A.	2020	
Apr	28;117(17):9451-9457.	

Ubogu	EE.	Biology	of	the	human	blood-nerve	barrier	in	health	and	disease.	Exp	Neurol.	2020	
Jun;328:113272.	

Hendrickx		JO,	van	Gastel		J,	Leysen	H,	Martin	B,	Maudsley	S.	High-dimensionality	Data	Analysis	of	
Pharmacological	Systems	Associated	with	Complex	Diseases.	Pharmacol	Rev.	2020	
Jan;72(1):191-217.	

Loiseau	C,	Cooper	MM,	Doolan	DL.	Deciphering	host	immunity	to	malaria	using	systems	
immunology.	Immunol	Rev.	2020	Jan;293(1):115-143.	

Saidova	AA,	Vorobjev	IA.	Lineage	Commitment,	Signaling	Pathways,	and	the	Cytoskeleton	Systems	
in	Mesenchymal	Stem	Cells.	Tissue	Eng	Part	B	Rev.	2020	Feb;26(1):13-25.	

Hannan	MA,	Dash	R,	Sohag	AAM,	Haque	MN,	Moon	IS.	Neuroprotection	Against	Oxidative	Stress:	
Phytochemicals	Targeting	TrkB	Signaling	and	the	Nrf2-ARE	Antioxidant	System.	Front	Mol	
Neurosci.	2020	Jul	2;13:116.	

Smits	CM,	Shvartsman	SY.	The	design	and	logic	of	terminal	patterning	in	Drosophila.	Curr	Top	Dev	
Biol.	2020;137:193-217.	

Global	Burden	of	Disease	Cancer	Collaboration;	Christina	Fitzmaurice,	Abate	D,	et	al.	Global,	
Regional,	and	National	Cancer	Incidence,	Mortality,	Years	of	Life	Lost,	Years	Lived	With	
Disability,	and	Disability-Adjusted	Life-Years	for	29	Cancer	Groups,	1990	to	2017:	A	Systematic	
Analysis	for	the	Global	Burden	of	Disease	Study.	JAMA	Oncol.	2019	Dec	1;5(12):1749-1768.	

Bezu	L,	Chuang	AW,	Liu	P,	Kroemer	G,	Kepp	O.	Immunological	Effects	of	Epigenetic	Modifiers.	
Cancers	(Basel).	2019	Dec	1;11(12):1911.	

Ma	G,	Wang	T,	Korhonen	PK,	Hofmann	A,	Sternberg	PW,	Young	ND,	Gasser	RB.	Elucidating	the	
molecular	and	developmental	biology	of	parasitic	nematodes:	Moving	to	a	multiomics	
paradigm.	Adv	Parasitol.	2020;108:175-229.	

Silverman	EK,	Schmidt	HHW,	Anastasiadou	E,	Altucci	L,	et	al.	Molecular	networks	in	Network	
Medicine:	Development	and	applications.	Wiley	Interdiscip	Rev	Syst	Biol	Med.	2020	
Nov;12(6):e1489.	

Kunej	T.	Rise	of	Systems	Glycobiology	and	Personalized	Glycomedicine:	Why	and	How	to	Integrate	
Glycomics	with	Multiomics	Science?	OMICS.	2019	Dec;23(12):615-622.	

Malik	DM,	Paschos	GK,	Sehgal	A,	Weljie	AM.	Circadian	and	Sleep	Metabolomics	Across	Species.	J	
Mol	Biol.	2020	May	29;432(12):3578-3610.	

Ojo-Okunola	A,	Cacciatore	S,	Nicol	MP,	du	Toit	E.	The	Determinants	of	the	Human	Milk	
Metabolome	and	Its	Role	in	Infant	Health.	Metabolites.	2020	Feb	20;10(2):77.	

Gutmann	C,	Joshi	A,	Mayr	M.	Platelet	"-omics"	in	health	and	cardiovascular	disease.	
Atherosclerosis.	2020	Aug;307:87-96.	

Nguyen	ND,	Wang	D.	Multiview	learning	for	understanding	functional	multiomics.	PLoS	Comput	
Biol.	2020	Apr	2;16(4):e1007677.	



Schwartz	TS.	The	Promises	and	the	Challenges	of	Integrating	Multi-Omics	and	Systems	Biology	in	
Comparative	Stress	Biology.		Integr	Comp	Biol.	2020	Jul	1;60(1):89-97.	

Damiani	C,	Gaglio	D,	Sacco	E,	Alberghina	L,	Vanoni	M.	Systems	metabolomics:	from	metabolomic	
snapshots	to	design	principles.	Curr	Opin	Biotechnol.	2020	Jun;63:190-199.	

Perakakis	N,	Stefanakis	K,	Mantzoros	CS.	The	role	of	omics	in	the	pathophysiology,	diagnosis	and	
treatment	of	non-alcoholic	fatty	liver	disease.	Metabolism.	2020	Oct;111S:154320.	

Guo	R,	Luo	X,	Liu	J,	Liu	L,	Wang	X,	Haitao	Lu	H.	Omics	strategies	decipher	therapeutic	discoveries	
of	traditional	Chinese	medicine	against	different	diseases	at	multiple	layers	molecular-level.	
Pharmacol	Res.	2020	Feb;152:104627.	

Dekaboruah	E,	Suryavanshi	MV,	Chettri	D,	Verma	AK.	Human	microbiome:	an	academic	update	on	
human	body	site	specific	surveillance	and	its	possible	role.	Arch	Microbiol.	2020	
Oct;202(8):2147-2167.	

Çakır	T,	Panagiotou	G,	Uddin	R,	Durmuş	S.	Novel	Approaches	for	Systems	Biology	of	Metabolism-
Oriented	Pathogen-Human	Interactions:	A	Mini-Review.	Front	Cell	Infect	Microbiol.	2020	Feb	
13;10:52.	

Dahal	S,	Yurkovich	JT,	Xu	H,	Palsson	BO,	Laurence	Yang	L.	Synthesizing	Systems	Biology	
Knowledge	from	Omics	Using	Genome-Scale	Models.	Proteomics.	2020	Sep;20(17-
18):e1900282.	

Idoko	OT,	Smolen	KK,	Wariri	O,	Imam	A,	et	al.		Clinical	Protocol	for	a	Longitudinal	Cohort	Study	
Employing	Systems	Biology	to	Identify	Markers	of	Vaccine	Immunogenicity	in	Newborn	
Infants	in	The	Gambia	and	Papua	New	Guinea.	Front	Pediatr.	2020	Apr	30;8:197.	

Fletcher	E,	Baetz	K.	Multi-Faceted	Systems	Biology	Approaches	Present	a	Cellular	Landscape	of	
Phenolic	Compound	Inhibition	in	Saccharomyces	cerevisiae.Front	Bioeng	Biotechnol.	2020	Oct	
14;8:539902.	

De	Souza	LP,	Alseekh	S,	Brotman	Y,	Fernie	AR.	Network-based	strategies	in	metabolomics	data	
analysis	and	interpretation:	from	molecular	networking	to	biological	interpretation.	Expert	
Rev	Proteomics.	2020	Apr;17(4):243-255.	

Wang	R	,	Li	B,	Lam	SM	,	Shui	G.	Integration	of	lipidomics	and	metabolomics	for	in-depth	
understanding	of	cellular	mechanism	and	disease	progression.	J	Genet	Genomics.	2020	Feb	
20;47(2):69-83.	

Zhang	L,	Zhu	B	,	Zeng	Y,	Shen	H,	Zhang	J,	Wang	X.	Clinical	lipidomics	in	understanding	of	lung	
cancer:	Opportunity	and	challenge.	Cancer	Lett.	2020	Feb	1;470:75-83.	

Priest	C,	Tontonoz	P.	Inter-organ	cross-talk	in	metabolic	syndrome.	Nat	Metab.	2019	
Dec;1(12):1177-1188.	

Zhuo	C,	Hou	W,	Tian	H,	Wang	L,	Li	R.	Lipidomics	of	the	brain,	retina,	and	biofluids:	from	the	
biological	landscape	to	potential	clinical	application	in	schizophrenia.	Transl	Psychiatry.	2020	
Nov	9;10(1):391.	

Iacovacci	J,	Peluso	A,	Ebbels	T,	Ralser	M,	Glen	RC.	Extraction	and	Integration	of	Genetic	Networks	
from	Short-Profile	Omic	Data	Sets.	Metabolites.	2020	Oct	29;10(11):E435.	

Krokidis	MG.	Identification	of	biomarkers	associated	with	Parkinson's	disease	by	gene	expression	
profiling	studies	and	bioinformatics	analysis.	AIMS	Neurosci.	2019	Dec	26;6(4):333-345.	

Chauhan	MZ,	Arcuri	J,	Park	KK,	Zafar	MK,	et	al.	Multi-Omic	Analyses	of	Growth	Cones	at	Different	
Developmental	Stages	Provides	Insight	into	Pathways	in	Adult	Neuroregeneration.	iScience.	
2020	Feb	21;23(2):100836.	

Dhillon	BK,	Smith	M,	Baghela	A,	Lee	AHY,	Hancock	REW.	Systems	Biology	Approaches	to	
Understanding	the	Human	Immune	System.	Front	Immunol.	2020	Jul	30;11:1683.	



O'Connell	GC,	Alder	ML,	Smothers	CG,	Chang	JHC.	Large-scale	informatic	analysis	to	
algorithmically	identify	blood	biomarkers	of	neurological	damage.	Proc	Natl	Acad	Sci	U	S	A.	
2020	Aug	25;117(34):20764-20775.	

Han	Z,	Cui	K,	Placek	K,	et	al.	Diploid	genome	architecture	revealed	by	multi-omic	data	of	hybrid	
mice.	Genome	Res.	2020	Aug;30(8):1097-1106.	

Jendoubi	T,	Ebbels	TMD.	Integrative	analysis	of	time	course	metabolic	data	and	biomarker	
discovery.	BMC	Bioinformatics.	2020	Jan	9;21(1):11.	

Picache	JA,	May	JC	McLean	JA.	Crowd-Sourced	Chemistry:	Considerations	for	Building	a	
Standardized	Database	to	Improve	Omic	Analyses.	ACS	Omega.	2020	Jan	9;5(2):980-985.	

Sundaram	V,	Wang	T.	Transposable	Element	Mediated	Innovation	in	Gene	Regulatory	Landscapes	
of	Cells:	Re-Visiting	the	"Gene-Battery"	Model.	Bioessays.	2018	40(1).		

Abil	Z,	Ellefson	JW,	Gollihar	JD,	Watkins	E,	Ellington	AD.	Compartmentalized	partnered	replication	
for	the	directed	evolution	of	genetic	parts	and	circuits.	Nat	Protoc.	2017	Dec;12(12):2493-
2512.		

Filipp	FV.	Crosstalk	between	epigenetics	and	metabolism-Yin	and	Yang	of	histone	demethylases	
and	methyltransferases	in	cancer.	Brief	Funct	Genomics.	2017	Nov	1;16(6):320-325.		

Chen	Z,	Li	S,	Subramaniam	S,	Shyy	JY,	Chien	S.		Epigenetic	Regulation:	A	New	Frontier	for	
Biomedical	Engineers.	Annu	Rev	Biomed	Eng.	2017	Jun	21;19:195-219.		

Hollick	JB.	Paramutation	and	related	phenomena	in	diverse	species.	Nat	Rev	Genet.	2017	
Jan;18(1):5-23.		

Macovei	A,	Pagano	A,	Leonetti	P,	Carbonera	D,	Balestrazzi	A,	Araújo	SS.	Systems	biology	and	
genome-wide	approaches	to	unveil	the	molecular	players	involved	in	the	pre-germinative	
metabolism:	implications	on	seed	technology	traits.	Plant	Cell	Rep.	2017	May;36(5):669-688.		

Bagchi	DN,	Iyer	VR.	The	Determinants	of	Directionality	in	Transcriptional	Initiation.	Trends	Genet.	
2016	Jun;32(6):322-333.		

Sosa-Hernández	JE,	Villalba-Rodríguez	AM,	Romero-Castillo	KD,	Aguilar-Aguila-Isaías	MA,	García-
Reyes	IE,	Hernández-Antonio	A,	Ahmed	I,	Sharma	A,	Parra-Saldívar	R,	Iqbal	HMN.	Organs-on-a-
Chip	Module:	A	Review	from	the	Development	and	Applications	Perspective.	Micromachines	
(Basel).	2018	Oct	22;9(10).	

Talug	B,	Tokcaer-Keskin	Z.		Induced	Pluripotent	Stem	Cells	in	Disease	Modelling	and	Regeneration.	
Adv	Exp	Med	Biol.	2018	Nov	10.	doi:	10.1007/5584_2018_290.	[Epub	ahead	of	print]	

Tavassoly	I,	Goldfarb	J,	Iyengar	R.	Systems	biology	primer:	the	basic	methods	and	approaches.	
Essays	Biochem.	2018	Oct	26;62(4):487-500.		

Gomez-Pinilla	F,	Yang	X.	System	biology	approach	intersecting	diet	and	cell	metabolism	with	
pathogenesis	of	brain	disorders.	Prog	Neurobiol.	2018	Oct;169:76-90.		

Nawroth	J,	Rogal	J,	Weiss	M,	Brucker	SY,	Loskill	P.	Organ-on-a-Chip	Systems	for	Women's	Health	
Applications.	Adv	Healthc	Mater.	2018	Jan;7(2).	doi:	10.1002/adhm.201700550.		

Choi	J,	Iich	E,	Lee	JH.	Organogenesis	of	adult	lung	in	a	dish:	Differentiation,	disease	and	therapy.	
Dev	Biol.	2016	Dec	15;420(2):278-286.		

Kurz	FT,	Kembro	JM,	Flesia	AG,	Armoundas	AA,	Cortassa	S,	Aon	MA,	Lloyd	D.	Network	dynamics:	
quantitative	analysis	of	complex	behavior	in	metabolism,	organelles,	and	cells,	from	
experiments	to	models	and	back.	Wiley	Interdiscip	Rev	Syst	Biol	Med.	2017	Jan;9(1).	doi:	
10.1002/wsbm.1352.	Epub	2016	Sep	7.	

Frank	JA,	Broichhagen	J,	Yushchenko	DA,	Trauner	D,	Schultz	C,	Hodson	DJ.	Optical	tools	for	
understanding	the	complexity	of	β-cell	signalling	and	insulin	release.	Nat	Rev	Endocrinol.	2018	
Dec;14(12):721-737.		



Zhou	Y,	Horowitz	JC,	Naba	A,	et	al.	Extracellular	matrix	in	lung	development,	homeostasis	and	
disease.	Matrix	Biol.	2018	Nov;73:77-104.		

Yadav	A,	Sinha	H.	Gene-gene	and	gene-environment	interactions	in	complex	traits	in	yeast.	Yeast.	
2018	Jun;35(6):403-416.		

Leulier	F,	MacNeil	LT,	Lee	WJ,	Rawls	JF,	Cani	PD,	Schwarzer	M,	Zhao	L,	Simpson	SJ.		Integrative	
Physiology:	At	the	Crossroads	of	Nutrition,	Microbiota,	Animal	Physiology,	and	Human	Health.	
Cell	Metab.	2017	Mar	7;25(3):522-534.		

Chen	X,	Gonçalves	MAFV.	DNA,	RNA,	and	Protein	Tools	for	Editing	the	Genetic	Information	in	
Human	Cells.	iScience.	2018	Aug	31;6:247-263.		

Howe	DG,	Blake	JA,	Bradford	YM,	Bult	CJ,	Calvi	BR,	Engel	SR,	Kadin	JA,	Kaufman	TC,	Kishore	R,	
Laulederkind	SJF,	Lewis	SE,	Moxon	SAT,	Richardson	JE,	Smith	C.	Model	organism	data	evolving	
in	support	of	translational	medicine.	Lab	Anim	(NY).	2018	Oct;47(10):277-289.		

Kiani	NA,	Shang	MM,	Zenil	H,	Tegner	J.	Predictive	Systems	Toxicology.	Methods	Mol	Biol.	
2018;1800:535-557.		

Peng	X,	Zhang	Q,	Liao	C,	Han	W	Xu	F.	Epigenomic	Control	of	Thermogenic	Adipocyte	
Differentiation	and	Function.	Int	J	Mol	Sci.	2018	Jun	17;19(6).		

Griffiths	JA,	Scialdone	A,	Marioni	JC.	Using	single-cell	genomics	to	understand	developmental	
processes	and	cell	fate	decisions.	Mol	Syst	Biol.	2018	Apr	16;14(4):e8046.		

Werner	S,	Vu	HT,	Rink	JC.	Self-organization	in	development,	regeneration	and	organoids.	Curr	
Opin	Cell	Biol.	2017	Feb;44:102-109.		

Soyer	OS,	O'Malley	MA.	Evolutionary	systems	biology:	what	it	is	and	why	it	matters.	Bioessays.	
2013	Aug;35(8):696-705.	

Kasper	C,	Vierbuchen	M,	Ernst	U,	Fischer	S,	Radersma	R,	Raulo	A,	Cunha-Saraiva	F,	Wu	M,	Mobley	
KB,	Taborsky	B.	Genetics	and	developmental	biology	of	cooperation.	Mol	Ecol.	2017	
Sep;26(17):4364-4377.		

Van	Laere	S,	Dirix	L,	Vermeulen	P.	Molecular	profiles	to	biology	and	pathways:	a	systems	biology	
approach.	Chin	J	Cancer.	2016	Jun	16;35(1):53.		

Nam	S.	Databases	and	tools	for	constructing	signal	transduction	networks	in	cancer.	BMB	Rep.	
2017	Jan;50(1):12-19.	

Ronan	T,	Qi	Z,	Naegle	KM.	Avoiding	common	pitfalls	when	clustering	biological	data.	Sci	Signal.	
2016	Jun	14;9(432):re6.		

Zheng	H,	Porebski	PJ,	Grabowski	M	Cooper	DR1,	Minor	W.		Databases,	Repositories,	and	Other	
Data	Resources	in	Structural	Biology.	Methods	Mol	Biol.	2017;1607:643-665.		

Lin	Y,	Qian	F,	Shen	L,	Chen	F,	Chen	J,	Shen	B.	Computer-aided	biomarker	discovery	for	precision	
medicine:	data	resources,	models	and	applications.	Brief	Bioinform.	2017	Nov	29.	doi:	
10.1093/bib/bbx158.	[Epub	ahead	of	print]	

Köhler	S,	Vasilevsky	NA,	Engelstad	M,	et	al.	The	Human	Phenotype	Ontology	in	2017.	Nucleic	Acids	
Res.	2017	Jan	4;45(D1):D865-D876.		

Kannan	L,	Ramos	M,	Re	A,	El-Hachem	N,	et	al.		Public	data	and	open	source	tools	for	multi-assay	
genomic	investigation	of	disease.	Brief	Bioinform.	2016	Jul;17(4):603-15.		

Sun	YV,	Hu	YJ.	(2016)	Integrative	Analysis	of	Multi-omics	Data	for	Discovery	and	Functional	
Studies	of	Complex	Human	Diseases.	Adv	Genet.	2016;93:147-90.		

Horgusluoglu	E,	Nudelman	K,	Nho	K,	Saykin	AJ.	(2016)	Adult	neurogenesis	and	neurodegenerative	
diseases:	A	systems	biology	perspective.	Am	J	Med	Genet	B	Neuropsychiatr	Genet.	2016	Feb	
16.	doi:	10.1002/ajmg.b.32429.	[Epub	ahead	of	print]	

Zenil	H,	Kiani	NA,	Tegnér	J.		(2016)	Methods	of	information	theory	and	algorithmic	complexity	for	
network	biology.	Semin	Cell	Dev	Biol.	51:32-43.		



Ostaszewski	M,	Skupin	A,	Balling	R.	(2016)	Neurological	Diseases	from	a	Systems	Medicine	Point	
of	View.	Methods	Mol	Biol.	2016;1386:221-50.		

Nishi	A,	Milner	DA	Jr,	Giovannucci	EL,	et	al.	(2016)	Integration	of	molecular	pathology,	
epidemiology	and	social	science	for	global	precision	medicine.	Expert	Rev	Mol	Diagn.	
2016;16(1):11-23.		

Davidsen	PK,	Turan	N,	Egginton	S,	Falciani	F.	(1985)	Multilevel	functional	genomics	data	
integration	as	a	tool	for	understanding	physiology:	a	network	biology	perspective.	J	Appl	
Physiol	(1985).	2016	Feb	1;120(3):297-309.		

Prathipati	P,	Mizuguchi	K.	(2016)	Systems	Biology	Approaches	to	a	Rational	Drug	Discovery	
Paradigm.	Curr	Top	Med	Chem.	2016;16(9):1009-25.	

Qin	Y,	Jiao	X1,	Simpson	JL,	Chen	ZJ.	(2015)	Genetics	of	primary	ovarian	insufficiency:	new	
developments	and	opportunities.	Hum	Reprod	Update.	2015	Nov-Dec;21(6):787-808.		

Parikshak	NN,	Gandal	MJ,	Geschwind	DH.	(2015)	Systems	biology	and	gene	networks	in	
neurodevelopmental	and	neurodegenerative	disorders.	Nat	Rev	Genet.	16(8):441-58.		

Xie	L,	Draizen	EJ,	Bourne	PE.	(2016)	Harnessing	Big	Data	for	Systems	Pharmacology.	Annu	Rev	
Pharmacol	Toxicol.	2016	Oct	13.	[Epub	ahead	of	print]	

Macovei	A,	Pagano	A,	Leonetti	P,	Carbonera	D,	Balestrazzi	A,	Araújo	SS.	(2016)	Systems	biology	
and	genome-wide	approaches	to	unveil	the	molecular	players	involved	in	the	pre-germinative	
metabolism:	implications	on	seed	technology	traits.	Plant	Cell	Rep.	2016	Oct	11.	[Epub	ahead	
of	print]	

Tosto	G,	Reitz	C.	(2016)	Use	of	"omics"	technologies	to	dissect	neurologic	disease.	Handb	Clin	
Neurol.	2016;138:91-106.	

Altaf-Ul-Amin	M,	Afendi	FM,	Kiboi	SK,	Kanaya	S.	(2014)	Systems	biology	in	the	context	of	big	data	
and	networks.		Biomed	Res	Int.	2014;2014:428570.		

Putri	SP,	Nakayama	Y,	Matsuda	F,	et	al.	(2013)	Current	metabolomics:	practical	applications.	J	
Biosci	Bioeng.	115(6):579-89.		

Manning	T,	Sleator	RD,	Walsh	P.	(2013)	Naturally	selecting	solutions:	the	use	of	genetic	algorithms	
in	bioinformatics.	Bioengineered.	4(5):266-78.		

Shekari	F,	Baharvand	H,	Salekdeh	GH.	(2014)	Organellar	proteomics	of	embryonic	stem	cells.	Adv	
Protein	Chem	Struct	Biol.	95:215-30.		

Wu	X,	Hasan	MA,	Chen	JY.	(2014)	Pathway	and	network	analysis	in	proteomics.	J	Theor	Biol.	2014	
Jun	6.	pii:	S0022-5193(14)00304-X.	[Epub	ahead	of	print]	

Liu	Z,	Wang	Y,	Xue	Y.	(2013)	Phosphoproteomics-based	network	medicine.	FEBS	J.	280(22):5696-
704.		

Dharuri	H,	Demirkan	A,	van	Klinken	JB,	et	al.	(2014)	Genetics	of	the	human	metabolome,	what	is	
next?	Biochim	Biophys	Acta.1842(10):1923-1931.		

Stumpf	MP.	(2014)	Approximate	Bayesian	inference	for	complex	ecosystems.	F1000Prime	Rep.	
17;6:60.		

Purcell	O,	Lu	TK.	(2014)	Synthetic	analog	and	digital	circuits	for	cellular	computation	and	
memory.	Curr	Opin	Biotechnol.	29:146-55.		

Mason	CE,	Porter	SG,	Smith	TM.	(2014)	Characterizing	multi-omic	data	in	systems	biology.	Adv	
Exp	Med	Biol.	799:15-38.		

Sarpeshkar	R.	(2014)	Analog	synthetic	biology.	Philos	Trans	A	Math	Phys	Eng	Sci.	
24;372(2012):20130110.	

Rekhi	R,	Qutub	AA.	(2013)	Systems	approaches	for	synthetic	biology:	a	pathway	toward	
mammalian	design.	Front	Physiol.	9;4:285.		



Renda	BA,	Hammerling	MJ,	Barrick	JE.	(2014)	Engineering	reduced	evolutionary	potential	for	
synthetic	biology.	Mol	Biosyst.	10(7):1668-78.		

Cronin	RM,	Field	JR,	Bradford	Y,	et	al.	(2014)	Phenome-wide	association	studies	demonstrating	
pleiotropy	of	genetic	variants	within	FTO	with	and	without	adjustment	for	body	mass	index.	
Front	Genet.	5;5:250.		

Svahn	AJ,	Becker	TS,	Graeber	MB.	(2014)	Emergent	properties	of	microglia.	Brain	Pathol.	
24(6):665-70.		

Caterino	M,	Aspesi	A,	Pavesi	E,	et	al.	(2014)	Analysis	of	the	interactome	of	ribosomal	protein	S19	
mutants.	Proteomics.	14(20):2286-96.		

Singh	R,	Dangol	S,	Jwa	NS.	(2014)	Yeast	two-hybrid	system	for	dissecting	the	rice	MAPK	
interactome.		Methods	Mol	Biol.	1171:195-216.		

Petrey	D,	Honig	B.	(2014)	Structural	bioinformatics	of	the	interactome.	Annu	Rev	Biophys.	43:193-
210.		

Garcia	B,	Datta	G,	Cosgrove	GP,	Strong	M.	(2014)	Network	and	matrix	analysis	of	the	respiratory	
disease	interactome.	BMC	Syst	Biol.	22;8:34.		

Blomme	J,	Inzé	D,	Gonzalez	N.	(2014)	The	cell-cycle	interactome:	a	source	of	growth	regulators?	J	
Exp	Bot.	65(10):2715-30.	

Stevens	A,	De	Leonibus	C,	Hanson	D,	et	al.	(2014)	Network	analysis:	a	new	approach	to	study	
endocrine	disorders.	J	Mol	Endocrinol.	19;52(1):R79-93.		

Salvo	SA,	Hirsch	CN,	Buell	CR,	Kaeppler	S,	Kaeppler	HF.	(2014)	Whole	Transcriptome	Profiling	of	
Maize	during	Early	Somatic	Embryogenesis	Reveals	Altered	Expression	of	Stress	Factors	and	
Embryogenesis-Related	Genes.	PLoS	One.	30;9(10):e111407.	

Xuan	J,	Yu	Y,	Qing	T,	Guo	L,	Shi	L.	(2013)	Next-generation	sequencing	in	the	clinic:	promises	and	
challenges.	Cancer	Lett.	1;340(2):284-95.		

Robinson	SW,	Fernandes	M,	Husi	H.	(2014)	Current	advances	in	systems	and	integrative	biology.	
Comput	Struct	Biotechnol	J.	11(18):35-46.		

Sharma	A,	Rai	A,	Lal	S.	(2013)	Workflow	management	systems	for	gene	sequence	analysis	and	
evolutionary	studies	-	A	Review.	Bioinformation.	17;9(13):663-72.		

Street	ME,	Buscema	M,	Smerieri	A,	Montanini	L,	Grossi	E.	(2013)	Artificial	Neural	Networks,	and	
Evolutionary	Algorithms	as	a	systems	biology	approach	to	a	data-base	on	fetal	growth	
restriction.	Prog	Biophys	Mol	Biol.	113(3):433-8.		

Caccia	D,	Dugo	M,	Callari	M,	Bongarzone	I.	(2013)	Bioinformatics	tools	for	secretome	analysis.	
Biochim	Biophys	Acta.	1834(11):2442-53.		

Ecker	JR,	et	al.	(2012)	Genomics:	ENCODE	explained.	Nature.	6;489(7414):52-5.		
Gerstein	MB,	et	al.	(2012)	Architecture	of	the	human	regulatory	network	derived	from	ENCODE	

data.	Nature.	6;489(7414):91-100.		
Thurman	RE,	et	al.	(2012)	The	accessible	chromatin	landscape	of	the	human	genome.	Nature.	

6;489(7414):75-82.	
Sanyal	A,	Lajoie	BR,	Jain	G,	Dekker	J.	(2012)	The	long-range	interaction	landscape	of	gene	

promoters.	Nature.	6;489(7414):109-13.	
Afacan	NJ,	Fjell	CD,	Hancock	RE.	(2012)	A	systems	biology	approach	to	nutritional	immunology	-	

focus	on	innate	immunity.	Mol	Aspects	Med.	33(1):14-25.		
Wilson	RA.	(2012)	The	cell	biology	of	schistosomes:	a	window	on	the	evolution	of	the	early	

metazoa.	Protoplasma.	249(3):503-18.		
Murphy	BF,	Thompson	MB.	(2012)	A	review	of	the	evolution	of	viviparity	in	squamate	reptiles:	the	

past,	present	and	future	role	of	molecular	biology	and	genomics.	J	Comp	Physiol	B.	181(5):575-
94.		



Fritzsch	FS,	Dusny	C,	Frick	O,	Schmid	A.	(2012)	Single-cell	analysis	in	biotechnology,	systems	
biology,	and	biocatalysis.	Annu	Rev	Chem	Biomol	Eng.	3:129-55.		

Tian	Q,	Price	ND,	Hood	L.	(2012)	Systems	cancer	medicine:	towards	realization	of	predictive,	
preventive,	personalized	and	participatory	(P4)	medicine.	J	Intern	Med.	271(2):111-21.	

Weckwerth	W.	(2011)	Green	systems	biology	-	From	single	genomes,	proteomes	and	
metabolomes	to	ecosystems	research	and	biotechnology.	J	Proteomics.	10;75(1):284-305.	

St-Denis	N,	Gingras	AC.	(2012)	Mass	spectrometric	tools	for	systematic	analysis	of	protein	
phosphorylation.	Prog	Mol	Biol	Transl	Sci.	106:3-32.		

Amit	I,	Regev	A,	Hacohen	N.	(2011)	Strategies	to	discover	regulatory	circuits	of	the	mammalian	
immune	system.	Nat	Rev	Immunol.	18;11(12):873-80.		

Zhao	S,	Iyengar	R.	(2012)	Systems	pharmacology:	network	analysis	to	identify	multiscale	
mechanisms	of	drug	action.	Annu	Rev	Pharmacol	Toxicol.	10;52:505-21.		

Habibi	E,	Masoudi-Nejad	A,	Abdolmaleky	HM,	Haggarty	SJ.	(2011)	Emerging	roles	of	epigenetic	
mechanisms	in	Parkinson's	disease.	Funct	Integr	Genomics.	11(4):523-37.		

Liu	ZP,	Chen	L.	(2012)	Proteome-wide	prediction	of	protein-protein	interactions	from	high-
throughput	data.	Protein	Cell.	3(7):508-20.		

Markowitz	VM,	et	al.	(2012)	IMG:	the	Integrated	Microbial	Genomes	database	and	comparative	
analysis	system.	Nucleic	Acids	Res.	40(Database	issue):D115-22.		

Diercks	A,	Aderem	A.	(2012)	Systems	Approaches	to	Dissecting	Immunity.	Curr	Top	Microbiol	
Immunol.	2012	Aug	11.	[Epub	ahead	of	print]	

Scholz	B,	Marschalek	R.	(2012)	Epigenetics	and	blood	disorders.	Br	J	Haematol.	158(3):307-22.		
Borenstein	E.	(2012)	Computational	systems	biology	and	in	silico	modeling	of	the	human	

microbiome.	Brief	Bioinform.	13(6):769-80.		
Gupta	RK,	Rosen	ED,	Spiegelman	BM.	(2011)	Identifying	novel	transcriptional	components	

controlling	energy	metabolism.	Cell	Metab.	7;14(6):739-45.		
Galliot	B,	Quiquand	M.	(2011)	A	two-step	process	in	the	emergence	of	neurogenesis.	Eur	J	

Neurosci.	34(6):847-62.		
Rodin	AS,	Gogoshin	G,	Boerwinkle	E.	(2011)	Systems	biology	data	analysis	methodology	in	

pharmacogenomics.	Pharmacogenomics.	12(9):1349-60.		
Sobie	EA,	Lee	YS,	Jenkins	SL,	Iyengar	R.	(2011)	Systems	biology--biomedical	modeling.	Sci	Signal.	

6;4(190):tr2	
Habibi	E,	Masoudi-Nejad	A,	Abdolmaleky	HM,	Haggarty	SJ.	(2011)	Emerging	roles	of	epigenetic	

mechanisms	in	Parkinson's	disease.	Funct	Integr	Genomics.	11(4):523-37.		
Day	JJ,	Sweatt	JD.	(2012)	Epigenetic	treatments	for	cognitive	impairments.	

Neuropsychopharmacology.	37(1):247-60.		
Prezioso	C,	Orlando	V.	(2011)	Polycomb	proteins	in	mammalian	cell	differentiation	and	plasticity.	

FEBS	Lett.	7;585(13):2067-77.		
Zhang	X,	Yap	Y,	Wei	D,	Chen	G,	Chen	F.	Novel	omics	technologies	in	nutrition	research.	Biotechnol	

Adv.	2008	Mar-Apr;26(2):169-76.		
		



Serving up a 
genome feast
J O S E P H  R .  E C K E R

Starting with a list of simple ingredients 
and blending them in the precise amounts 

needed to prepare a gourmet meal is a chal-
lenging task. In many respects, this task is 
analogous to the goal of the ENCODE project1, 
the recent progress of which is described in 
this issue2–7. The project aims to fully describe 
the list of common ingredients (functional 
elements) that make up the human genome 
(Fig. 1). When mixed in the right proportions, 
these ingredients constitute the information 
needed to build all the types of cells, body 
organs and, ultimately, an entire person from 
a single genome.

The ENCODE pilot project8 focused on 
just 1% of the genome — a mere appetizer — 
and its results hinted that the list of human 
genes was incomplete. Although there was 
scepticism about the feasibility of scaling up 
the project to the entire genome and to many 
hundreds of cell types, recent advances in low-
cost, rapid DNA-sequencing technology radi-
cally changed that view9. Now the ENCODE 
consortium presents a menu of 1,640 genome-
wide data sets prepared from 147 cell types, 
providing a six-course serving of papers in 
Nature, along with many companion publica-
tions in other journals.

One of the more remarkable findings 
described in the consortium’s ‘entrée’ paper 
(page 57)2 is that 80% of the genome con-
tains elements linked to biochemical func-
tions, dispatching the widely held view that 
the human genome is mostly ‘junk DNA’. The 
authors report that the space between genes 
is filled with enhancers (regulatory DNA ele-
ments), promoters (the sites at which DNA’s 
transcription into RNA is initiated) and 
numerous previously overlooked regions that 
encode RNA transcripts that are not trans-
lated into proteins but might have regula-
tory roles. Of note, these results show that 
many DNA variants previously correlated 

with certain diseases lie within or very near 
non-coding functional DNA elements, pro-
viding new leads for linking genetic variation  
and disease.

The five companion articles3–7 dish up 
diverse sets of genome-wide data regarding the 
mapping of transcribed regions, DNA binding 
of regulatory proteins (transcription factors) 
and the structure and modifications of chro-
matin (the association of DNA and proteins 
that makes up chromosomes), among other 
delicacies.

Djebali and colleagues3 (page 101) describe 
ultra-deep sequencing of RNAs prepared from 
many different cell lines and from specific 
compartments within the cells. They conclude 
that about 75% of the genome is transcribed 
at some point in some cells, and that genes 
are highly interlaced with overlapping tran-
scripts that are synthesized from both DNA 
strands. These findings force a rethink of the 
definition of a gene and of the minimum unit  
of heredity.

Moving on to the second and third 
courses, Thurman et al.4 and Neph et al.5 
(pages 75 and 83) have prepared two tasty 
chromatin-related treats. Both studies  
are based on the DNase I hypersensitivity  
assay, which detects genomic regions at 
which enzyme access to, and subsequent 
cleavage of, DNA is unobstructed by chro-
matin proteins. The authors identified cell-
specific patterns of DNase I hypersensitive  
sites that show remarkable concordance 
with experimentally determined and com-
putationally predicted binding sites of 
transcription factors. More over, they have 
doubled the number of known recognition 
sequences for DNA-binding proteins in the 
human genome, and have revealed a 50-base-
pair ‘footprint’ that is present in thousands of  
promoters5.

The next course, provided by Gerstein and 
colleagues6 (page 91) examines the principles 
behind the wiring of transcription-factor 

networks. In addition to assigning relatively 
simple functions to genome elements (such 
as ‘protein X binds to DNA element Y’), this 
study attempts to clarify the hierarchies of 
transcription factors and how the intertwined  
networks arise.

Beyond the linear organization of genes and 
transcripts on chromosomes lies a more com-
plex (and still poorly understood) network of 
chromosome loops and twists through which 

promoters and more 
distal elements, such 
as enhancers, can 
communicate their 
regulatory informa-
tion to each other. In 
the final course of the 
ENCODE genome 
feast, Sanyal and 

colleagues7 (page 109) map more than 1,000 
of these long-range signals in each cell type. 
Their findings begin to overturn the long-held 
(and probably oversimplified) prediction that 
the regulation of a gene is dominated by its 
proximity to the closest regulatory elements.

One of the major future challenges for 
ENCODE (and similarly ambitious pro-
jects) will be to capture the dynamic aspects 
of gene regulation. Most assays provide a 
single snapshot of cellular regulatory events, 
whereas a time series capturing how such 
processes change is preferable. Additionally, 
the examination of large batches of cells — as 
required for the current assays — may pre-
sent too simplified a view of the underlying 
regulatory complexity, because individual 
cells in a batch (despite being genetically 
identical) can sometimes behave in different 
ways. The development of new technologies 
aimed at the simultaneous capture of mul-
tiple data types, along with their regulatory 
dynamics in single cells, would help to tackle 
these issues.

A further challenge is identifying how the 
genomic ingredients are combined to assemble 
the gene networks and biochemical pathways 
that carry out complex functions, such as cell-
to-cell communication, which enable organs 
and tissues to develop. An even greater chal-
lenge will be to use the rapidly growing body 

FORUM: Genomics

ENCODE explained
The Encyclopedia of DNA Elements (ENCODE) project dishes up a hearty banquet of data that illuminate the roles of the 
functional elements of the human genome. Here, five scientists describe the project and discuss how the data are influencing 
research directions across many fields.  See Articles p.57, p.75, p.83, p.91, p.101 & Letter p.109

“These findings 
force a rethink of 
the definition  
of a gene and of  
the minimum 
unit of heredity.”

ENCODE
Encyclopedia of DNA Elements
nature.com/encode
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Once the human genome had been 
sequenced, it became apparent that 

an encyclopaedic knowledge of chromatin  
organization would be needed if we were to 
understand how gene expression is regulated. 
The ENCODE project goes a long way to 
achieving this goal and highlights the pivotal 
role of transcription factors in sculpting the 
chromatin landscape.

Although some of the analyses largely con-
firm conclusions from previous smaller-scale 
studies, this treasure trove of genome-wide 
data provides fresh insight into regulatory 

pathways and identifies prodigious numbers 
of regulatory elements. This is particularly so 
for Thurman and colleagues’ data4 regarding 
DNase I hypersensitive sites (DHSs) and for 
Gerstein and colleagues’ results6 concerning 
DNA binding of transcription factors. DHSs 
are genomic regions that are accessible to enzy-
matic cleavage as a result of the displacement 
of nucleosomes (the basic units of chromatin) 
by DNA-binding proteins (Fig. 1). They are the 
hallmark of cell-type-specific enhancers, which 
are often located far away from promoters.

The ENCODE papers expose the profusion 
of DHSs — more than 200,000 per cell type, far 
outstripping the number of promoters — and 
their variability between cell types. Through 
the simultaneous presence in the same cell 
type of a DHS and a nearby active promoter, 
the researchers paired half a million enhancers 
with their probable target genes. But this leaves 

of data from genome-sequencing projects to 
understand the range of human phenotypes 
(traits), from normal developmental processes, 
such as ageing, to disorders such as Alzhei-
mer’s disease10.

Achieving these ambitious goals may 
require a parallel investment of functional 
studies using simpler organisms — for exam-
ple, of the type that might be found scamp-
ering around the floor, snatching up crumbs 
in the chefs’ kitchen. All in all, however, the 
ENCODE project has served up an all-you-
can-eat feast of genomic data that we will be 
digesting for some time. Bon appétit!

Joseph R. Ecker is at the Howard Hughes 
Medical Institute and the Salk Institute for 
Biological Studies, La Jolla, California 92037, 
USA.
e-mail: ecker@salk.edu

Figure 1 | Beyond the sequence. The ENCODE project2–7 provides 
information on the human genome far beyond that contained within the DNA 
sequence — it describes the functional genomic elements that orchestrate the 
development and function of a human. The project contains data about the 
degree of DNA methylation and chemical modifications to histones that can 
influence the rate of transcription of DNA into RNA molecules (histones are 
the proteins around which DNA is wound to form chromatin). ENCODE also 
examines long-range chromatin interactions, such as looping, that alter the 
relative proximities of different chromosomal regions in three dimensions and 
also affect transcription. Furthermore, the project describes the binding activity 

of transcription-factor proteins and the architecture (location and sequence) of 
gene-regulatory DNA elements, which include the promoter region upstream of 
the point at which transcription of an RNA molecule begins, and more distant 
(long-range) regulatory elements. Another section of the project was devoted 
to testing the accessibility of the genome to the DNA-cleavage protein DNase I. 
These accessible regions, called DNase I hypersensitive sites, are thought to 
indicate specific sequences at which the binding of transcription factors and 
transcription-machinery proteins has caused nucleosome displacement. In 
addition, ENCODE catalogues the sequences and quantities of RNA transcripts, 
from both non-coding and protein-coding regions.
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11 Years Ago
The draft 
human genome
OUR GENOME UNVEILED
Unless the human genome contains 
a lot of genes that are opaque to our 
computers, it is clear that we do not 
gain our undoubted complexity 
over worms and plants by using 
many more genes. Understanding 
what does give us our complexity —  
our enormous behavioural 
repertoire, ability to produce 
conscious action, remarkable 
physical coordination (shared with 
other vertebrates), precisely tuned 
alterations in response to external 
variations of the environment, 
learning, memory … need I go 
on? — remains a challenge for the 
future.
David Baltimore
From Nature 15 February 2001

GENOME SPEAK
With the draft in hand, researchers 
have a new tool for studying the 
regulatory regions and networks 
of genes. Comparisons with other 
genomes should reveal common 
regulatory elements, and the 
environments of genes shared with 
other species may offer insight into 
function and regulation beyond the 
level of individual genes. The draft 
is also a starting point for studies 
of the three-dimensional packing 
of the genome into a cell’s nucleus. 
Such packing is likely to influence 
gene regulation … The human 
genome lies before us, ready for 
interpretation.
Peer Bork and Richard Copley
From Nature 15 February 2001

DNA potentially acts as a reservoir for the 
creation of new functional molecules, such as 
regulatory RNAs. 

What are the implications of these results 
for genetic studies of complex human traits 
and disease? Genome-wide association stud-
ies (GWAS), which link variations in DNA 
sequence with specific traits and diseases, have 
in recent years become the workhorse of the 
field, and have identified thousands of DNA 
variants associated with hundreds of complex 

traits (such as height) 
and diseases (such as 
diabetes). But associ-
ation is not causality, 
and identifying those 
variants that are 
causally linked to a 
given disease or trait, 
and understanding 
how they exert such 
influence, has been 
difficult. Further-

more, most of these associated variants lie in 
non-coding regions, so their functional effects 
have remained undefined. 

The ENCODE project provides a detailed 
map of additional functional non-coding 
units in the human genome, including some 
that have cell-type-specific activity. In fact, 
the catalogue contains many more func-
tional non-coding regions than genes. These 
data show that results of GWAS are typically 
enriched for variants that lie within such 
non-coding functional units, sometimes in 
a cell-type-specific manner that is consist-
ent with certain traits, suggesting that many 
of these regions could be causally linked to 
disease. Thus, the project demonstrates that 
non-coding regions must be considered when 
interpreting GWAS results, and it provides a 
strong motivation for reinterpreting previous 
GWAS findings. Furthermore, these results 
imply that sequencing studies focusing on 
protein-coding sequences (the ‘exome’) risk 
missing crucial parts of the genome and the 
ability to identify true causal variants. 

However, although the ENCODE cata-
logues represent a remarkable tour de force, 
they contain only an initial exploration of the 
depths of our genome, because many more cell 
types must yet be investigated. Some of the 
remaining challenges for scientists searching 
for causal disease variants lie in: accessing data 
derived from cell types and tissues relevant to 
the disease under study; understanding how 
these functional units affect genes that may be 
distantly located7; and the ability to generalize 
such results to the entire organism.

Inês Barroso is at the Wellcome Trust Sanger 
Institute, Hinxton CB10 1SA, UK, and at 
the University of Cambridge Metabolic 
Research Laboratories and NIHR Cambridge 
Biomedical Research Centre, Cambridge, UK. 
e-mail: ib1@sanger.ac.uk

Non-coding 
but functional
I N Ê S  B A R R O S O

The vast majority of the human genome 
does not code for proteins and, until 

now, did not seem to contain defined gene-
regulatory elements. Why evolution would 
maintain large amounts of ‘useless’ DNA had 
remained a mystery, and seemed wasteful. It 
turns out, however, that there are good reasons 
to keep this DNA. Results from the ENCODE 
project2–8 show that most of these stretches of 
DNA harbour regions that bind proteins and 
RNA molecules, bringing these into positions 
from which they cooperate with each other to 
regulate the function and level of expression of 
protein-coding genes. In addition, it seems that 
widespread transcription from non-coding 

“The results 
imply that 
sequencing 
studies 
focusing on 
protein-coding 
sequences risk 
missing crucial 
parts of the 
genome.”

more than 2 million putative enhancers with-
out known targets, revealing the enormous 
expanse of the regulatory genome landscape 
that is yet to be explored. Chromosome-con-
formation-capture methods that detect long-
range physical associations between distant 
DNA regions are attempting to bridge this gap. 
Indeed, Sanyal and colleagues7 applied these 
techniques to survey such associations across 
1% of the genome.

The ENCODE data start to paint a picture 
of the logic and architecture of transcriptional 
networks, in which DNA binding of a few 
high-affinity transcription factors displaces 
nucleosomes and creates a DHS, which in turn 
facilitates the binding of further, lower-affinity 
factors. The results also support the idea that 
transcription-factor binding can block DNA 
methylation (a chemical modification of DNA 
that affects gene expression), rather than the 
other way around — which is highly relevant 
to the interpretation of disease-associated sites 
of altered DNA methylation11.

The exquisite cell-type specificity of regula-
tory elements revealed by the ENCODE studies 
emphasizes the importance of having appropri-
ate biological material on which to test hypothe-
ses. The researchers have focused their efforts on 
a set of well-established cell lines, with selected 
assays extended to some freshly isolated cells. 
Challenges for the future include following the 
dynamic changes in the regulatory landscape 
during specific developmental pathways, and 
understanding chromatin structure in tissues  
containing heterogeneous cell populations.

Wendy A. Bickmore is in the Medical 
Research Council Human Genetics Unit,  
MRC Institute of Genetics and Molecular 
Medicine, University of Edinburgh,  
Edinburgh EH4 2XU, UK.
e-mail: wendy.bickmore@igmm.ed.ac.uk
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Evolution and 
the code 
J O N A T H A N  K .  P R I T C H A R D  &  Y O A V  G I L A D 

One of the great challenges in evolutionary 
biology is to understand how differences 

in DNA sequence between species determine 
differences in their phenotypes. Evolution-
ary change may occur both through changes 
in protein-coding sequences and through 
sequence changes that alter gene regulation.

There is growing recognition of the impor-
tance of this regulatory evolution, on the basis 
of numerous specific examples as well as on 
theoretical grounds. It has been argued that 
potentially adaptive changes to protein-
coding sequences may often be prevented 
by natural selection because, even if they are 
beneficial in one cell type or tissue, they may 
be detrimental elsewhere in the organism. By 
contrast, because gene-regulatory sequences 
are frequently associated with temporally and 
spatially specific gene-expression patterns,  
changes in these regions may modify the 
function of only certain cell types at specific 
times, making it more likely that they will 
confer an evolutionary advantage12. 

However, until now there has been little 
information about which genomic regions 
have regulatory activity. The ENCODE pro-
ject has provided a first draft of a ‘parts list’ of 
these regulatory elements, in a wide range of 
cell types, and moves us considerably closer to 
one of the key goals of genomics: understand-
ing the functional roles (if any) of every posi-
tion in the human genome.

Nonetheless, it will take a great deal of work 
to identify the critical sequence changes in 
the newly identified regulatory elements 
that drive functional differences between 
humans and other species. There are some 
precedents for identifying key regulatory 
differences (see, for example, ref. 13), but 
ENCODE’s improved identification of regu-
latory elements should greatly accelerate 
progress in this area. The data may also allow 
researchers to begin to identify sequence 
alterations occurring simultaneously in mul-
tiple genomic regions, which, when added 
together, drive phenotypic change — a pro-
cess called polygenic adaptation14. 

However, despite the progress brought  
by the ENCODE consortium and other 
research groups, it remains difficult to  
discern with confidence which variants in 
putative regulatory regions will drive func-
tional changes, and what these changes will be. 
We also still have an incomplete understanding 
of how regulatory sequences are linked to tar-
get genes. Furthermore, the ENCODE project 
focused mainly on the control of transcrip-
tion, but many aspects of post-transcriptional 
regulation, which may also drive evolutionary  

From catalogue 
to function
E R A N  S E G A L

Projects that produce unprecedented 
amounts of data, such as the human 

genome project15 or the ENCODE project, 
present new computational and data-analysis  
challenges and have been a major force  
driving the development of computational 
methods in genomics. The human genome 
project produced one bit of information per 
DNA base pair, and led to advances in algo-
rithms for sequence matching and alignment. 
By contrast, in its 1,640 genome-wide data sets, 
ENCODE provides a profile of the accessibility, 
methylation, transcriptional status, chroma-
tin structure and bound molecules for every 
base pair. Processing the project’s raw data to 
obtain this functional information has been an 
immense effort.

For each of the molecular-profiling methods 
used, the ENCODE researchers devised novel 
processing algorithms designed to remove 

outliers and protocol-
specific biases, and to 
ensure the reliability 
of the derived func-
tional information. 
These processing 
pipelines and qual-
ity-control measures 
have been adapted by 
the research commu-
nity as the standard 
for the analysis of 

such data. The high quality of the functional 
information they produce is evident from the 
exquisite detail and accuracy achieved, such 
as the ability to observe the crystallographic 
topography of protein–DNA interfaces in 
DNase I footprints5, and the observation 
of more than one-million-fold variation 
in dynamic range in the concentrations of  
different RNA transcripts3.

But beyond these individual methods for 
data processing, the profound biological 
insights of ENCODE undoubtedly come from 
computational approaches that integrated 
multiple data types. For example, by combin-
ing data on DNA methylation, DNA acces-
sibility and transcription-factor expression. 
Thurman et al.4 provide fascinating insight 
into the causal role of DNA methylation in 
gene silencing. They find that transcription-
factor binding sites are, on average, less fre-
quently methylated in cell types that express 
those transcription factors, suggesting that 
binding-site methylation often results from a 
passive mechanism that methylates sites not 
bound by transcription factors.

Despite the extensive functional informa-
tion provided by ENCODE, we are still far 
from the ultimate goal of understanding the 
function of the genome in every cell of every 
person, and across time within the same 
person. Even if the throughput rate of the 
ENCODE profiling methods increases dra-
matically, it is clear that brute-force measure-
ment of this vast space is not feasible. Rather, 
we must move on from descriptive and correla-
tive computational analyses, and work towards 
deriving quantitative models that integrate the 
relevant protein, RNA and chromatin compo-
nents. We must then describe how these com-
ponents interact with each other, how they 
bind the genome and how these binding events 
regulate transcription. 

If successful, such models will be able to 
predict the genome’s function at times and 
in settings that have not been directly meas-
ured. By allowing us to determine which 
assumptions regarding the physical interac-
tions of the system lead to models that better 
explain measured patterns, the ENCODE 
data provide an invaluable opportunity to 
address this next immense computational 
challenge. ■
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“The high 
quality of the 
functional 
information 
produced is 
evident from the 
exquisite detail 
and accuracy 
achieved.” 

changes, are yet to be fully explored. 
Nonetheless, these are exciting times for 

studies of the evolution of gene regulation. 
With such new resources in hand, we can 
expect to see many more descriptions of adap-
tive regulatory evolution, and how this has 
contributed to human evolution. 
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Systems biology primer: the basic methods and
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Systems biology is an integrative discipline connecting the molecular components within a
single biological scale and also among different scales (e.g. cells, tissues and organ systems)
to physiological functions and organismal phenotypes through quantitative reasoning, com-
putational models and high-throughput experimental technologies. Systems biology uses a
wide range of quantitative experimental and computational methodologies to decode infor-
mation flow from genes, proteins and other subcellular components of signaling, regulatory
and functional pathways to control cell, tissue, organ and organismal level functions. The
computational methods used in systems biology provide systems-level insights to under-
stand interactions and dynamics at various scales, within cells, tissues, organs and organ-
isms. In recent years, the systems biology framework has enabled research in quantitative
and systems pharmacology and precision medicine for complex diseases. Here, we present
a brief overview of current experimental and computational methods used in systems biol-
ogy.

Introduction
In recent decades, our knowledge of the foundation of living organisms in terms of various compo-
nents of cells, tissues and organ systems has been greatly expanded due to advances in technologies for
high-throughput measurements such as genomics, transcriptomics, proteomics and metabolomics. In ge-
netics and genomics, entire genomes of many organisms have been sequenced and the gene expression
profiles comprehensively mapped. In biochemistry, mass spectrometry-based protein surveys have pro-
vided extensive lists of proteins and protein complexes, while molecular and cell biology have provided
information on how proteins are organized to orchestrate the functions of subcellular systems such as cell
organelles and cellular machinery components. Physiology has shed light on the complex functions of
cells, tissues and organ systems. This enormous amount of information at different scales of organization
can be used to obtain a new perspective that starts from genes and proteins, moves through subcellular
interactions and pathways and ends in the physiology of cells, tissues and organ systems [1-4]. The avail-
ability of such multiscale information has catalyzed the formation of systems biology as a discipline in
biomedical sciences. Systems biology is the study of molecular interactions at different levels, enabling
the identification and description of the subcellular machinery that makes functional operational units in
cells, tissues and organ systems resulting in physiological behaviors [5,6].

Historically, systems biology started by looking at cells, tissues and organ systems as complex biological
systems [7]. The rapid development of genomics and sequencing technologies led to the uncovering of big
datasets of basic components forming these complex systems [8,9]. Later, it was shown how interactions
among molecular components of cells could give rise to functional behaviors that single components by
themselves cannot [10-12]. One way to think of systems biology is that it provides a new and broader
perspective of physiology. While physiology provides a description of functions in cells, tissues and organ
systems using largely phenomenological approaches, systems biology integrates molecular biology and
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biochemistry of molecular components and their interactions and dynamics to understand how physiological func-
tions arise and are controlled [1,13,14]. Systems biology integrates not only the molecular entities at a specific scale
but also the connections among these molecular components at different scales. Integration of data is the core value
in systems biology, in which the interactions of multiple components are treated as a single system. This integration
can be applied at a single scale (e.g. the cellular level) to provide new systems-level insight, but also can be used to
decode complex phenotypes at different scales. For example, systems biology is used to study the evolution of a cancer
cell from a normal cell. This involves interactions among molecular components at the cell level. At the same time,
systems biology can be used to integrate the interactions among cancer cells and the evolution of tumors. It is also
capable of describing the interaction of different tissues such as blood vessels, tumors and the immune system to shed
light on complex phenomena of cancer at the organ level [15-20].

Biological systems are multiscale, with multiple levels of organization and with multiple states at different times,
and hence, systems-level analyses are particularly useful. Differences in scale of biological systems can be studied
from molecular components to subcellular machinery (such as transcriptional and translational control machinery
and cell motility machinery) and to cells, tissues, organ systems and whole organisms. In this systems-level view, as the
organizational level of a system increases, it leads to new characteristics and capabilities [1,20]. Multiscale systems can
be studied in two major ways: bottom-up and top-down. Both approaches have their advantages and disadvantages.

In a bottom-up approach, cellular and molecular components are studied as parts of a system that includes their
interactions and dynamics leading to physiological functions. This approach has the ability to provide mechanistic
insights into how different units work together to form a system. In this approach, however, as the system becomes
bigger, the details may obscure the overall capabilities of the system [21]. In contrast, in the top-down approach, the
system as a whole is studied, and the characteristics and potential capabilities of the system are discovered. This gives a
big picture of the system, which can be comprehensive and integrative. In this approach, interactions among different
units are often defined by correlation and the complexity of the biological systems often does not always allow one to
make causal inferences [21]. The different experimental methods and computational approaches are summarized in
Figure 1.

Genomic-wide analyses of single nucleotide polymorphisms, comprehensive transcriptomic profiling and deep
proteomics that provide an extensive characterization of cellular proteins are all examples of top-down surveys that
correlate molecular components with cellular, tissue or organismal level phenotypes. Although such relationships are
often correlative, they can provide useful bookends for more mechanistic systems-level characterizations. In both
bottom-up and top-down approaches, there are two main sets of tools: experimental tools and computational tools.
Experimental studies in systems biology often start with omics, high-throughput technologies including genomics,
transcriptomics, epigenomics, proteomics and metabolomics [2]. Such large datasets are analyzed by use of statistical
models as well as graph theory-based models. In bottom-up approaches, low-throughput, but high fidelity exper-
iments can provide a foundation for verification of predictions from computational models both qualitatively and
quantitatively [22,23] (Figure 1).

One can also use a middle-out approach in systems biology, studying a higher level function by selecting only a
limited number of lower level interactions deemed to be relevant to a specific phenotype. This approach considers
modularity in systems biology and uses an approach like engineering methods that use only selected functionally
vital components to build and understand a processing circuit or machine [24,25].

Systems level experimental analysis of cells
The systems-level analysis of cells requires information on all of the individual entities at different levels of cell func-
tion. Omics technologies provide such information and, in the process, yield vast amounts of data from genes, mR-
NAs, proteins and metabolites. These high-throughput methods measure many individual subcellular components
that act as a system to control cell function. Genomics, which utilizes sequencing technologies and microarrays, can
determine the sequence of genomes and characterize genomic determinants including single nucleotide polymor-
phisms (SNPs), indels and epigenetic regulatory sites (such as DNA methylation sites), affecting a specific phenotype
or function in cells or organisms [26]. Transcriptomics measures the transcriptome of cells or tissues that consists of
all RNA transcripts [27]. Epigenomics describes all epigenetic modifications such as DNA methylation and histone
modifications in cells [28,29]. Proteomics, which often uses mass-spectrometry technologies, measures and catalogs
proteins and post-translational modifications at a large scale [30]. Metabolomics is the large-scale study of metabolites
in cells and tissues and uses liquid chromatography, mass-spectrometry and NMR technologies [31]. The informa-
tion gained by such systems-wide surveys needs to be processed and organized to turn data into knowledge. The
organizing and analyzing of large datasets are called Bioinformatics. Currently, there are many databases that store,
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Figure 1. Systems biology approaches and methodologies

(A) Systems biology methodologies can be applied either in a bottom-up approach that puts small functional units together to make

a system or in a top-down approach that starts from the global view of the system and then tries to study smaller subsystems.

(B) Systems biology utilizes both experimental and computational frameworks to answer biological questions. Omics technology

provides a platform to extract knowledge using bioinformatics, statistical methods and network analysis. The dynamical models

of certain components in these networks must be verified by low-throughput, high-fidelity and single cell experiments that provide

new strategies to improve and optimize the dynamical models. Dynamical models can be merged with PK/PD models to analyze

therapeutic efficacies and design precision drug treatments.

and computational tools to analyze, these data, such as genomic characteristics including SNP profiles for diseases,
mRNA profiles, protein networks etc. Systems biology integrates experiments and computational models to under-
stand how systems function. Computation is a key feature that characterizes systems biology compared with classic
biological disciplines such as biochemistry and cell biology. A good example of the use of large molecular datasets
is Genome-wide Association Studies (GWAS), which is the process of finding variations in DNA sequence, usually
SNPs, associated with increased risk of a specific disease or physiological state. GWAS is a useful map by which ge-
nomic data can be correlated with pathophysiological states. It can also contribute to understanding drug action and
the discovery of new drug targets by evaluating genetic variations in response to drugs, and to progression of disease
[32,33].

Qualitative methods include most of the omics technologies that produce large-scale, often comprehensive, lists
of molecular components. Transcriptomics focuses on identifying all the mRNAs on a genome wide basis. As the
cost of sequencing has come down dramatically in the past few years, transcriptomics measurements have moved
from the use of microarray chips to sequencing methods [34]. Proteomics focuses on identifying proteins and their
post-translational modifications using mass spectrometry [35]. Advances in computational identification of proteins
from mass spectrometry data now allow for the identification of ∼10,000 proteins per cell type [36]. Metabolomics
uses mass spectrometry as well as NMR technologies to identify metabolites and track metabolic pathways [37].
Each of these omic technologies has advanced detailed experimental methods as well as specific informatics tools for
transcriptomics [38], proteomics [39] and metabolomics [40]. The informatics tools are needed to analyze the large
datasets to produce ranked lists of molecular entities that can be cast as pathways and networks to infer function.

From molecules to pathways and networks
Experimental omics studies produce large molecular datasets. Statistical methods are required to generate ranked lists
of those molecular components (genes, mRNA, proteins etc.) involved in specific physiological or pathophysiological
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states. Gene Set Enrichment Analysis (GSEA) is a statistical method to find potential molecular components respon-
sible for phenotypes and functions based on those entities that are under- or over-represented in biological samples.
The differentially expressed molecular entities (or, in general, differentially expressed biomarkers) are enriched using
a specific ontology. An ontology is a set of structured terms with specific relationships that work like a classifier with
hierarchical structure [41,42]. The ontology is a tool to find biological knowledge by association of data (genes or
gene products) with biological processes, molecular functions and cellular components [41,42]. Several ontologies
have been developed and used in systems biology including Gene Ontology (GO) and Molecular Biology of the Cell
Ontology (MBCO). In addition, there are other bioinformatics tools such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG), Wikipathways, Reactome Pathway, Progeny Signatures and Broad Signatures to transform data
into biological knowledge [42-48]. The results from GSEA yield knowledge about the pathways, including signaling
pathways regulating the specific phenotype being studied.

Signaling pathways are the main systems that process information in cells. Signaling pathways receive signals from
outside the cell and control cellular physiology in response to these signals. These pathways have many components
each of which receives, transmits and transduces information to other components [13,14,23,49]. The flow of infor-
mation, in the form of cellular signals, occurs in time and space and can be studied mathematically using dynamical
systems theory and differential equations [14,16]. Receptors, which receive signals from outside the cell, and other
intracellular signaling components, enable connectivity between signaling pathways within a network. The intracel-
lular signaling components are information processing units, signal integrators and effectors that function as output
devices that represent the cellular responses to extracellular signals [11,16].

In addition to linear pathways, GESA enables the construction and analysis of functional molecular networks.
Networks are formed by interactions between molecular entities. These entities are called ‘nodes’ and the interactions
between the entities are called ‘edges’. Such interactions include direct binding leading to activation or inhibition of
the downstream target and enzymatic activities [50-53].

Analysis of biological networks
A network is a set of nodes connected to each other via edges and mathematically defined as a graph. The structure
and function of networks are studied by graph theory. Networks can be studied as computational units and systems,
which provide insights into both their organization and functions [50,52,53]. In systems biology, the network nodes
are cellular components and edges are reactions or interactions among these nodes. Viewing cell systems as networks
is a helpful and practical way of understanding the functional organization of cells by analyzing network topology
[10,18,50,52]. In cellular networks, there are cases when the relationships among nodes are conditional rather than
fixed. Those networks where edges are defined in a probabilistic manner are called Bayesian networks [54]. Bayesian
networks allow us to discover probabilistic relationships among molecular components and define the conditions
that increase or decrease the probability of the relationships [55,56]. Networks can be represented as directed or
undirected graphs. Undirected graphs represent the relationship among nodes without specifying hierarchy and are
usually constructed from high-throughput large datasets Directed graphs represent not only the relationship among
nodes but also the direction of signal propagation and hierarchy such as an upstream node regulating a downstream
node. For example, in a directed graph of protein networks, inhibition or activation of a protein by another protein can
be shown. There are many software packages and tools that enable the visualization of networks [57]. Visualization
and analysis of cellular networks give a perspective on global organization of cell systems and help in identifying the
key nodes in terms of connectivity. One of the properties of each network is the degree distribution, which is the
probability distribution of all degrees of nodes within a network. The degree of a node is the number of edges via
which it is connected to other nodes. A node with a degree much higher than average for the network is called a
hub [58]. Hubs are not observed in random networks. Networks of real systems, such as cellular signaling systems,
are organized differently from random networks. Real networks have a degree distribution that follows the power
law and are called scale-free networks [59]. The robustness of a network and its sensitivity to perturbations are other
properties of molecular networks that affect the functions of the system [50,60]. Perturbation, in terms of removing
some of the nodes and measuring the resistance of the network to change, can be used to evaluate the robustness of a
network. Scale-free networks are highly robust to random removal of nodes as there are few highly connected nodes
[59]. These networks, however, are fragile to the specific removal of hubs [50,59,61].

Network dynamics
Decoding signal propagation and processing in molecular networks requires consideration of the temporal aspects of
signal processing [13]. Network-based models have limited capabilities to capture temporal dynamics of the system,
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Figure 2. Computational methods in systems biology

Omics data are organized and analyzed using bioinformatics tools, and the resulting datasets are used to build networks. Within

these networks of molecular interactions, the topological features of cellular wiring systems can be deduced. Network motifs

and functional modules that are smaller sets of nodes and edges are commonly found in these networks and represent certain

dynamical signal processing properties and carry out specific functional tasks. From these networks, sets of regulatory pathways

(which include motifs, modules and feedback loops) are extracted to build dynamical models. These dynamical models are used

for simulations to understand and predict the emergent behavior of the system in space and time. They also can be merged with

PK/PD models to study drug action.

but temporal dynamics is essential for understanding systems behaviors at the cell and tissue level. Hence, network
analysis needs to be combined with dynamic quantitative mathematical models. Dynamical models present a more
accurate description of how a system progresses temporally and spatially. In fact, the networks within cells not only
underlie structural and organizational aspects of cellular components but also can show emergent temporal properties
defining cellular functions. Each network includes some functional modules that have a limited number of compo-
nents that interact to receive a signal, to process it and then to transduce the signal to other modules. A network
has a dynamic that can be studied by translating its components (nodes and edges) into a set of ordinary differential
equations (ODEs) [29,30] (Figure 2). A simple way of translating a network to a mathematical formalism to study
its dynamics is by using Boolean logic, which assigns a state of being ‘on’ (1) or ‘off’ (0) to each node. In addition
to Boolean logic models and differential equation-based models, there are hybrid models, which use a combination
of Boolean functions and differential equations, and fuzzy logic-based models that, in contrast with Boolean logic,
represent nodal activity values between 0 and 1 [29,44-47].

Network motifs and functional modules
A motif is a set of a limited number of components that represent a certain dynamical behavior such as bistability or
oscillations [49,62]. For instance, one of the motifs common in signaling pathways is mutual inhibition between two
proteins. The structure of such a motif shows the emergent ability of this system in signal processing to make an on/off
memory switch [10,62,63]. Network motifs, such as feedback and feedforward loops and bifan motifs, are recurrent
and commonly found as subgraphs in biological networks [62,64,65]. A functional module consists of one or more
such motifs with a particular function, such as signal integration or switch control in cells [49,62]. By extracting
network motifs in molecular networks and surveying the dynamical behavior of functional modules, it is possible to
decode temporal characteristics of signal transduction in cell systems. Methods from dynamical systems are used to
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analyze ODE-based mathematical models of motifs, modules and networks [11]. The dynamical systems methods
also provide a roadmap to design experiments for verifying the dynamical models, as the rate of molecular events in
cells follow rules of dynamical systems [66] (Figure 2).

Dynamical models
Dynamical models are built by converting a network of interactions such as a gene regulatory network or
a protein–protein interaction network to ODEs. Solving and analyzing these ODEs show the qualitative and
time-course changes in the network as a dynamical system [67]. Often dynamical models do not have a unique solu-
tion, as defined by a single set of parameters. Such dynamical models are considered robust with more than one set
of parameters and have a spectrum of parameter sensitivity [49,68]. Exploring these parameter spaces provides new
information on the biological redundancies built into the system [49]. When the signal processing is done in different
cellular compartments, compartmental dynamical models are built in which biochemical reactions within a compart-
ment are represented as groups of ODEs [69]. These dynamical models can provide information regarding the state
of the system. Changes between system states can provide knowledge about different types of activities a system is
capable of. Such states can be at the cellular or tissue/organ or organismal levels. Bifurcation theory is a tool used to
study states of dynamical systems that undergo qualitative or topological changes. For example, dynamical patterns
such as bistability (switching between two stable states) and oscillations can be studied using saddle–node bifurcation
or Hopf bifurcation [16,70]. Bifurcation analysis is a mathematically and computationally challenging task when the
systems of ODEs become complex and is often used to study functional modules such as feedback loops [62].

When modeling cellular processes in time and space to understand the spatial organization of time-dependent
cellular functions, partial differential equations (PDEs) are used [71,72]. PDEs can compute transitions in concentra-
tion and change in location of reactants and products. Solving PDEs is more challenging than ODEs because adding
spatial parameters increases the complexity of the equations, and in PDEs one deals with multivariable functions in
contrast with ODEs where the functions of a single variable are considered [73].

Solving ODEs in dynamical modeling can be done analytically or, more commonly, numerically. An analytical
solution is expressed as a mathematical formalism that can readily be used to simulate time-courses of different
components. Numerical solutions are based on obtaining numerical approximations for ODEs of the systems being
studied. ODEs representing cellular and biological systems are usually very complex and cannot be solved analytically.
They are most often solved numerically using different software packages and tools such as MATLAB, COPASI,
Virtual Cell etc. [74-76]. PDE are typically solved numerically. Both MATLAB and Virtual Cell have PDE solvers.

If a system’s temporal evolution is fully determined by specific initial conditions and reaction rates, then it can be
modeled by a deterministic ODE or PDE model. However, many important cellular processes, such as gene expres-
sion, are stochastic, and modeling them requires stochastic modeling in contrast with deterministic ODE or PDE
models. Heterogeneity is a main characteristic at all levels of biological systems. One way to include the heterogeneity
of these systems in terms of probability distributions of intrinsic and extrinsic noise is stochastic modeling [77]. A
stochastic dynamical model describes systems or functions in which the temporal evolution of the system is com-
puted both by specific predictable reactions and some random variables and parameters. A common methodology
for stochastic systems is the Gillespie algorithm [78]. In stochastic models, a master equation is implemented to con-
trol the evolution of the system such that a probabilistic function defines the next state of the system. The master
equation basically defines the probabilistic distribution of all possible states that the system can have over time. The
Gillespie algorithm makes it possible to simulate each bimolecular reaction while time or space intervals between
reactions adhere to a probability distribution defined by the master equation [77-79].

Another aspect of dynamical models in systems biology is linking a dynamical model built for a single cell to the
behavior of a population of cells, such as within a tumor [80]. In these cases, each cell can have a distinct parameter
space with some parameters following probabilistic distributions. In such cases each cell may be simulated separately,
and the behavior of the population computed from the average behavior of individual cells. [49,78,80,81]. Depending
on the biological questions one wants to answer, the type of mathematical model chosen is deterministic or stochastic.
The parameters in dynamical systems of cellular processes and signaling pathways need to be measured directly
from experiments or estimated based on experiments. Although there are toy dynamical models that are built using
arbitrary parameters, which are helpful to gain mechanistic insights into the system, the most common dynamical
models in systems biology are plausible models in which parameters are measured or estimated by experiments.
Identifiable dynamical models are made to explain the experimental data, and variables and parameters are specific
to a certain system and fitted to experimental data from that system. These models are very common in quantitative
systems pharmacology (QSP) and studies that involve drug actions [20,63,67,82]. In all dynamical models of cell
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systems, thermodynamic constraints must be fulfilled [13,83]. These dynamical models allow one to study and predict
physiological responses in space and time (Figure 2).

Pharmacokinetic/pharmacodynamic (PK/PD) models are commonly used in the study of drug action. Pharma-
cokinetic models are focused on drug disposition and availability whereas pharmacodynamics focuses on mecha-
nisms of drug action. Combining PK/PD models with dynamical models of cellular regulatory systems can be used
for predicting both therapeutic and adverse effects of drugs [20].

Strengths and limitations of different types of models
The different modeling approaches in systems biology have their own applications and limitations. They are cho-
sen based on the system under study and the complexity of the problem being addressed, and the use of multiple
models may be necessary to predict system behavior. When using high-throughput and quantitative experimental
approaches, model types used include statistical models, networks and dynamical models. Statistical models, which
are the first layer in top-down systems biology, deal with defining molecular datasets assigned to given phenotypes
and functions. These models can deal with probabilistic relationships built upon correlations. This makes statistical
models useful for clinical decision making because for most complex diseases, pathological phenotypes are associated
with molecular markers like genes in a probabilistic manner. These models, however, do not enable the understand-
ing of mechanisms underlying the development of phenotypes because they do not consider the nature and direction
of interactions among components [84,85]. They cannot decode information flow from pathways or the dynamics
of networks within the cells. Statistical models have a static view of biological functions, and systems evolving in
time and space are not fully described. For example, statistical models are inadequate to describe the time-course of
initiation of a disease phenotype or acquisition of treatment resistance. Mechanistic models are required to describe
an integrative view of the pathological process [20,86]. Network-based models serve as representations of whole-cell
interactions and their topologies. These topologies are a vital first step to understand the dynamics of cell systems in a
flexible multiscale fashion. They represent all cellular components and their relationships as a global map for informa-
tion transmission in cells, tissues and organs. Inside these networks, it is possible to search for functional modules by
identifying hubs and network motifs. To truly understand computation within cells, we require both network models
and dynamical models. However, lack of sufficient kinetic data often prevents us from building dynamical models at
the level of large networks. We usually need to select the most important components, including functional modules
and computational units, to make insightful and realistic dynamical models [16,51,85,87]. In addition, the assump-
tions and estimated parameters needed for the construction of dynamical models require that predictions from model
simulations be experimentally verified.

Quantitative experimental methods for systems biology
Quantitative methods encompass a wide range of experiments that measure the quantity of cellular components such
as protein concentrations and their temporal changes in different time scales. These include standard molecular biol-
ogy and cell biology experiments as well as high-throughput experiments. These experiments can be based on a single
cell or cell populations. Single-cell experiments are helpful to verify and explore parameter spaces of models designed
at the cell level. Specifically, when a cell population is heterogeneous (for example cancer cells), each cell may have
a different parameter space and responses to signals [22,23,81]. Over the past few years single-cell transcriptomics
[88-90] has been developed to provide mRNA profiles in single cells. This approach has been very useful in mapping
subtypes of classes of cells within tissues and organs. Conventional molecular biology experimental methods, such as
Western blots for measuring protein concentrations, provide an average result from many cells in an often heteroge-
neous cell population [49]. Although both single cell and population experiments can be used, the ergodic nature of
cellular events favors measuring single cell dynamics from a cell population [90].

Often it is not possible to measure the concentrations and kinetic parameters of all components of a system. Thus,
some component parameters used in models are estimated based on data from other components. Finding kinetic
parameters is often difficult due to limitations imposed by experimental design. Quantitative measurements, such as
time-course experiments, involve many components with different kinetic parameters making it difficult to explicitly
measure the kinetic parameters associated with individual molecular components. Quantitative characterization of
molecular components, both with respect to kinetic parameters and concentrations within different cell types is an
underdeveloped area of study.

One type of experiment helpful for building precise networks and models is using omics technologies at the
single-cell level. Conventional omics methods provide a list of entities from a heterogeneous cell population. However,
in single-cell transcriptomics, the mRNA concentrations of expressed genes are measured in each cell in a population
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of cells. Although the number of genes identified by this method is ∼1000 per cell, the method of measurement,
using 3′ unique molecular identifiers, counts each molecule of RNA and hence provides quantitative estimates of the
different RNA species in each cell. These single-cell omics data are useful in describing the heterogeneity of cells in tis-
sues and organs. Heterogeneity is an important consideration for building predictive models for complex tissues and
diseases because the phenotypes are dependent on cells with different identities [91-93]. An example is the systems
biology of cancer, in which both statistical and dynamical models are built to design therapeutic regimens for tumors
and cell lines that contain many individual cells with heterogeneous expressions of genes and proteins [88]. Molecular
information from single cells can be used to build models of cell populations by considering single cells with different
identities as components, with each cell considered as a system of the biochemical and molecular network. Such an
approach captures the diversity of cell subtypes in a tissue or organ system.

Artificial intelligence in systems biology
One of the main challenges in systems biology is to convert big data at different scales into actionable knowledge.
This knowledge is vital to improve methodologies to study biological systems, to understand and diagnose diseases at
various stages precisely and to design new therapeutic modalities focused on the individual. Mechanistic models, such
as dynamical models that depend on the causality of relationships among components, can combine biological data
from hypothesis-based experiments with mathematical modeling to produce predictive models. Often, such models
also provide insight into mechanisms. The amount of information in biology and medicine is rapidly surpassing the
current capability of building large-scale mechanistic models. An alternative way to generate predictive models from
big data is through statistical models based on correlation. This process can benefit from artificial intelligence (AI)
that uses statistical reasoning to detect unseen correlation, co-occurrence and dependencies in large-scale datasets
[94].

In computer science, AI is a way of developing machine-based expert systems that can analyze data and predict new
outcomes. Machine learning, deep learning and artificial neural networks are different approaches used in AI. Arti-
ficial neural networks were inspired by real brain neural networks and are capable of learning specific task-oriented
classifications when trained by a training set [95]. Machine learning refers to a group of methods that analyze big
datasets and, based on them, make predictions. Machine learning can be used in a supervised, unsupervised or
semi-supervised manner. In supervised machine learning, training datasets in the form of labeled input/output rela-
tions are provided and a function is inferred that can be used to analyze new examples—to predict the output based
on input data and classification. Unsupervised machine learning is when the data are not labeled, and the aim is to de-
tect underlying patterns with no guide. Semi-supervised learning is a modality between supervised and unsupervised
learning when there is limited labeled data [96-98]. Deep learning is a machine learning method that uses multilayer
computational processing units for data representation and detection of intrinsic patterns in big data [99,100].

AI is a powerful tool for developing models and optimizing them. In AI, an algorithm and a dataset are used. The
dataset usually has two properties, one is a large set of measurements (e.g. molecular signatures such as genes, proteins
or metabolites) and the other is the resultant prediction (e.g. the resulting phenotype). The underlying algorithm,
usually a statistical model, is trained using the dataset and then a test set is used to evaluate the predictions (Figure
3) [96,97,101]. This training and testing procedure can be optimized as a loop by using new data as training datasets.
The algorithm adjusts itself to make better predictions, and thus the AI system learns as it is being used. Network
building and analyses can benefit from AI methods to extract data from omics data in terms of finding interactions
and relationships among molecular entities in given phenotypes, finding network motifs and functional modules,
and decoding main pathways involving selected functions (Figure 3) [54,102]. Exploring the parameter spaces of
dynamical models and sensitivity analysis also use machine learning approaches because they deal with big numerical
datasets [103]. The predictive models arising from AI and machine learning are potentially powerful tools in precision
medicine as they can extract genomic signatures related to drug treatment and therapeutic responses. In such cases,
both large clinical and biomolecular datasets are used as training sets that are assigned to specific responses. The
predictions of these models are tested and valid predictions are used as new data for making the training set bigger
[101]. AI, for example, has been successfully used in predicting cancer outcomes based on molecular biomarkers and
pathology [104]. The use of artificial intelligence in studies of basic biological systems, as well as in clinical data, are
schematically shown in Figure 3.

Systems pharmacology and systems biomedicine
Systems-level insights serve as building blocks to advance medicine to a higher level of personalized and preci-
sion care. Currently, systems biology approaches are being implemented in both drug discovery and the practice of
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Figure 3. AI in systems biology and precision medicine

AI and machine learning approaches are helpful tools for finding molecular signatures from high-throughput measurement datasets

and assigning them to higher level phenotypes and cellular functions. They also can be used to tailor treatment based on an

individual patient’s molecular markers for precision medicine. Clinical data and omics data from patients are used to extract clinical

biomarkers for training sets and to build predictive models of the course of the disease and patient responses to treatment. Verified

predictions are used as additional training sets to make the predictive models progressively more accurate.

medicine. Systems biology has enabled pharmacology to become a systems science. Systems pharmacology, of which
pharmacogenomics is a part, has been shown to be useful for drug discovery and predicting therapeutic responses
and drug adverse effects. While pharmacogenomics uses genomic data of drug metabolizing enzymes for prediction
of drug responses and effects, QSP utilizes network and dynamical models integrated with pharmacodynamics and
pharmacokinetics to find optimized therapeutics for specific patients with a given disease [20,85,105,106]. These ad-
vances enable adjustment of drug regimens and drug doses for individual patients based on their molecular markers
[85,107].

With advances in biosensors that are able to collect time-course data from patients, liquid biopsies and biomarker
discovery, the practice of precision medicine based on systems biology approaches seems feasible. These data collec-
tion tools provide the basic materials for predictive models using systems biology approaches. Biosensors can collect
real-time data on the concentration of different components in the blood of a patient or record quantitative data on
physiological signals such as heart rate and electrical activities of brain and heart [108,109]. Liquid biopsy collects
cancer cells or other tissue components in fluids such as blood, saliva and urine that can be used for omics data and
biomarker detection [110]. Advances in high-content image analysis that requires quantitative analysis of vast num-
bers of images such as pathology slides can, with the help of machine learning, provide an accurate diagnostic tool
for predictive models of disease states and progression [111,112].

Genomic signatures in systems therapeutics
One of the recent advances in the field of precision medicine is the discovery of genomic signatures related to patho-
genesis and therapeutic responses in different diseases [107,113-115]. Drug treatments change the gene expression
profiles of cells, and measuring these changes before and after treatment in vitro, in vivo in animal models, and in
patients, can bring new insights about genomic determinants of drug responses and drug adverse effects. Genomic
signatures also can be used as prognostic markers for patients suffering from chronic diseases such as cancer and help
in selecting individuals for specific treatment plans. For example, in the case of cancer immunotherapy, there has been
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a major effort to detect the genomic determinates of responses to immunotherapy agents such as PD-L1 inhibitors.
Currently, the main practice is based on the expression of PD-L1 protein in tumor tissue, but several genomic and
clinical markers, both tumor genomic profiles and patients’ immune system characteristics, have been found useful
in guiding immunotherapy [116].

Perspective
By investigating qualitative as well as quantitative properties, both temporal and spatial, and emerging functions of
molecular interactions in biological systems, we are able to understand many phenomena in cells, tissues/organs, and
at the level of whole organisms. The transmission of information from genes to organismal behaviors, and complex
phenotypes arising from molecular and cellular networks, can be explored using systems biology methodologies.
Statistical, network and dynamical models are essential tools in systems biology leading to discoveries at various
scales of biological organization. These discoveries are basic building blocks for future advances in medicine, leading
to precision and individualization of treatment. Advances in computational and experimental methods, including
faster and more accurate technologies, will enable systems biology to provide basic understanding of cells, tissues and
organs, as well as future medical advances.

Summary
• Systems biology studies cells, tissues and organ systems as systems of interacting components.

• Omics technologies are the main sources of information on individual molecular entities in cells.

• Bioinformatics organizes the big data obtained from systems-wide surveys.

• Statistical methods enable analyses of big datasets based on high-throughput technologies that can
then be used to decode pathways and molecular networks.

• Dynamical models of networks of cellular components help to explain the emergent properties of cell
and tissue physiology in time and space.

• Systems biology methods can be used for drug discovery and development of systems pharmacol-
ogy approaches.

• Artificial intelligence and machine learning approaches are used as tools in systems biology to link
molecular datasets to phenotypes and physiological behaviors at the organismal level.

• Insights from systems biology studies are useful for the design of precision and individualized
medicine protocols.
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ENCODE	(2012)	ENCODE	Explained.	Nature	489:52-55.	
	
Tavassoly	I,	Goldfarb	J,	Iyengar	R.	(2018)	Essays	Biochem.	62(4):487-500.		
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- What	combination	of	omics	technology	was	used?	
- What	insight	into	respiratory	disease	was	obtained?	
- What	do	the	networks	indicate?	
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- What	recent	omics	technology	was	used?	
- How	can	single	cell	technology	provide	new	omics	insights?	
- What	are	some	of	the	advantages	and	disadvantages	of	single	cell	genomics?	
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Systems	Biology	(Omics	Technology)	

Primary Papers 
1. Dahal, et al. (2020) Proteomics. 20917-18):e1900282. (PMID: 32579720) 
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3. ENCODE Consortium (2012) Nature 489:57-74. (PMID: 22955616) 

	
		

Discussion	
	
Student	7	–	Ref	#1	above	

- What	omics	protocols	and	technology	are	used?	
- What	integration	was	required	for	the	technology?	
- How	can	the	information	be	used	in	genome	scale	design?	

	
Student	8	–	Ref	#2	above	

- What	omics	technology	was	integrated?	
- How	did	single	cell	omics	help	the	cell	lineage	analysis?	
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- What	novel	observations	were	made?	
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The human being as a dynamic
network of networks. In systems
medicine the human organism is
envisioned as a system of systems or
network of networks. At every scale of
biological organization (molecular,
cellular, organ, individual and
social/environmental) systems are
portrayed as giving rise to and
embedding each other. At all levels the
network of networks is seen as a
dynamic or four-dimensional process
(as opposed to a static thing)
(Copyright: The Institute for Systems
Biology, used with permission)
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Omics Technology
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Applications of lipidomics in marine organisms: progress, challenges and future perspectives. 
Rey F, Melo T, Lopes D, Couto D, Marques F, Domingues MR. 
Mol Omics. 2022 Jun 13;18(5):357-386.

Lipidomics Workflow

Total ion chromatograms of polar lipid classes separated 
by HILIC and reverse phase C18 columns, acquired 

using HPLC Ultimate 3000 Dionex system

The glycosaminoglycan interactome 2.0. 
Vallet SD, Berthollier C, Ricard-Blum S. 
Am J Physiol Cell Physiol. 2022 Jun 1;322(6):C1271-C1278. 
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Glycosaminoglycan interaction networks and databases. 
Ricard-Blum S, Perez S. 
Curr Opin Struct Biol. 2022 Jun;74:102355.

The roadmap designed to generate and analyze glycosaminoglycan interactomes.

Microbiome systems biology advancements for natural well-being. 
Chatterjee G, Negi S, Basu S, Faintuch J, O'Donovan A, Shukla P. 
Sci Total Environ. 2022 Sep 10;838(Pt 2):155915. 

Single-cell sequencing workflow.
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Applications of single-cell sequencing.

Using single-cell genomics to understand developmental processes and cell fate decisions.
Mol Syst Biol. 2018 Apr 16;14(4):e8046. 
Griffiths JA, Scialdone A, Marioni JC.

Pseudotime recapitulates developmental trajectories (A) By observing similarities between the expression profiles of cells, 
it is possible to order cells along an axis of pseudotime that recapitulates developmental processes. (B) Having established this 
ordering, genes that show significant changes in expression along the developmental pathway may be identified.

Single-cell library preparation summaryThere are two primary methods for generating single-cell transcriptomics data: plate-based 
and droplet-based methods, shown above. In summary, droplet-based approaches offer high cell throughput, while plate-based 
approaches provide higher resolution in each individual cell. Note that different implementations of these methods provide slightly 
different outputs and that some steps are excluded for clarity (e.g. cDNA amplification).

Lineage tracing meets single-cell omics: opportunities and challenges
Wagner DE, Klein AM. 
Nat Rev Genet. 2020 Jul;21(7):410-427. 
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Profiling Cell Signaling Networks at Single-cell Resolution
Lun XK, Bodenmiller B. 
Mol Cell Proteomics. 2020 May;19(5):744-756.

The progressive application of single-cell RNA sequencing technology in cardiovascular diseases.
Ke Y, Jian-Yuan H, Ping Z, Yue W, Na X, Jian Y, Kai-Xuan L, Yi-Fan S, Han-Bin L, Rong L.
Biomed Pharmacother. 2022 Oct;154:113604. 

Single-cell sequencing: A cutting edge tool in molecular medical research. 
Misra P, Jadhav AR, Bapat SA. 
Med J Armed Forces India. 2022 Sep;78(Suppl 1):S7-S13. 
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Synthesizing Systems Biology Knowledge from Omics Using Genome-Scale Models
Dahal S, Yurkovich JT, Xu H, Palsson BO, Yang L.
Proteomics. 2020 Sep;20(17-18):e1900282.

Multiview learning for understanding functional multiomics. 
Nguyen ND, Wang D. 
PLoS Comput Biol. 2020 Apr 2;16(4):e1007677.
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Human microbiome: an academic update on human body site specific surveillance and its possible role
Dekaboruah E, Suryavanshi MV, Chettri D, Verma AK.
Arch Microbiol. 2020 Oct;202(8):2147-2167.

Rise of Systems Glycobiology and Personalized Glycomedicine: Why and How to Integrate Glycomics with Multiomics Science?
Kunej T. 
OMICS. 2019 Dec;23(12):615-622. 

Genomics
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Tiling array
A high-density microarray that contains 
evenly spaced, or ‘tiled’, sets of probes that 
span the genome or chromosome, and can be 
used in many experimental applications such 
as transcriptome characterization, gene 
discovery, alternative-splicing analysis, ChIP-
chip, DNA-methylation analysis, DNA-
polymorphism analysis, comparative genome 
analysis and genome resequencing.

Complete strategy for TFBSs focused ChIP-Seq and RNA-Seq data analysis.
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Transcriptome
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Non-Coding RNA Databases in Cardiovascular Research
Balamurali D, Stoll M.
Noncoding RNA. 2020 Sep 2;6(3):35.

Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis
Matsuyama H, Suzuki HI. 
Int J Mol Sci. 2019 Dec 24;21(1):132.

Biogenesis pathway of canonical miRNAs. miRNA biogenesis is mediated by multiple steps, including the transcription of primary 
miRNA transcripts, nuclear processing by Drosha, nucleocytoplasmic export by XPO5, cytoplasmic processing by Dicer, and 
formation of the RISC with Ago proteins. 
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tRNA introns: Presence, processing, and purpose
Schmidt CA, Matera AG. 
Wiley Interdiscip Rev RNA. 2020 May;11(3):e1583.

The non-coding RNA interactome in joint health and disease. 
Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. 
Nat Rev Rheumatol. 2021 Nov;17(11):692-705. 

Biogenesis and function of microRNAs, long non-coding RNAs and circular RNAs

Proteome

Mass spectrometry
An analysis technique that identifies 
biochemical molecules (such as 
proteins, metabolites or fatty acids) on 
the basis of their mass and charge.
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Mass-spectrometric exploration of proteome structure and function.
Aebersold R, Mann M.
Nature. 2016 Sep 15;537(7620):347-55. 

Interaction proteomics and structural proteomics.
a, Schematic representations of a protein interaction network with bait proteins (teal), core complex members (dark green) and weak interactors (light 
green). A bait protein is precipitated with its interaction partners and is measured in replicates by one of the workflows described in Fig. 1. By 
considering the interaction stoichiometry (the molar ratio of prey proteins and the bait protein expressed under endogenous control) and the relative 
cellular abundances of the proteins, stable core complexes can be distinguished from weak interactions and unspecific interactions, as well as from 
asymmetric interactions between proteins of different abundances 55. b, A wild-type protein complex and the same complex with mutations (*) are 
investigated using complementary structural techniques, collectively termed integrative or hybrid structural analysis. For example, XL–MS can reveal 
information about subunit topology and direct domain–domain interactions. Hydrogen–deuterium exchange mass spectrometry (HDX–MS) is able to
determine the interaction surfaces and solvent-exposed regions. Native mass spectrometry (native MS), in which entire protein complexes are 
electrosprayed into the mass spectrometer, can infer the stoichiometry and the assembly pathway of such complexes, and cryo-EM can obtain their 
overall shape and their density maps. The heterogeneous structural restraints are integrated in a common computational framework that evaluates 
subunit configurations (known as conformational sampling). Consensus models that represent the structures of the wild-type and mutated complexes 
can then be derived.
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Protein Interactome
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A review of protein-protein interaction network alignment: From pathway comparison to global alignment
Ma CY, Liao CS.
Comput Struct Biotechnol J. 2020 Sep 18;18:2647-2656.

Network and matrix analysis of the respiratory disease interactome.
Garcia B, Datta G, Cosgrove GP, Strong M.
BMC Syst Biol. 2014 Mar 22;8:34. 

Massive and parallel expression profiling using microarrayed single-cell sequencing.
Vickovic S, Ståhl PL, Salmén F, et al.
Nat Commun. 2016 Oct 14;7:13182. 

MASC-Seq overview.
A FACS machine sorts single cells onto a barcoded microarray, printed with six replicates on an
activated glass slide. The throughput of the method and microarray design as a 33 × 35 ID matrix
is illustrated. An alternative is to pipette and smear cells which then distribute randomly onto the
array. Positions of the cells and IDs are noted in a high-resolution image and cDNA is only
transcribed when an individual cell lands on top of the barcoded oligo-dTVN primer (ID).

Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning
Verkhivker GM, Agajanian S, Hu G, Tao P. 
Front Mol Biosci. 2020 Jul 9;7:136.
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Systems	Biology	(Components	&	Technology)	

Components	 (DNA,	Expression,	Cellular,	Organ,	Physiology,	Organism,	Differentiation,		
	 	 	 Development,	Phenotype,	Evolution)	
	
Technology	 (Genomics,	Transcriptomes,	Proteomics)	
	 	 (Interaction,	Signaling,	Metabolism)	
	
Omics	 	 (Data	Processing	and	Resources)	
	
	

Required	Reading	
	
ENCODE	(2012)	ENCODE	Explained.	Nature	489:52-55.	
	
Tavassoly	I,	Goldfarb	J,	Iyengar	R.	(2018)	Essays	Biochem.	62(4):487-500.		
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Metabolome
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An example of plots describing the relationship between area under ROC curve and p-values for 
various metabolites. These plots are applicable when comparing univariate biomarkers or 
multiple model predictions. The more effective biomarkers approach the top left hand corner of 
the plot (i.e., low p-value and high AuROC). Kindly reprinted from a study related to heart 
failure203 with permission from Springer.
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Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression
Wang R, Li B, Lam SM, Shui G. J 
Genet Genomics. 2020 Feb 20;47(2):69-83.

Schematic summary of phospholipid biosynthesis and the major phospholipid classes with their associated diseases. The 
abbreviated mechanisms are illustrated. CDP-DAG, CDP-diacylglycerol; PGP, phosphatidylglycerophosphate; PG, 
phosphatidylglycerol.
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Advantages of integrating metabolomics and lipidomics. Integration of metabolomics and lipidomics brings about several advantages 
by providing completeness of molecular changes and global signature, enabling comprehensive network analysis to identify critical 
metabolic drivers in disease pathology, revealing changes in interconnected metabolic pathways, and reinforcing biomarker panel for 
diagnosis and prognosis.

A general schema showing the strategies for integrating omics data.

The Determinants of the Human Milk Metabolome and Its Role in Infant Health
Ojo-Okunola A, Cacciatore S, Nicol MP, du Toit E.
Metabolites. 2020 Feb 20;10(2):77.

Systems metabolomics: from metabolomic snapshots to design principles 
Damiani C, Gaglio D, Sacco E, Alberghina L, Vanoni M.
Curr Opin Biotechnol. 2020 Jun;63:190-199. 
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Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation
Perez De Souza L, Alseekh S, Brotman Y, Fernie AR. 
Expert Rev Proteomics. 2020 Apr;17(4):243-255.

Databases

Databases and tools for constructing signal transduction networks in cancer.
BMB Rep. 2017 Jan;50(1):12-19. 
Nam S.

Systems biology, databases, and network generation. (A) The 
diversity of types of high-throughput data (genomics, epigenomics, 
transcriptomics, proteomics, metabolomics) available. The 
relationships among the data types are connected by edges. (B) The 
flow (represented by “edges”) of genetic information from DNA to 
protein is aligned with the diverse data types. Public repositories 
corresponding to each data type are listed (further description in Table 
1). (C) Network differences between correlation-based approaches 
and Bayesian networks approaches. The correlation (or mutual 
information) oriented tools, ARACNE (39) and WGCNA (36), do not 
report directions of edges in networks. Bayesian-driven networks 
naturally reveal directed edges among the network entries. In other 
words, the undirected network (in left of the grey-shaded triangular) 
having G1, G2, and G3 entries by ARACNE and WGCNA can be 
differentiated into directed networks (in the right of the grey-shaded 
triangular), using Bayesian networks tools (48–51).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319659/table/t1-bmb-50-012/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319659/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319659/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319659/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319659/
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Databases Sources

• National Center for Bioinformatics  NCBI
• European Bioinformatics Institute
• EMBL
• Ensembl
• Interpro
• Protein databank
• Bionumbers
• Gene Ontology
• Pathway- KEGG
• Consensus Path DB

Omics data set
A generic term that describes the 
genome-scale data sets that are 
emerging from high-throughput 
technologies.  Examples include whole-
genome sequencing data (genomics) and 
microarray-based genome-wide 
expression profiles (transcriptomes).

Data mining
An analytical discipline that is 
focused on finding unsuspected 
relationships and summarizing often 
large observational data sets in new 
ways that are both understandable 
and useful to the data owner.

In silico predic3on
A general term that refers to a 
computaAonal predicAon that usually 
results from the analysis of a 
mathemaAcal or computaAonal model.
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RepeatModeler2 for automated genomic discovery of transposable element families
Flynn JM, Robert Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit  AF.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457.

Omics Computational Biology
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A critical review of datasets and computational suites for improving cancer theranostics and biomarker discovery
Ashok G, Ramaiah S. 
Med Oncol. 2022 Sep 29;39(12):206.

Bioinformatics in bioscience and bioengineering: Recent advances, applications, and perspectives
Uesaka K, Oka H, Kato R, Kanie K, Kojima T, Tsugawa H, Toda Y, Horinouchi T.
J Biosci Bioeng. 2022 Sep 17:S1389-1723(22)00229-8.

Schematic representation of various sections of 
this article. 

Categorical understanding of the technological 
positions in imaging analysis for cell assays.

Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review. 
Vahabi N, Michailidis G. 
Front Genet. 2022 Mar 22;13:854752. 

Computational modelling of stem cell-niche interactions facilitates discovery of strategies to enhance 
tissue regeneration and counteract ageing. 
Potapov I, García-Prat L, Ravichandran S, Muñoz-Cánoves P, Del Sol A. 
FEBS J. 2022 Mar;289(6):1486-1491. 

NicheHotSpotter overview and predictions.
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Network biology and artificial intelligence drive the understanding of the multidrug resistance phenotype in cancer
Bueschbell B, Caniceiro AB, Suzano PMS, Machuqueiro M, Rosário-Ferreira N, Moreira IS. 
Drug Resist Updat. 2022 Jan;60:100811. 

Hallmarks of cancer. The figure summarizes the 
hallmarks of cancer as defined by Hanahan and 
Weinberg (Hanahan and Weinberg, 2011, 2000).

How can AI modify the drug development process?

Networks

Network scaffold
Refers to the structure of a network that 
specifies the components of the 
network and the interacAons between 
them, and represents the end product
of the network-reconstrucAon process.

Network module
A porAon of a biological network that is 
composed of mulAple molecular enAAes 
(such as genes, proteins or metabolites) 
that work together as a disAnct unit 
within the cell, for example, in response 
to certain sAmuli or as part of a 
developmental or differenAaAon 
programme.
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Network reconstruction
The process of integrating different data 
sources to create a representation of the 
chemical events that underlie a 
biochemical reaction network.
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Network analysis: a new approach to study endocrine disorders.
Stevens A, et al.
J Mol Endocrinol. 2013 Dec 19;52(1):R79-93.

Artificial Neural Networks, and Evolutionary Algorithms as a systems biology approach to a 
data-base on fetal growth restriction.
Street M, et al.
Prog Biophys Mol Biol. 2013 Dec;113(3):433-8. 

Typical neural network architecture. The basic elements of ANN are the nodes, also called 
processing elements (PE), and their connections. Each node has its own input, from which it 
receives communications from other nodes and/or from the environment and its own output, from 
which it communicates with other nodes or with the environment. Finally, each node has a function 
through which it transforms its own global input into an output.

Omics Data Integration
Omics data integra3on
The simultaneous analysis of high-
throughput genome-scale data that is 
aimed at developing models of biological 
systems to assess their properAes and 
behavior.
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‘Omic’ approaches to profile cellular processes. Both external stimuli and internal signals can initiate the activation of downstream signaling 
pathways through post-transcriptional modification of signaling molecules, such as protein kinases, by phosphorylation. Activation of the signaling 
cascade leads to either transcriptional activation by recruitment and assembly of the transcriptional complex on the DNA, transcription factor/DNA 
(TF/DNA) interaction, or inhibition of transcriptional activation by exclusion of key TFs from the complex. Covalent modifications of the DNA by 
methylation and of histones by acetylation have a major role in the regulation of gene expression. Variations in the coding region of the genome 
result in mutations of the gene transcripts, and changes in non-coding region could affect the regulation of gene expression. Gene transcripts as 
messenger RNAs in the cytoplasm are translated into proteins. The protein products synthesized in response to the initial signal serve to 
maintain cellular integrity and react to perturbations in the systems by initiating additional signals or catalyze reactions that generate specific 
metabolites as a by-product. Characterization of these processes at the systems level is known as the ‘omics’ approaches: kinome for 
phosphorylation of proteins, TF/DNA regulome for regulation of transcription by the interaction of TF with DNA, epigenome for modification of 
histones and DNA, genome for the sequence of DNA, transcriptome for the mRNA transcripts of the expressed genes, proteome for the protein 
composition, and metabolome for the metabolites that are generated in a specific tissue or cell (Red P=phosphorylation, Me=methylation, 
Ac=acetylation, line with poly A tail=mRNA). miRNA, microRNA.
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Overall network. a, Close-up representation of the transcription factor hierarchy. Nodes depict transcription factors. TFSSs are triangles, and non-TFSSs are circles. Left: proximal-edge hierarchy 
with downward pointing edges coloured in green and upward pointing ones coloured in red. The nodes are shaded according to their out-degree in the full network (as described in Table 1). 
Right: factors placed in the same proximal hierarchy but now with edges corresponding to distal regulation coloured green and red, and nodes re-coloured according to out-degree in the distal 
network. The distal edges do not follow the proximal-edge hierarchy. b, Close-up view of transcription-factor–miRNA regulation. The outer circle contains the 119 transcription factor, whereas 
the inner circle contains miRNAs. Red edges correspond to miRNAs regulating transcription factors; green edges show transcription factors regulating miRNAs. Transcription factors and miRNAs 
each are arranged by their out-degree, beginning at the top (12:00) and decreasing in order clockwise. Node sizes are proportional to out-degree. For transcription factors, the out-degree is as 
described in Table 1; for miRNAs, it is according to the out-degree in this network. Red nodes are enriched for miRNA–transcription factor edges and green nodes are enriched for transcription 
factor–miRNA edges. Grey nodes have a balanced number of edges (within ±1). c, Average values of various properties (topological, dynamic, expression-related and selection-related—ordered 
consistently with Table 1) for each level are shown for the proximal-edge hierarchy. The top, middle and bottom rows correspond to the top, middle and bottom of the hierarchy, respectively. 
The sizing of the grey circles indicates the relative ordering of the values for the three levels. Significantly different values (P < 0.05) using the Wilcoxon rank-sum test are indicated by black 
brackets. The proximal-edge hierarchy depicted on the right shows non-synonymous SNP (ns-SNP) density, where the shading corresponds to the density for the associated factor. (See 
Supplementary Fig. 4 for more details.)

Genetic variation in regulatory DNA linked to mutation rate. a, Mean nucleotide diversity (π, y axis) in DHSs of 97 diverse cell 
types (x axis) estimated using whole-genome sequencing data from 53 unrelated individuals. Cell types are ordered left-to-right 
by increasing mean π. Horizontal blue bar shows 95% confidence intervals on mean π in a background model of fourfold 
degenerate coding sites. Note the enrichment of immortal cells at right. ES, embryonic stem; iPS, induced pluripotent stem. b, 
Mean π (left y axis) for pluripotent (yellow) versus malignancy-derived (red) versus normal cells (light green), plotted side-by-side 
with human–chimpanzee divergence (right y axis) computed on the same groups. Boxes indicate 25–75 percentiles, with 
medians highlighted. c, Both low- and high-frequency derived alleles show the same effect. Density of SNPs in DHSs with 
derived allele frequency (DAF) <5% (x axis) is tightly correlated (r2 = 0.84) with the same measure computed for higher-
frequency derived alleles (y axis). Colour-coding is the same as in panel a.

Multi-lineage DNase I footprinting reveals cell-selective gene regulators. a, Comparative footprinting of the nerve growth factor 
gene (VGF) promoter in multiple cell types reveals both conserved (NRF1, USF1 and SP1) and cell-selective (NRSF) DNase I 
footprints. b, Shown is a heat map of footprint occupancy computed across 12 cell types (columns) for 89 motifs (rows), including well-
characterized cell/tissue-selective regulators, and novel de novo-derived motifs (red text). The motif models for some of these novel de 
novo-derived motifs are indicated next to the heat map. c, The proportion of motif instances in DNase I footprints within distal 
regulatory regions for known (black) and novel (red) cell-type-specific regulators in b is indicated. Also noted are these values for a 
small set of known promoter-proximal regulators (green). ES, embryonic stem.
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Current advances in systems and integrative biology.
Robinson SW, Fernandes M, Husi H.
Comput Struct Biotechnol J. 2014 Aug 27;11(18):35-46.

Organogenesis of adult lung in a dish: Differentiation, disease and therapy.
Choi J, Iich E, Lee JH.
Dev Biol. 2016 Dec 15;420(2):278-286.

Organ-on-a-Chip Systems for Women's Health Applications.
Adv Healthc Mater. 2018 Jan;7(2). 
Nawroth J, Rogal J, Weiss M, Brucker SY, Loskill P.

Self-organization in development, regeneration and organoids.
Curr Opin Cell Biol. 2017 Feb;44:102-109. 
Werner S, Vu HT, Rink JC.
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Organs-on-a-Chip Module: A Review from the Development and Applications Perspective.
Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, et al.
Micromachines (Basel). 2018 Oct 22;9(10).

Systems Biology and 
Medicine 

Personalized genomic medicine
The idea that genome-scale technologies 
will allow clinicians to apply treatment 
regimens that are tailored specifically to 
an individual patient on the basis of their 
genetic makeup and associated 
predispositions.
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Computer-aided biomarker discovery for precision medicine: data resources, models and applications.
Brief Bioinform. 2017 Nov 29. doi: 10.1093/bib/bbx158. 
Lin Y, Qian F, Shen L, Chen F, Chen J, Shen B.

Biomarker classification based on systems 
biology viewpoints. Molecular biomarkers 
described here can be categorized into 
three subtypes: single molecular 
biomarkers, edge/module biomarkers and 
network biomarkers. The integration of 
molecular biomarkers, clinical phenotype 
biomarkers and lifestyle/environmental 
factors constitutes the concept of cross-
level biomarkers, which are of great 
significance for precision medicine. q-PCR: 
quantitative polymerase chain reaction.

Multiscale analysis of kidney function. Maintenance of renal function requires the coordinated regulation from other organ systems 
(neuroendocrine and cardiovascular) and various tissue compartments and cells within the kidney. To recapitulate normal renal physiology in 
biological models, this multiscale organization from organ systems down to cell/gene level will need to be determined. The interactions at several 
levels have been described: Systems Approach for Physiological Integration of Renal, Cardiac, and Respiratory (SAPHIR) models, as well as 
models of autoregulation of glomerular blood flow, tubuloglomerular feedback, and tubulovascular exchange. Clinical parameters that we can use 
to assess and infer the function of organ systems and organs include blood pressure and cardiac function for cardiovascular and neuroendocrine 
input into the kidney, glomerular filtration rate (GFR), and proteinuria as determinants of the filtration function of the glomeruli, balance of 
electrolytes as an indicator of tubular function, podocyte number, foot process effacement, mesangial deposition, glomerulosclerosis, and 
tubulointerstitial fibrosis on renal histology as indicators of disease severity, and genetic variations (mutations, single-nucleotide polymorphisms 
(SNPs)) and mRNA and protein expression levels as indices of cellular response to internal and external stimuli. RTEC, renal tubular epithelial 
cell.
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A schematic of the network perturbations of one neural degenerative network over the 20 weeks of 
the progression of this disease in a mouse model. The red nodes indicate mRNAs that have 
become disease perturbed as compared with the brain transcripts of normal mice. The spreading of 
the disease-perturbed networks at the three different times points is striking – indicating the 
progressive disease perturbation of this neurodegenerative network.

Schematic indicating application of microglial omics in AD. This schematic shows that omics approaches, including 
genomics, epigenomics, transcriptomics, proteomics, and metabolomics/lipidomics, can be used to delineate the 
underlying mechanisms of microglia in AD, which is helpful to develop new therapeutic strategies and identify biomarkers 
to monitor disease progression

Pathogenesis, therapeutic strategies and biomarker development based on "omics" analysis related to 
microglia in Alzheimer's disease. 
Gao C, Shen X, Tan Y, Chen S.
J Neuroinflammation. 2022 Sep 4;19(1):215.
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Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways.
Marmolejo-Garza A, Medeiros-Furquim T, Rao R, Eggen BJL, Boddeke E, Dolga AM.
Biochim Biophys Acta Mol Cell Res. 2022 Oct;1869(10):119326. 

Transcriptomes of Alzheimer's disease evidence dysregulation in mitochondrial-related pathways in a sex-, cell-, 
and disease stage-specific manner.

-Omic Approaches and Treatment Response in Rheumatoid Arthritis. 
Madrid-Paredes A, Martín J, Márquez A. 
Pharmaceutics. 2022 Aug 8;14(8):1648. 

-Omic approaches for a personalized therapy. 

From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms 
of Prostate Cancer. 
Nevedomskaya E, Haendler B.
Int J Mol Sci. 2022 Jun 3;23(11):6281.

Metabolic Phenotyping in Prostate Cancer Using Multi-Omics Approaches. 
Gómez-Cebrián N, Poveda JL, Pineda-Lucena A, Puchades-Carrasco L. 
Cancers (Basel). 2022 Jan 25;14(3):596. 

Graphical representation of different omics-based approaches and multi-omics analyses applied to 
the characterization of PCa-related metabolic alterations. 
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Application system biology

Systems Biology Approaches to a Rational Drug Discovery Paradigm.
Prathipati P, Mizuguchi K.
Curr Top Med Chem. 2016;16(9):1009-25. 
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Arabidopsis bioinformatics: tools and strategies. 
Cantó-Pastor A, Mason GA, Brady SM, Provart NJ. 
Plant J. 2021 Dec;108(6):1585-1596. 

Tools discussed in this review. Their potential uses by Arabidopsis and other plant researchers are 
listed in each box. Boxes are divided across four broad categories of sequenced-based, interaction-
based, expression-based and annotation-based data.

Plant synthetic biology for molecular engineering of signalling and development.
Nemhauser JL, Torii KU.
Nat Plants. 2016 Mar 2;2:16010.

Deciphering host immunity to malaria using systems 
immunology
Loiseau C, Cooper MM, Doolan DL.
Immunol Rev. 2020 Jan;293(1):115-143.

Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.
Cell Metab. 2017 Mar 7;25(3):522-534. 
Leulier F, MacNeil LT, Lee WJ, Rawls JF, Cani PD, Schwarzer M, Zhao L, Simpson SJ.
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System biology approach intersecting diet and cell metabolism with pathogenesis of brain disorders.
Prog Neurobiol. 2018 Oct;169:76-90. 
Gomez-Pinilla F, Yang X.

Schematic representation of the analysis strategy used in the
case study, highlighting how the inferred static multiscale
network from the clinical chronic obstructive pulmonary
disease (COPD) cohort (A–C) can be bridged to the inference
of a dynamic network representing the temporal progression
of events following an experimental challenge (hypoxic
exposure) in a murine animal model (D–G). Having identified a
clinical condition with known outcome (exercise intolerance in
patients with respiratory disease), we could target unknown
mechanisms by focusing on one likely source of functional
limitation (skeletal muscle dysfunction ± central limitation on
O2 supply) and generate data characterizing the phenotype.
Both genomic and physiological readouts were used to
construct a network of inferred interactions, which was then
interrogated to identify statistically robust linkages among
broad biological functions. While very useful in providing a list
of useful biomarkers, there remains a potential limitation with
single-point associations. The dynamic nature of relationships
is captured by repeated measures across a suitable time
scale (which will vary for different molecular, physiological,
and structural responses) using an animal model of
respiratory distress, where the transcriptome-based model
demonstrated the central importance of oxygen in the
response. V̇o2max, maximum O2 uptake; ARACNE, Algorithm
for the Reconstruction of Accurate Cellular Networks.

Multilevel functional genomics data integration as a tool for understanding physiology: a 
network biology perspective.
Davidsen PK, Turan N, Egginton S, Falciani F.
J Appl Physiol (1985). 2016 Feb 1;120(3):297-309. 

The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of 
"Omics" Approaches Directed to Toxicant Mixtures
Martins C, Dreij K, Costa PM.
Int J Environ Res Public Health. 2019 Nov 26;16(23):4718.
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