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Abstract

Many environmental toxicants have been shown to be associated with the transgenerational inheritance of increased disease sus-
ceptibility. This review describes the generational toxicity of some of these chemicals and their role in the induction of epigenetic
transgenerational inheritance of disease. Epigenetic factors include DNA methylation, histone modifications, retention of histones in
sperm, changes to chromatin structure, and expression of non-coding RNAs. For toxicant-induced epigenetic transgenerational inher-
itance to occur, exposure to a toxicant must result in epigenetic changes to germ cells (sperm or eggs) since it is the germ cells that
carry molecular information to subsequent generations. In addition, the epigenetic changes induced in transgenerational generation
animals must cause alterations in gene expression in these animals’ somatic cells. In some cases of generational toxicology, negli-
gible changes are seen in the directly exposed generations, but increased disease rates are seen in transgenerational descendants.
Governmental policies regulating toxicant exposure should take generational effects into account. A new approach that takes into
consideration generational toxicity will be needed to protect our future populations.

Key words: epigenetics; generational toxicology; transgenerational

Introduction
Previous studies have demonstrated the ability of environmental
toxicants to promote the epigenetic transgenerational inheritance
of disease, which can be termed “generational toxicology.” There-
fore, exposure to environmental toxicants can increase disease
rates in subsequent generations not directly exposed [1]. Although
the field of toxicology has focused on direct exposure toxicity, gen-
erational impacts have not been previously considered due in part
to the lack of continued direct exposure. This review describes the
molecular processes and factors that affect the epigenetic trans-
generational inheritance of disease related to ancestral chemical
toxicant exposure.

The term epigenetics was originally coined by C. H.Waddington
in the 1940s to refer to how an organism’s genes and its envi-
ronment can interact to result in non-Mendelian inheritance of

phenotypes [2, 3]. In more current usage, epigenetics is defined

as “the molecular factors and processes around the DNA that

regulate genome activity independent of DNA sequence, and are
mitotically stable” [4]. Epigenetic molecular factors include DNA

methylation [5, 6], histone modifications [7], changes to chro-

matin structure [8], expression of non-coding RNAs (ncRNAs)
[9, 10], and RNA methylation [11]. These epigenetic factors
and their interactions together comprise what is termed the
epigenome. Changes to epigenetic factors are a critical mecha-
nism by which organisms respond to their environment, altering

somatic cell gene expression to change physiology [12]. In addi-
tion, epigenetic changes underlie the differentiation of stem cells
into the many differentiated cell types in an organism [4, 13, 14].
Therefore, cellular differentiation and cell specificity is, in large

part, determined by epigenetics. Epigenetic mechanisms are a
critical part of all normal biological processes, including how the

environment influences biology.

Molecular Epigenetic Mechanisms
There are several epigenetic factors that act around the DNA
to regulate gene expression in cells. The most studied epige-
netic factor is DNA methylation. This involves the chemical
addition of functional methyl groups to DNA. DNA methyla-
tion occurs primarily at cytosine bases that are adjacent to
guanine, termed CpG residues, to form 5-methylcytosine (5mC)
[15]. Other chemical modifications of CpG residues can also
occur. The Ten-Eleven Translocation (TET) enzyme family can
successively oxidize 5mC to 5-hydroxymethylcytosine (5hmC),
5-formylcytosine and 5-carboxylcytosine [16]. Typically, 5mC is
thought to repress transcription, while 5hmC is thought to be
permissive of transcription [17, 18]. Another important function

of TET family enzymes is to remove DNA methylation during
early embryonic development and cellular differentiation to help
form embryonic stem cells [19–21]. DNA methylation can also

occur at adenosine residues to form N(6)-methyladenine (N6-mA)
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Figure 1: Schematic representation of the primary epigenetic factors and
processes of non-coding RNA, DNA methylation, chromatin structure,
histone modifications, and DNA structure presented. Modified from
Nilsson et al. [1]

[22]. N(6)-mA, once thought to only occur in prokaryotic organ-
isms, has been described to occur in mammalian embryonic

stem cells. DNA methylation has a critical role in regulating

gene expression and chromatin structure, which is present in
all cells and organisms (Fig. 1). The optimal DNA methylation
procedures use genome-wide analyses, such as methylated DNA
immunoprecipitation (MeDIP) and bisulfite sequencing, com-
pared to array technology, which assesses a few percent of the
genome [23].

DNA is wrapped around histone proteins to form nucleosomes.
Another epigenetic factor involves the chemical modification of
nucleosome histones that act to regulate gene expression [24, 25].
These histone modifications include lysine acetylation, lysine and
arginine methylation, arginine citrullination, lysine ubiquitina-
tion, lysine sumoylation, ADP-ribosylation, proline isomerization,
and serine/threonine/tyrosine phosphorylation [24]. The effects
of these modifications include changing chromatin structure,
suppressing gene expression in areas of heterochromatin, and
recruiting transcriptional cofactors [25, 26]. Additional histone-
related epigenetic factors include the use of histone variants,
changes to the spacing between nucleosomes, and the positioning
of chromatin within the nucleus [26]. These factors act together
to regulate gene expression by controlling gene accessibility and
recruitment of transcriptional cofactors [27, 28], (Fig. 1). The
optimal genome-wide histone modification technology uses chro-
matin immunoprecipitation procedures [29]. ncRNA molecules
can act as epigenetic factors [30, 31]. These are RNA sequences
that do not rely on complimentary base sequences to bind and
act to regulate gene expression [32]. ncRNAs have been shown
to regulate embryogenesis and other developmental processes
[33]. Long ncRNAs [30] and small ncRNAs regulate gene expres-
sion through DNA and protein binding to alter gene expression
and are present in all cell types and organisms [30], (Fig. 1). An
example includes transfer RNA-derived small tRNA fragments [34]
that can influence gene expression and are present in sperm and
can act on subsequent generations to alter phenotype [35, 36].
The optimal genome-wide technology used for ncRNA involves
direct RNA sequencing [37].

Methylation of RNA can affect gene expression and so is con-
sidered another epigenetic factor [38]. Methylation of adenosine to
form N6-mA is the most common epigenetic modification of the
internal RNA sequence. This is a reversible modification and is
associated with post-transcriptional regulation [39, 40]. Another
modification of RNA that can occur is methylation of cytosine

(m3C) in both mRNA and tRNA [41]. These epigenetic modifi-
cations of RNA all regulate RNA structure and gene expression
(Fig. 1). The optimal genome-wide analysis of RNA methylation
uses immunoprecipitation and RNA sequencing [42].

The three-dimensional coiling and looping of DNA and its asso-
ciated proteins within the nucleus is termed chromatin structure
and is itself an epigenetic factor [8]. The structure of chromatin
affects the accessibility of genes to transcriptional machinery
and can be affected by several of the other epigenetic factors,
(Fig. 1). The best example is the compacted chromatin struc-
ture of heterochromatin that represses gene expression and that
is promoted by hypermethylation of DNA versus the less com-
pacted euchromatin that is associatedwith active gene expression
and hypomethylation of DNA [24]. The optimal genome-wide
technology for chromatin structure analysis also uses chromatin
immunoprecipitation procedures [29].

Epigenetic Transgenerational Inheritance
Epigenetic information can be passed from one generation to
another through sperm or eggs. If an organism is exposed to an
environmental factor, such as a toxicant, epigenetic changes can
be induced both in the somatic cells of the individual exposed,
as well as in the directly exposed germ cells of the organism
(Fig. 2). When epigenetic changes due to direct exposure of germ
cells are passed on to affect the subsequent generation, this is
termed multigenerational epigenetic inheritance [43]. In mam-
mals, multigenerational inheritance can occur when males or
females of a founder F0 generation are exposed to an environmen-
tal factor, and their epigenetically altered germ cells go on to form
the F1 generation (Fig. 3). When gestating, F0-generation females
are exposed to an environmental factor, then their oocytes, and
the germ cells of each developing fetus, are also directly exposed.
Therefore, the F2 generation descendants of exposed pregnant
females are still considered to be the result of multigenerational
epigenetic inheritance (Fig. 3).

Epigenetic transgenerational inheritance is defined as
“germline-mediated inheritance of epigenetic information
between generations in the absence of continued direct envi-
ronmental influences that leads to phenotypic variation” [4]. If
males or non-pregnant females of the F0 generation are exposed
to an environmental factor, then epigenetic changes seen in the
unexposed F2 generation grand-offspring are an example of epige-
netic transgenerational inheritance (Fig. 3). Similarly, if pregnant
females are exposed, then the F3 generation great-grand-offspring
are the first generation that can exhibit epigenetic transgenera-
tional inheritance [43].

The Agouti mouse model is a well-studied example of epige-
netic multigenerational inheritance. Pregnant Agouti mice that
are fed a diet rich in methyl donors show increased methylation
of a methylation-sensitive allele of the Agouti gene, leading to a
coat color change in their F1 generation offspring [44]. This coat
color change is not passed on to the F2 or the transgenerational
F3 generation. Rather, the normal process of demethylation and
remethylation that occurs during germline development resets
the methylation state of the Agouti allele to its original level, and
a more normal coat color occurs [45].

Examples of transgenerational inheritance are well established
in the literature (reviewed in [1]). Early studies were performed
by Conrad Waddington in the 1940s, who coined the term “epi-
genetic” [46]. In these studies, fruit flies (Drosophila melanogaster)
were exposed to a heat shock that induced changes in wing struc-
ture that persisted for more than 16 generations. One of the first
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Role of epigenetic transgenerational inheritance in generational toxicology 3

Figure 2: Role of germ cell in epigenetic transgenerational inheritance. The exposure of an F0 generation gestating female promotes an epigenetic
alteration in the germ cell programming of the F1 generation fetus. The F1 generation adult passes the germ cell epimutations to the zygote and early
embryo to alter the embryonic stem cell epigenetics and transcriptome to impact all developing somatic cell epigenetics and transcriptomes to
promote cell and tissue disease susceptibility. The altered germ cell epigenetics is then transgenerationally transmitted to subsequent generations.
Modified from Nilsson et al. [1]

Figure 3: Environmentally induced transgenerational epigenetic
inheritance: schematic of environmental exposure and affected
generations for both gestating female and adult male or female. The
multigenerational direct exposures are indicated in contrast to the
transgenerational generation having no direct exposure. Modified from
Nilsson et al. [1]

studies in mammals to document molecular epigenetic changes
that were associated with the transgenerational inheritance of
disease involved exposing pregnant rats to the agricultural fungi-
cide and anti-androgenic endocrine disruptor vinclozolin [47].
The F3 generation descendants of the exposed pregnant rats had
increased rates of reproductive abnormalities such as testicular
germ cell apoptosis and decreased sperm motility. This was asso-
ciated with altered DNA methylation in the F3 generation sperm.
Subsequent studies showed that vinclozolin exposure resulted in
the transgenerational inheritance of increased susceptibility to
testis, prostate, and kidney disease, pubertal onset abnormalities,
ovarian disease, mammary tumors, and an increased obesity rate
in females [48–51]. Subsequently, many environmental toxicants
have been shown to be associated with the transgenerational
inheritance of increased disease susceptibility (Table 1). These
environmental toxicants have been shown to impact a variety of
different species from plants to humans (Fig. 4). This review will
focus on the generational toxicity of these substances and their
role in epigenetic transgenerational inheritance of disease.

Phthalates are plastics-derived endocrine disrupting com-
pounds that have been shown to induce transgenerational effects
in mice (Table 1). These effects include changes to male behav-
iors and to female corticosterone levels [52] and alterations in

Table 1: Environmental toxicant induction of epigenetic transgen-
erational inheritance: generational toxicology

Toxicants References

Vinclozolin [47–51, 84, 85, 92, 95, 98, 99,
101, 103, 104]

TCDD/dioxin [68]
Plastics compounds (BPA, phthalates
DEHP and DBP)

[52–59]

Jet fuel (JP8) (hydrocarbon mixture) [62]
Pesticides and insect repellent
(permethrin and DEET)

[67]

DDT [61, 87, 92, 96, 104]
Methoxychlor [66]
Chlordecone [102]
Methylmercury [76]
Lead [105]
Arsenic [63, 70–74]
Atrazine [64, 65]
Glyphosate [86, 93]
Decabromodiphenyl ether (BDE-209) [88]
Tributyltin [60]
5-azacytidine [77]
Ethanol [75]
Benzo[a]pyrene [69]
Genistein [79]

ovarian folliculogenesis and progesterone levels in females [53].
Exposure of mice to the plastics-derived compound bisphenol A
(BPA) induced transgenerational changes in social behavior and
in the expression of brain hormones, such as vasopressin and
oxytocin [54]. Ancestral exposure to BPA also effects imprinted
gene methylation and gene expression in the brains of mice [55].
Exposure of zebrafish to BPA results in a transgenerational
increase in heart disorders [56]. Medaka fish ancestrally exposed
to BPA or ethinylestradiol, an estrogenic environmental toxi-
cant from birth control pills, show transgenerational reductions
in fertility [57]. Exposure of pregnant rats to a mixture of BPA
and phthalates was shown to increase the incidence of pubertal
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Figure 4: Environmentally induced epigenetic transgenerational inheritance. Various exposures and species investigated

abnormalities, testis disease, and ovarian disease in the trans-
generational F3 generation [58]. In the nematode worm C. elegans,
exposure to nanoplastic particles resulted in a transgenerational
decline in reproduction [59].

Tributyltin is an environmental toxicant and endocrine disrup-
tor with obesogenic properties that has been shown to induce the
transgenerational inheritance of obesity and hepatic steatosis in
mice [60]. Other toxicants known to induce epigenetic transgen-
erational inheritance of obesity in rats include dichlorodiphenyl-
trichloroethane (DDT) [61], a mixture of BPA and phthalates [58],
and jet fuel hydrocarbons [62]. In mice, exposure to arsenic was
shown to transgenerationally increase adiposity in males [63].

Pesticides are environmental toxicants and induce the trans-
generational inheritance of increased disease risk, (Table 1).
Ancestral exposure of pregnant rats to the herbicide atrazine
induced transgenerational increases in testis disease, prostate
disease, kidney disease, a lean phenotype, and an altered age
at puberty [64, 65]. DDT exposure increases obesity transgener-
ationally but also induces increased rates of testis, ovary, and
kidney pathologies [61]. The pesticide methoxychlor, marketed
as a replacement for DDT, in rats induced transgenerational
increases in kidney disease and ovarian disease, which were pri-
marily inherited through the female germ line [66]. A mixture of
the insecticide permethrin and the insect repellent N, N-Diethyl-
meta-toluamide (DEET) induced transgenerational increases in
pubertal abnormalities, testis disease, and ovarian disease [67].

Some industrial pollutants have been investigated for their
capacity to induce transgenerational increases in disease. Ances-
tral exposure of rats to dioxins can lead to increased kidney
disease in males, pubertal abnormalities in females, and ovarian
primordial follicle loss and polycystic ovary disease in F3 gen-
eration animals [68]. Exposure of zebrafish to benzo[a]pyrene, a
byproduct of combustion of organic material, results in trans-
generational increases in neurobehavioral abnormalities and body
mass index [69].

Zebrafish ancestrally exposed to arsenic show transgenera-
tional alterations in motor activity and increased anxiety-like
behaviors [70]. Exposure of pregnant rats to arsenic resulted
in transgenerational increases in testis abnormalities, reduced
sperm quality, decreased adult body weight, and genotoxicity
of white blood cells [71, 72], associated with DNA methylation
changes and altered transcription of the IGF2 and H19 genes in
testis [72]. Arsenite exposure of the nematode worm C. elegans

resulted in alterations in sugar metabolism for six subsequent
generations [73] and with decreased reproductive brood size for
three generations [74].

Increased transgenerational disease has been associated with
other environmental toxicants, (Table 1). Exposure of pregnant
mice to ethanol vapor induces transgenerational neurological
changes in the F3 generation that resemble those of Fetal Alcohol
Spectrum Disorders [75]. Changes include altered ectopic intra-
neocortical connectivity and upregulation of Rzrβ and Id2 gene
expression in the neocortex. Zebrafish exposed to methylmercury
have unexposed descendants (F2 generation) that exhibit hyper-
activity and a visual deficit [76]. In the crustacean Daphnia magna,
exposure to the toxicant 5-azacytidine results in decreased body
length and reduced levels of DNA methylation in non-exposed
subsequent generations [77]. Endocrine disrupting chemicals can
be present as natural ingredients in foods. An example is genis-
tein, which is an estrogenic substance found in legumes and soy
[78]. Treatment of fertilized quail eggs with genistein resulted in
a transgenerational change in the age of sexual maturity of birds
three generations later [79].

Etiology of Epigenetic Transgenerational
Inheritance
In order for an environmental exposure or toxicant to induce
epigenetic transgenerational inheritance, two conditions must
be met. First, exposure to a toxicant must result in epigenetic
changes in the germ cells (sperm or eggs) since it is the germ
cells that carry molecular information to subsequent generations
(Fig. 2). Second, the epigenetic changes induced in transgenera-
tional generation animals must cause changes in gene expression
in these animals or else no phenotypic changes will occur.

There are two periods during normal development when DNA
methylation patterns are largely erased and reset. This epige-
netic reprograming of DNA methylation occurs both immediately
after fertilization in the early embryo and in developing germ
cells at the time of gonadal sex determination [80]. This pro-
cess allows embryonic stem cells to develop by removing epi-
genetic constraints to pluripotency. The well-studied exception
to this is the case of imprinted genes, which retain their epi-
genetic DNA methylation pattern in a parent-of-origin allelic
manner [81, 82]. In situations where environmentally induced
epigenetic changes are inherited, some retention of these DNA
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methylation patterns is thought to occur in an imprinted gene-
like manner [83] (Fig. 2). Then epigenetic changes present in germ
cells can transmit an altered epigenome to all cells of the sub-
sequent developing embryo, potentially resulting in changes to
gene expression that lead to an altered phenotype and disease [84]
(Fig. 2).

There are many examples of exposure to toxicants leading to
transgenerational epigenetic changes in germ cells, (Fig. 4 and
Table 1). Altered DNA methylation of a region of DNA is termed a
Differential DNA Methylated Region (DMR). If F0 generation preg-
nant rats were treated with vinclozolin, then sperm from the
transgenerational F3 generation has been shown to have DMRs
[48, 85]. Similarly, DMRs were found in transgenerational sperm
after ancestral exposure of rats to a mixture of plastic-derived
compounds (phthalates and BPA) [58], the dioxin TCDD [68], jet
fuel hydrocarbons (JP8) [62], the herbicides atrazine [65] and
glyphosate [86], the pesticidesmethoxychlor [66] andDDT [61, 87],
a mixture of the insecticide permethrin and the insect repellent
DEET [67], and the flame retardant BDE-209 [88]. In zebrafish,
transgenerational spermDMRs are found after ancestral exposure
to methylmercury [76].

Other epigenetic factors, in addition to DNA methylation, can
be altered in sperm transgenerationally. During spermatogene-
sis, the histones around which DNA is wrapped are replaced by
protamines to allow DNA to be tightly compacted into the small
sperm head [89]. However, there are 1–10% of histones that are
retained in the sperm of most mammals [90]. These retained his-
tones are thought to help regulate some of the early gene expres-
sion processes in the resulting embryos [91]. Studies in rats found
that additional histone retention sites were present in the F3 gen-
eration sperm after pregnant F0 generation animals were treated
with vinclozolin, DDT, glyphosate, or atrazine [64, 92, 93]. There-
fore, histone retention in sperm is another epigenetic mechanism
for transgenerational inheritance (Fig. 2). Post-translational mod-
ification of those histones retained in sperm is another epigenetic
factor that can mediate transgenerational inheritance of disease.
As an example, changes to methylation of histone 3 lysine 4
(H3K4me2) inmouse sperm have been associated with a transgen-
erational decrease in pup survival and impaired development [94].
Exposure of pregnant rats to the toxicants vinclozolin or DDT both
resulted in sites of altered methylation of lysine 27 of histone 3
(H3K27me3) in transgenerational F3 generation sperm [92, 95, 96].

The expression of ncRNAs in sperm is another epigenetic fac-
tor that can be altered after exposure to endocrine disruptors
[97] (Fig. 2). In studies in rats, ancestral exposure to vinclozolin
induced changes in the levels of several sperm ncRNAs, including
tRNA-derived small ncRNAs, namely 5′ halves of mature tRNAs,
and micro-RNAs (miRNAs) [95, 98]. Similar results were found
transgenerationally after ancestral exposure to DDT [96]. Trans-
generational changes in ncRNA expression have been shown to
occur early in germ cell development, asmice ancestrally exposed
to vinclozolin have altered miRNA expression in primordial germ
cells [99].

The above epigenetic factors found in sperm likely act together
to pass altered phenotypes to subsequent generations [97]. Expo-
sure to either vinclozolin or DDT induces concurrent transgen-
erational changes to the DNA methylation, histone retention,
and ncRNA in the sperm epigenome [95, 96]. In these cases,
there is evidence that RNA-directed DNA methylation and DNA
methylation-directed histone retention are a part of epigenetic
transgenerational inheritance [100]. The combined actions of the
epigenetic factors in germ cells provide an epigenetic mechanism

by which exposure to endocrine-disrupting compounds can pro-
mote the inheritance of pathologies across generations.

Epigenetic changes passed through germ cells to subsequent
generations do not themselves alter phenotype. Phenotypic
changes are the result of changes in gene expression. Transgen-
erational increases in kidney or prostate disease, or in tumor
development, are the result of abnormal gene expression in the
affected somatic cells. Germ cells with an altered epigenome pro-
duce embryonic stem cells that then promote epigenetic changes
in all somatic cells [1, 84] (Fig. 2). These somatic cell epige-
netic changes could then promote changes in gene expression
that alters the phenotypes of these cells, including promoting
an increased susceptibility to develop disease [101]. Therefore,
in a transgenerational animal, all cell types have an altered
epigenome and transcriptome. Those cell types sensitive to this
alteration will have a susceptibility to develop diseases.

Several examples of transgenerational changes to gene
expression following ancestral exposure to toxicants have been
reported. After gestatingmice were exposed to the organochlorine
insecticide chlordecone, there were transgenerational changes
in the transcriptome of prostates from F3 generation animals
[102]. This was accompanied by an increased prostatic intraep-
ithelial neoplasia phenotype and by histone H3K4 trimethylation
(H3K4me3) and H3K27 trimethylation (H3K27me3) changes in
somatic prostate cells. Similarly, ancestral exposure to vinclo-
zolin in rats resulted in transgenerational changes to the prostate
epithelial cell transcriptome and DNA methylation, associated
with later-life development of prostate disease [103]. Ancestral
exposure to vinclozolin also resulted in transgenerational changes
to the transcriptome and epigenome of testicular Sertoli cells,
associated with male infertility [84]. In female rats, both DDT and
vinclozolin ancestral exposure induced transcriptome changes in
the granulosa cells of the ovary, consistent with later life devel-
opment of polycystic ovarian disease and reduced oocyte number
[104]. This was accompanied by sites of altered DNA methylation
and changes of expression of ncRNAs in the granulosa cells. In
zebrafish, exposure of developing F0 generation embryos to lead
resulted in F2 generation changes in brain gene expression for
genes involved in physiological processes such as synaptic func-
tion and plasticity, neurogenesis, endocrine homeostasis, and
epigenetic modification [105]. Ancestral exposure of zebrafish to
arsenic resulted in transgenerational changes in brain-derived
neurotrophic factor expression in the brain [70]. Ancestral arsenic
exposure in C. elegans nematode worms decreased somatic cell
mRNA expression of the LSD/KDM1 and spr-5 genes [74]. There-
fore, the toxicant-induced epigenetic transgenerational inheri-
tance of pathology is due to somatic cell epigenetic and tran-
scriptome alterations that generate the phenotypes observed
(Fig. 2).

A more comprehensive study of transgenerational alterations
to gene expression was performed using F3 generation rats ances-
trally exposed to vinclozolin [101]. The transcriptomes of 11 dif-
ferent organ tissues in male and female rats were evaluated and
compared to those same organ tissues in F3 generation control
rats ancestrally treated with vehicle. Transgenerational changes
to gene expression were found in all tissues evaluated. There was
minimal overlap in the genes affected between tissues, but there
was considerable overlap in the physiological pathways affected
by these gene expression changes. For example, both prostate and
liver tissues were enriched for genes in transcription and focal
adhesion processes, but the specific genes altered were not the
same in each tissue [101]. Across the genome of these animals, it

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/article/8/1/dvac001/6529222 by guest on 10 N

ovem
ber 2022



6 Environmental Epigenetics, 2022, Vol. 00, No. 00

was found that there existed statistically over-represented clus-
ters of gene expression changes and that these regions, termed
Epigenetic Control Regions (ECR), contained sites of altered DNA
methylation (DMRs) and long ncRNA expression [95, 106]. The
hypothesis is that the genes within an ECR are epigenetically reg-
ulated as a block [107]. Therefore, in one organ tissue, such as the
liver, those genes that would normally be expressed from an ECR
in liver cells would have altered expression, while in the prostate,
a different set of genes from that same ECR (those normally
expressed in the prostate) would have altered expression. These
investigations all support the proposed mechanism of toxicant-
induced transgenerational epimutations altering gene expression
and ultimately leading to phenotypic effects, most importantly
increased susceptibility for disease (Fig. 2).

Generational Toxicology
The existence of generational toxicological processes, in which
the effects of toxicant exposures are seen several generations
later, suggests regulatory decisions about toxicants in our society
should now consider potential effects across generations. The
current regulatory paradigm of evaluating experiments, where
pregnant animals are treated and their direct offspring are eval-
uated for negative effects, may not go far enough. It is possible,
with epigenetic transgenerational inheritance, that increases in
disease are not seen until later generations. When pregnant F0
generation rats were treated with the herbicide glyphosate, no
serious abnormalities were seen in the directly exposed F1 gen-
eration. However, dramatic increases in prostate disease, obesity,
kidney disease, ovarian disease, and parturition (birth) abnormal-
ities were seen in the F2 and F3 generations [86, 93]. Similarly, rats
ancestrally exposed to the herbicide atrazine showed only a mild
decrease in size in the F1 generation, but the F2 and F3 generations
were found to have increased frequency of testis disease, mam-
mary tumors, early onset puberty, motor hyperactivity, and a lean
phenotype compared to controls [65]. The epigenetic transgen-
erational inheritance of abnormalities and increased incidence
of disease after ancestral exposure to environmental toxicants
should be of concern of the public and regulatory agencies for
human health reasons [108].

In considering the experimental approach for regulatory agen-
cies, animal studies should include breeding to the F3 generation
to assess generational toxicity. An alternate approach would be to
assess the epigenetic changes in the germ cells from the F1 gener-
ation animals. In the event germ cell epimutations exist, then the
potential for generational toxicity is present. This would require
additional generations to be obtained for epigenetic and pathol-
ogy analysis. Although any epigenetic factor could be assessed,
DNA methylation has been shown to be robust and one of the key
epigenetic processes to assess. Genome-wide procedures such as
bisulfite sequencing or MeDIP are optimal to assess germline epi-
genetic impacts. Therefore, the technology and previous literature
demonstrate generational toxicity needs to be considered in the
field of toxicology.

Conclusions
Research into environmentally induced epigenetic transgenera-
tional inheritance has provided evidence for transgenerational
inheritance of epimutations and phenotype changes in a wide
variety of organisms [109, 110], (Fig. 4). Exposure to toxicants can
induce epigenetic changes in germ cells that are passed to sub-
sequent generations. When epimutations in the resulting embryo

become imprinted-like and escape the normal processes of epi-
genetic reprogramming that occur during embryogenesis, then
the epigenome of the embryonic stem cells is altered, which
impacts all the cell types of the developing fetus and adult (Fig. 2).
The altered epigenome, which can change gene expression and
phenotype in all cell types in the body, increases disease suscep-
tibility later in life. These epigenetic changes are passed to that
organism’s germ cells, which can be inherited by the subsequent
generation. If epigenetic and phenotypic changes are passed to a
generation that was never exposed to the toxicant, then epigenetic
transgenerational inheritance has resulted in generational toxi-
cology [1]. Epigenetic transgenerational inheritance of increased
susceptibility to disease is an example of generational toxicity,
in which toxicants affect non-exposed future generations. Gov-
ernmental policies regulating toxicant exposure currently do not
take generational effects into account. Future toxicity testing and
regulations need to consider the effects of epigenetic transgener-
ational inheritance of disease and generational toxicology. A new
approach that takes into consideration generational toxicology
will be needed to protect our future populations.
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Spring	2023	–	Epigenetics	and	Systems	Biology	
Lecture	Outline		(Systems	Biology)	
Michael	K.	Skinner	–	Biol	476/576	
Weeks	11	and	12	(March	2023)	
	

Environmental	Epigenetics	

- Environmental	Impacts	on	Biology	
- Environment	and	Phenotype	Variation	
- Environmental	Factors	
- Environmental	Epigenetics	and	Twin	Studies	
- Early	life	Exposures	and	Developmental	Effects	
- Nutrition	and	Epigenetics	
- Environmental	Toxicants	and	Epigenetics	
- Environmental	Induced	Epigenetic	Transgenerational	Inheritance		

	
	

Required	Reading	
	

Nilsson	EE,	Ben	Maamar	M,	Skinner	MK.	Role	of	epigenetic	transgenerational	inheritance	in	
generational	toxicology.	Environ	Epigenet.	2022	Feb	16;8(1):dvac001.	(PMID:	
35186326)	

	
	

Books	(Reserve	in	Library)	
	

Scott	F.	Gilbert	and	David	Epel	(2009)	Ecological	Developmental	Biology.	Sinauer	
Associates	Inc.		Sunderland,	Massachusetts.		
	
E-Book:		Craig	and	Wong	(2011)	Epigenetics:	A	Reference	Manual.	Caister	Academic	Press.		
ISBN-13:	978-1904455882.	
	

Spring	2023	–	Epigenetics	and	Systems	Biology	
Discussion	Session		(Environmental	Epigenetics)	
Michael	K.	Skinner	–	Biol	476/576	
Week	11	(March	23)	
	

Environmental	Epigenetics		

Primary	Papers	
1. Duncan	GE,	et	al.	(2022)	Sci	Rep.	12(1):20166.	(PMID:	36424439)	
2. McGowan	et	al.,	(2009)	Nat	Neurosci.	12(3):342-8.	(PMID:	19234457)	
3. Burdge et al., (2009) J Nutr. 139(6):1054-60. (PMID: 19339705)	

	
Discussion	

	
Student	25	–	Ref	#1	above	

• Why	are	twin	studies	useful	for	epigenetic	studies?	
• Does	the	data	support	an	environmental	impact	on	the	human	epigenome	and	

disease?	
• What	is	the	application	of	these	epigenetic	changes?	

	
Student	26	–	Ref	#2	above	

• What	mechanism	is	proposed	for	early	life	effects	on	brain	function?	
• Is	NGF1	the	only	gene	effected?	
• What	is	the	impact	of	these	epigenetic	changes?	

	
Student	27	–	Ref	#3	above	

• How	does	folic	acid	effect	epigenetics?	
• Does	diet	effect	epigenetic	programming?	
• What	happens	if	you	have	too	much	folate?	

	
	

Spring	2023	–	Epigenetics	and	Systems	Biology	
Discussion	Session		(Environmental	Epigenetics)	
Michael	K.	Skinner	–	Biol	476/576	
Week	12	(March	30)	
	

Environmental	Epigenetics		

Primary	Papers	
1. Ben	Maamar,	et	al.	(2018)	Environmental	Epigenetics	26;4(2):dvy010,	1-19.		(PMID:	

29732173)	
2. Ben	Maamar,	et	al.	(2019)	Developmental	Biology	445:	280-293.	(PMID:	30500333)	
3. Cao	N,	et	al.	(2022)	Circulation.	2022	Oct	4;146(14):1082-1095.	(PMID:	36004643)	

	
	

Discussion	
	
Student	28	–	Ref	#1	above	

• What	is	the	experimental	design?	
• What	epigenetic	technologies	and	alterations	were	investigated?	
• What	is	the	primary	conclusion	of	the	study?	

	
Student	29	–	Ref	#2	above	

• What	is	the	experimental	design?	
• What	were	the	developmental	origins	of	the	sperm	epimutations?	
• What	conclusions	on	the	development	of	the	sperm	epimutations	are	made?		

	
Student	30	–	Ref	#3	above	

• What	exposure	was	used?	
• What	transgenerational	disease	was	observed?	
• What	treatment	inhibited	the	transgenerational	effect?		
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Environmental Epigenetics
(Phenotypic Variation)
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Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. 
Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M. 
Plant Physiol Biochem. 2022 May 15;179:10-24. 

Brief mechanisms of heat stress memory in plants. 

Outline of various plant responses to the different abiotic stressors to 
improve stress management that indicate priming and stress memory.

Cold stress memory response in plants. 

Role of RD29Btranscript mechanism in drought stress memory. 

Adapting to climate with limited genetic diversity: Nucleotide, DNA methylation and 
microbiome variation among populations of the social spider Stegodyphus dumicola.
Aagaard A, Liu S, Tregenza T, Braad Lund M, Schramm A, Verhoeven KJF, Bechsgaard J, Bilde T. Mol Ecol. 
2022 Nov;31(22):5765-5783. 
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Environmental Epigenetics
(Historic Observation)
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An Epigenetic Perspective on the Midwife Toad Experiments of Paul Kammerer (1880-1926).
J Exp Zool B Mol Dev Evol. 2017 Jan;328(1-2):179-192. 
Vargas AO, Krabichler Q, Guerrero-Bosagna C.
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Environmental Impact on Biology

• Regional Disease Frequencies

• Low Frequency of Genetic Component of Disease (GWAS)

• Increases In Disease Frequencies

• Identical Twins and Variable Disease Frequency

• Environmental Exposures and Disease

• Evolutionary Regional Differences and Rapid Induction

Environmental Epigenetics
(Twin Studies)

Twin methodology in epigenetic studies.
J Exp Biol. 2015 Jan 1;218(Pt 1):134-9.
Tan Q, Christiansen L, von Bornemann Hjelmborg J, Christensen K.

Epigenetics of discordant monozygotic twins: implications for disease.
Castillo-Fernandez JE, Spector TD, Bell JT.
Genome Med. 2014 Jul 31;6(7):60.
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Changes in the pattern of DNA methylation 
associate with twin discordance in 

systemic lupus erythematosus.

Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, 
Rodriguez-Ubreva J, Berdasco M, Fraga MF, O'Hanlon TP, Rider LG, 

Jacinto FV, Lopez-Longo FJ, Dopazo J, Forn M, Peinado MA, Carreño L, 
Sawalha AH, Harley JB, Siebert R, Esteller M, Miller FW, Ballestar E.

Genome Res. 2010 Feb;20(2):170-9. 
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Identical twins doubly exchanged at birth: a case report of genetic and 
environmental influences on the adult epigenome.
Segal NL, Montoya YS, Loke YJ, Craig JM.
Epigenomics. 2017 Jan;9(1):5-12.

Genome-wide analysis of sperm DNA methylation from monozygotic twin bulls.
Reprod Fertil Dev. 2016 Jan 12 [Epub ahead of print]
Shojaei Saadi HA, Fournier É, Vigneault C, Blondin P, Bailey J, Robert C.
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Association between depression and epigenetic age acceleration: A co-twin control study. 
Liu C, Wang Z, Hui Q, Goldberg J, Smith NL, Shah AJ, Murrah N, et al. 
Depress Anxiety. 2022 Jun 27. doi: 10.1002/da.23279. Online ahead of print. 

BMI is positively associated with accelerated epigenetic aging in twin pairs discordant for body mass index
Lundgren S, Kuitunen S, Pietiläinen KH, Hurme M, et al.
J Intern Med. 2022 Oct;292(4):627-640. 

Body mass index (BMI) associates with age 
acceleration

Difference in body mass index (BMI) is related 
with the difference in GrimAge within twin pairs.

Environmental Epigenetics
(Early Life History Exposures)
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Epigenetic regulation of pediatric and neonatal immune responses. 
Bermick J, Schaller M.
Pediatr Res. 2022 Jan;91(2):297-327.

In utero exposure to endocrine-disrupting chemicals, maternal factors and alterations in the 
epigenetic landscape underlying later-life health effects. 
Lite C, Raja GL, Juliet M, Sridhar VV, Subhashree KD, Kumar P, Chakraborty P, Arockiaraj J. 
Environ Toxicol Pharmacol. 2022 Jan;89:103779. 

Global DNA methylation dynamics. Susceptibility of epigenetic programming process 
and adult diseases. 

Environmental Epigenetics
(Cell Culture Effects)

Long-term programming of postnatal growth and physiology can be induced irreversibly during the preimplantation period of
development by adverse preconceptional environment in vitro (for example suboptimal in vitro culture).
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Evaluation of epigenetic marks in 
human embryos derived from IVF and 

ICSI.

Santos F, Hyslop L, Stojkovic P, Leary C, Murdoch A, Reik W, Stojkovic 
M, Herbert M, Dean W.

Hum Reprod. 2010 Sep;25(9):2387-95. 
Epigenetic lineage asymmetry is conserved in human embryos. (A) Assessment of epigenotypes in blastocysts arising from ART procedures. 
Blastocysts generated by IVF (n = 14) or ICSI (n = 13) were stained and are portrayed in the discontinuous plot from double normal to double 
abnormal scores. In contrast to other embryo stages obtained throughout the study, blastocysts showed an overwhelmingly significant positive 
correlation with normal epigenotype scores (Table III, P < 0.001). (B) High morphology score expanded blastocysts were labelled for a lineage 
identification marker, NANOG, followed by staining for 5MeC. ICM cells were consistently hypermethylated and positive for NANOG. Co-
localisation software, Image J, was used to analyse potential association between the epigenetic mark and the pluripotency factor. Bright yellow 
cells identified most, but not all, of the cells of the ICM, highlighting the intrinsic heterogeneity associated with this compartment. In the 
expanded blastocyst NANOG is highly specific for the ICM and hence is justifiably used as a lineage marker. 

Environmental Epigenetics
(Early Life History Brain Effects)
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High licking and grooming of rat pups increases 
serotonin tone in the brain.

Acting via 5-HT7 receptors and cyclic AMP, this 
increases expression of NGF1-A, which binds to 
and activates the promoter of the Nr3c1 gene. 
The pups also show demethylation of the Nr3c1 
promoter, which facilitates long-term gene 
expression. The result is high levels of 
hippocampal glucocorticoid receptor expression, 
leading to enhanced feedback inhibition and thus 
to low cortisol levels in response to stress. 
Notably, females with high levels of glucocorticoid 
receptor expression show high licking and 
grooming behaviors on their offspring, and thus 
intergenerational transmission of epigenetic 
regulation of the Nr3c1 gene.

The HPA axis is under the excitatory control of 
the amygdala and inhibitory control of the 
hippocampus.

In the hypothalamus, the paraventricular 
nucleus releases CRF, which is transported to 
the anterior pituitary, where it causes the 
release of ACTH into the blood stream. ACTH 
stimulates the adrenal cortex to synthesize and 
release the glucocorticoids cortisol (humans) or 
corticosterone (rodents). Glucocorticoids feed 
back at the level of the hippocampus, 
hypothalamus and pituitary to dampen excess 
activation of the HPA axis.

Lasting epigenetic influence of early-
life adversity on the BDNF gene.

Roth TL, Lubin FD, Funk AJ, Sweatt JD.

Biol Psychiatry. 2009 May 1;65(9):760-9.

Figure 1. Infants experienced an adverse 
caregiving environment. (A) Qualitative 
assessment of the percent occurrence of 
pup-directed behaviors in the 
maltreatment condition indicates that pups 
experienced predominately abusive 
behaviors, which resulted in considerable 
audible pup vocalization. (B) In sharp 
contrast, pups experienced significant 
amounts of normal maternal care 
behaviors in the cross-fostered maternal 
care condition. Statistical analyses of the 
maternal behaviors (abusive vs. normal 
care) are provided in Supplement 3. 
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Figure 4. Methylation analysis of individual CpG dinucleotides (BDNF exons IV) from the PFC of adults with a history of maltreatment or normal maternal care. 
Top panel: Location of 12 CpG sites relative to the transcription initiation site (bent arrow) of exon IV. Note that this region of exon IV contains a cyclic adenosine 
monophosphate (cAMP) response element site (TCACGTCA) for transcription factor cAMP response element binding protein, which encompasses CpG site 1. 
Sequencing primer pair positions are indicated by the left and right arrows, and primer sequences can be found in Supplement 2. Bottom panel: Bisulfite DNA 
sequencing analysis indicates that maltreatment increases methylation of all CpG sites within the examined region of exon IV DNA in the adult PFC [two-way 
analysis of variance (ANOVA) with Bonferroni post hoc tests; significant effect of infant condition F = 46.62, p < .0001]. n = 7–8/group; *p values significant 
versus control subjects (p ≤ .05). Error bars represent SEM. Male and female adults were derived from seven mothers. Abbreviations as in Figure 2. 

Epigenetic regulation of the 
glucocorticoid receptor in human brain 

associates with childhood abuse.

McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonté B, 
Szyf M, Turecki G, Meaney MJ.

Nat Neurosci. 2009 Mar;12(3):342-8.
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Suderman M, et al. (2012) Conserved epigenetic sensitivity to early life experience in the rat and human 
hippocampus. Proc Natl Acad Sci U S A. 16;109 Suppl 2:17266-72

Effect of stress on human biology: Epigenetics, adaptation, inheritance, and social significance.
J Cell Physiol. 2018 Mar;233(3):1975-1984. 
Denhardt DT.

Role of epigenetic regulation as a central regulatory interface that translates the relationship between brain and behavior into patterns
of gene expression. Different environmental factors such as nutrition, physical and mental activity, maternal care and early life
experience, exposure to chronic stress, chemicals and radiation, and pathogens can alter the epigenetic pattern in the brain. These
processes in turn may either delay or accelerate neurodegenerative processes in the nervous system and contribute to the onset and
progression of neurological conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and
multiple sclerosis (MS).
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Stress might be a main contributing factor to enhanced risk and accelerated progression of neurodegenerative
diseases. The intermediate link between stress and neurodegeneration represent epigenetic components, such as
DNA methylation, chromatin remodeling and histone modification, and non-coding RNAs in the nervous system.

Environmental Epigenetics
(Nutrition Effects)
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Phenotypic variation in Avy mice, 
Avy allele structure, and complex 
CpG methylation at the IAP.

A. Phenotypes of isogenic Avy

littermates range from pure yellow 
and obese (left) through mottled 
yellow/agouti to lean fully agouti, 
called pseudoagouti (right). B. 
Schematic of the Avy locus, with the 
sequence of the amplified region, 
which includes portions of the 5′LTR 
and pseudoexon 1A (−240 to +92 
relative to the cryptic promoter, 
which is marked by an arrow). The 
start point of Avy transcription [11] is 
marked by an arrow. CpG 
dinucleotides are displayed in red. C. 
Representative bisulphite allelic 
sequencing profiles of individual 
alleles from yellow and pseudoagouti 
mice. Each single row represents a 
single allele, and each box a CpG 
(white: unmethylated; black: 
methylated).
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Epigenetic transitions play crucial roles in development and in the differentiation of stem cells and primordial germ cells.
Concordantly, the regulating enzymes are generally highly expressed in these pluripotent cells6. For example, the de novo
methyltransferases, DNMT3A and DNMT3B, are highly expressed in the early embryonic cells in which de novo methylation is
acquired. Low amounts of external methyl donor groups from dietary sources can reduce the concentrations of the universal methyl
donor, S-adenosylmethionine (SAM), and can readily affect de novo DNA methylation. Also, aberrant gains of methylation may occur
in early embryonic cells owing to other external triggers. In adult cells, the maintenance of DNA methylation is performed mainly by
the maintenance methyltransferase, DNMT1, in a process that seems less sensitive to diet-induced changes in the abundance of
methyl donors.

Increased cancer incidence in Holocaust survivors and the implications for survivors of other extreme events.
Expert Rev Anticancer Ther. 2018 Nov;18(11):1059-1062. 
Keinan-Boker L.
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The metabolic conditioning of obesity: A review of the pathogenesis of obesity and the 
epigenetic pathways that "program" obesity from conception. 
Rajamoorthi A, LeDuc CA, Thaker VV.
Front Endocrinol (Lausanne). 2022 Oct 18;13:1032491. 

Differential pathways to obesity in 
response to maternal undernutrition vs 
overnutrition. Pathways to obesity in children in response to 

maternal overnutrition. 

Environmental Epigenetics
(Toxicant Exposures)

Environmental Deflection: The Impact of Toxicant Exposures on the Aging 
Epigenome.
Kochmanski J, Montrose L, Goodrich JM, Dolinoy DC.
Toxicol Sci. 2017 [Epub ahead of print]
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Developmental exposure to methylmercury and ADHD, a literature review of epigenetic studies. 
Ke T, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Santamaria A, Aschner M. 
Environ Epigenet. 2021 Nov 22;7(1):dvab014. 

Potential impacts of developmental MeHg exposures on dopamine neurotransmission. The 
developing brain of fetus is susceptible to environmental exposure to neurotoxins. The primary 
pathway for dopamine synthesis involves several enzymes including TH and DDC. For the 
dopamine neurotransmission, MeHg exposure can alter the epigenetic regulation of the TH gene 
and potentiate the effect of dopamine neurotransmission agonists such as amphetamine [55–58]. 
TH, tyrosine hydroxylase; L-DOPA, L-3,4-dihydroxyphenylalanine; DDC, DOPA decarboxylase; 
VMAT, vesicular monoamine transporter 2; DAT, dopamine transporter
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Epigenetic programming alterations in alligators from environmentally 
contaminated lakes.
Gen Comp Endocrinol. 2016 Nov 1;238:4-12. 
Guillette LJ Jr, Parrott BB, Nilsson E, Haque MM, Skinner MK.

DMR numbers and overlap. (A) The comparison AP vs. WO and MI vs. WO with p < 10−4 for single 
oligo probe (1+), two adjacent oligo probes (2+) and ⩾3 adjacent oligo probes (3+) detection. (B) 
Venn diagram overlap for single (1+) probe overlap. The DMR had to have overlapping sequence at 
the same genomic locations to be considered overlapped.
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Knezovich JG, Ramsay M. (2012) The effect of preconception paternal alcohol exposure on epigenetic remodeling 
of the h19 and rasgrf1 imprinting control regions in mouse offspring. Front Genet; 3:10.

Estrogenic 
Endocrine 
Disruptors
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Untoward Effects of Micro- and Nanoplastics: An Expert Review of Their Biological Impact and Epigenetic 
Effects. 
López de Las Hazas MC, Boughanem H, Dávalos A.
Adv Nutr. 2022 Aug 1;13(4):1310-1323. 
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Ah Receptor-Dependent Target Gene Expression
(simplified view)
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Stoccoro A, Karlsson HL, Coppedè F, Migliore L. (2012) Epigenetic effects of nano-sized materials.
Toxicology. 2012 Dec 10. doi: 10.1016/j.tox.2012.12.002. [Epub ahead of print]
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The Yin and Yang of epigenetics in the field of nanoparticles. 
Musolino E, Pagiatakis C, Serio S, Borgese M, Gamberoni F, Gornati R, Bernardini G, Papait R.
Nanoscale Adv. 2022 Jan 10;4(4):979-994. 

Nanotoxicity at the epigenetic levelThe epigenetic code

Environmental Epigenetics in Soil Ecosystems: Earthworms as Model Organisms.
Šrut M. 
Toxics. 2022 Jul 20;10(7):406. 

Epigenomics as Potential Tools for Enhancing Magnitude of Breeding Approaches for 
Developing Climate Resilient Chickpea. 
Chandana BS, Mahto RK, Singh RK, Ford R, Vaghefi N, Gupta SK, Yadav HK, Manohar M, Kumar R.
Front Genet. 2022 Jul 22;13:900253. 
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“Epigenetics and Systems Biology”

Spring 2023 (Odd Years)
Biol 476/576 
Schedule/Lecture Outline –

Spring	2023	–	Epigenetics	and	Systems	Biology	
Lecture	Outline		(Systems	Biology)	
Michael	K.	Skinner	–	Biol	476/576	
Weeks	11	and	12	(March	2023)	
	

Environmental	Epigenetics	

- Environmental	Impacts	on	Biology	
- Environment	and	Phenotype	Variation	
- Environmental	Factors	
- Environmental	Epigenetics	and	Twin	Studies	
- Early	life	Exposures	and	Developmental	Effects	
- Nutrition	and	Epigenetics	
- Environmental	Toxicants	and	Epigenetics	
- Environmental	Induced	Epigenetic	Transgenerational	Inheritance		

	
	

Required	Reading	
	

Nilsson	EE,	Ben	Maamar	M,	Skinner	MK.	Role	of	epigenetic	transgenerational	inheritance	in	
generational	toxicology.	Environ	Epigenet.	2022	Feb	16;8(1):dvac001.	(PMID:	
35186326)	

	
	

Books	(Reserve	in	Library)	
	

Scott	F.	Gilbert	and	David	Epel	(2009)	Ecological	Developmental	Biology.	Sinauer	
Associates	Inc.		Sunderland,	Massachusetts.		
	
E-Book:		Craig	and	Wong	(2011)	Epigenetics:	A	Reference	Manual.	Caister	Academic	Press.		
ISBN-13:	978-1904455882.	
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Environmental Epigenetics
(Transgenerational Inheritance)

Epigenetic Transgenerational 
Inheritance Definition

• Germ line transmission of epigenetic marks in 
the absence of any continued direct 
environmental exposure to promote the 
generational inheritance of disease and 
phenotypic variation

• Distinct from direct exposure somatic or germ 
line epigenetic alterations not permanently 
programmed in the germ line

Transgenerational Inheritance of Disease

Gestating 
Female 

(F0)

Environment
al Exposures

Germline
Epimutations

(F1)

(F2)

(F3)
Transgeneration

al Inheritance

- Vinclozolin is a systemic fungicide (e.g. Wine Industry) 

- Vinclozolin and its metabolites are anti-androgenic

- Late embryonic/early postnatal exposure causes abnormal   

reproductive tract development and gonadal function

Model Endocrine Disruptor: Vinclozolin 



31

Vinclozolin Effects on Spermatogenic Cell Apoptosis
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Environmental Compound Specificity

(Exposure Groups)      ( Direct)  F1             F3  (Transgenerational)
A. Vinclozolin [agricultural fungicide] Yes Yes

B. Flutamide [anti-androgenic pharmaceutical] Yes No

C. TCDD/Dioxin  (industrial pollutant) Yes Yes

D. Plastics Compounds [Bisphenol-A BPA, Phthalate-DEHP & DBP] Yes Yes

E. Jet Fuel [JP8]  (Hydrocarbon Mixture) Yes Yes

F. Pesticide & Insect Repellent [Permethrin & DEET] No Yes

G. DDT(pesticide) Yes Yes 

H. Methoxychlor (pesticide, replace DDT) Yes Yes

I. Mercury  (Industrial pollutant) Yes Yes

J. Atrazine  (agricultural herbicide) No Yes

K. Glyphosate (pesticide herbicide) No Yes

!"#$%&'(')*+,+%-'

!" #"

Polycystic Ovarian Disease

0

25

50

75

100

1/29

4/25

16/32

4/27

0/24
1/18

Female Obesity

***

0

25

50

75

100

7/31

23/30

16/30

3/29

0/10

4/22

Male Obesity

***

*

F3
  L

D DDT

F3
  L

D DDT

F1
 LD

 DDT

F1
 LD

 DDT

F3
  L

D DDT

Non-obese Obese

DDT Induced Transgenerational Obesity

TRANSGENERATIONAL DISEASE ETIOLOGY

MALE FEMALE

§ Spermatogenic Defect 
(>90%)

§ Male infertility (complete 
~10%, severe 20%)

§ Prostate disease (~50%)

§ Kidney disease (~30-40%)

§ Increase in mammary tumor 
formation (~10-20%)

§ Behavior (Mate Preference, 
Anxiety, & Stress) (>90%)

§ Obesity (~10-50%)

§ Pre-eclampsia-like during 
late pregnancy (~10%)

§ Premature Ovarian Failure 
POF (>90%)

§ Ovarian Polycystic Ovarian 
Disease (>90%)

§ Female Premature 
Pubertal Onset (>90%)
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ENVIRONMENTALLY INDUCED EPIGENETIC 
TRANSGENERATIONAL INHERITANCE
Environmental Toxicants

Other Types Exposures

Plants Flies Worms Fish Rodents Pigs HumansBirds

a

Female / Male
Environmental Exposure

Gestating Female
Environmental Exposure

F0

F1
F2

F0

F1

Multigenerational 
Exposures

(Intergenerational
)

F2 Generation 
First Unexposed

F3 Generation 
First Unexposed

Germline
Germline of F1

Environmentally induced transgenerational epigenetic inheritance:  Schematic of environmental exposure and affected generations.
Skinner (2008) Repro Tox.

Transgenerational 
Inheritance

M
et

hy
la

tio
n 

le
ve

ls

F1 generation F2 generation
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Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: 
Generational Toxicology
Kubsad D, Nilsson EE, King SE, Sadler-Riggleman I, Beck D, Skinner MK.
Sci Rep. 2019, 9(1):6372. 

Transgenerational Disease

Male Female

McBirney M, King SE, Pappalardo M, Houser E, Unkefer M, Nilsson E, Sadler-Riggleman I, Beck D, 
Winchester P, Skinner MK. (2017) Atrazine induced epigenetic transgenerational inheritance of disease, 
lean phenotype and sperm epimutation pathology biomarkers. PLoS One. 12(9):e0184306. 

Lack Direct Exposure Pathology (F1)

Transgenerational Exposure Pathology (F3)

Need to Examine Transgenerational Pathology for Risk Assessment!!

Transgenerational Sperm Epimutations 
(F3)

DNA Sequence

Methylation

Histone

Acetyl & other
chemical modifiers

EPIGENETIC 
MECHANISMS 
AND MARKS
§ DNA Methylation 

§ Histone Modifications 

§ Non-coding RNA

GERMLINE TRANSMITTED EPIGENETIC 
TRANSGENERATIONAL INHERITANCE

Comparative Methylation, MeDIP Chip or MeDIP Seq 
F3 Generation Sperm DNA pools

Vinclozolin

Increase Methylation in VNG
Equal methylation
Increase Methylation in CTR 

Contro
l

MeDIP-Chip Assay 

MeDIP-Seq Assay Next Generation Sequencing  (linker bar codes)
or
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F3 Generation 
Sperm Genome 
Wide 
Epimutations 
(MeDIP-Seq)

1075  p<10-4
DMR Sites

Transgenerational 
Epimutations
& Clusters

C
hr

om
os

om
e

Vinclozolin

Hydrocarbons (JP8)
Pesticides

Plastics

Dioxin

Exposure Specific
Transgenerational (F3) Sperm Epigenome Alterations

Developmental origins of transgenerational sperm DNA methylation epimutations following ancestral DDT exposure.
Dev Biol. 2019 Jan 15;445(2):280-293.
Ben Maamar M, Nilsson E, Sadler-Riggleman I, Beck D, McCarrey JR, Skinner MK.

Developmental Origins of Sperm Epimutations (DMRs)

Ben Maamar, et al. (2019) Dev Biol 15;445(2):280-293
Skinner, et al (2019) Epigenetics14(7):721-739 

DDT
Lineage

F3 Generation

Vinclozolin
Lineage

F3 Generation

(17.7%)
(5.2%)

(24.5%
)

(26.4%
)

(12.1%) (13.5%)

(12.5%)

(13.5%)

(2.5%
)

(23.6%)

(19.4%)

(24.1%)
(4.8%)

Collaborator- John McCarrey, UTSA
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Ancestral vinclozolin exposure alters the epigenetic transgenerational 
inheritance of sperm small noncoding RNAs.
Environ Epigenet. 2016;2(1). 
Schuster A, Skinner MK, Yan W. Chromatin Structure – Composition and Function during Spermiogenesis

Khochbin, S. and Ward, W.S

Environmentally Induced New Transgenerational Histone Retention
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Chromosome Size (megabase)

DDT Lineage F3 Generation Sperm
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Chromosome Size (megabase)

Sperm Core Histone Retention

Epigenetic &Chromatin 2018

Developmental origins of transgenerational sperm histone retention following ancestral exposures.
Ben Maamar M, Beck D, Nilsson E, McCarrey JR, Skinner MK. 
Dev Biol. 2020 Sep 1;465(1):31-45.
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Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic 
transgenerational inheritance of disease.
Epigenetics Chromatin. 2018 Feb 27;11(1):8.
Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie Y, Tang C, Yan W.

Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced 
epigenetic transgenerational inheritance of disease.
Environ Epigenet. 2018 Apr 26;4(2):dvy010.
Ben Maamar M, Sadler-Riggleman I, Beck D, McBirney M, Nilsson E, Klukovich R, Xie Y, Tang C, Yan W, Skinner MK.

The regulatory mechanisms of 
DNA methylation by lncRNAs. 
(A) Summary of the different 
epimutations in the F1, F2, and 
F3 generation exposed rat sperm 
with larger/thicker arrows 
reflecting larger numbers of 
epimutations than thinner arrows 
and nd (negligible detected). (B)
lncRNA/DNMT interaction 
prevents locus-specific DNA 
methylation locally in cis.(C)
lncRNA interacts with DNMT1 
(methyltransferase 1) indirectly 
through a protein intermediate. 

Environmental Exposure 
Gestating Female 

(Fetal Gonadal Sex 
Determination Period)

F2 Germ-Line

F0
F1

Epigenetic Transgenerational Inheritance of Sperm Epimutations

Sperm Alterations

DNA Methylation 
(DMRs)

ncRNA ((DNRs)

Histone Retention 
(DHRs)

F0

F1

F2 F3

Integration of Sperm ncRNA Directed DNA Methylation and DNA Methylation Directed Histone Retention in 
Transgenerational Inheritance
Beck D, Ben Maamar M, and Skinner MK
Epigenetics and Chromatin (2021) 14:6 A     Colocalize Sites DMR, ncRNA, DHR Map (NC-005100.4)

Location #

Genes

B    Colocalize Sites DMR, ncRNA, DHR Map (NC-005104.4)

C    Colocalize Sites DMR, ncRNA, DHR Map (NC-005111.4)

Location #

Genes

Overlapping Sites

Location #

Genes

Overlapping Sites

Overlapping Sites

D    Colocalize Sites DMR, ncRNA, DHR Map (NC-005113.4)
Location #

Genes

Overlapping Sites

30,830K 30,831K 30,832K 30,833K 30,834K 30,835K 30,836K 30,837K 30,838K
Genes, NCBI Rattus Norvegicus Annotation Release 106, 2016-07-27

DMR (p<0.05)
DHR (p<0.05)

RNA (p<1e-4)

31,495K

78,070K 78,072K 78,074K 78,076K 78,078K 78,080K 78,082K 78,084K 78,086K 78,088K

RNA (p<1e-4)

DMR (p<0.05)
DHR (p<0.05)RNA (p<0.05)

RNA (p<0.05)
DMR (p<0.05)

DHR(p<0.05)

DMR (p<0.05)

DHR (p<0.05)

XR_001837969.1
LOC108350982

RNA (p<0.05) DHR (p<1e-6)
DMR (p<0.05)

RNA (p<0.05)

Mbp2[+26]
Piwil1 [+6]

LOC108352441
XR_001840667.1

XR_001840666.1

46,628K 46,632K 46,636K 46,640K 46,644K 46,648K 46,652K 46,656K 46,660K

DHR (p<0.05)
DHR (p<0.05) DMR (p<0.05)

RNA (p<1e-4)

Rn45s
XR_359544.3 Rn18s Rn28s

NR_046238.1
Rn5-8s

NR_046239.1
NR_046237.1

NR_046246.1

None

31,505K 31,515K 31,525K 31,535K 31,545K 31,555K 31,565K 31,575K 31,585K 31,595K 31,605K 31,615K 31,625K 31,635K

LOC102554740
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Methylation

Histone

Acetyl & other
chemical modifiers

DNA SequenceDNA Methylation

DNA Methylation 
Directed Histone 

Retention

Histone 
Modifications

ncRNA Directed 
DNA Methylation

C
R
P

DNM
T

Transgenerational (F3) Sperm Epigenome Mapping
(Germline transmitted epimutations)

(Epigenetic Biomarkers for Ancestral Exposures)

Transgenerational Sperm Epigenome Alterations 
(>1000 differential DNA methylation sites)

Genomic Features-CpG Deserts (<10%) & Motifs (EDM1/2)
(Susceptibility epigenetic transgenerational mark)    

Genome Activity Alterations?
(transcriptome)

Tissue Specific Transgenerational Transcriptomes (F3)

MaleFemale
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Regulated Genes
Total Genes

Chr 1

Epigenetic Control Regions

Genomic Clustering of differential DNA methylated regions (epimutations) 
associated with the epigenetic transgenerational inheritance of disease 
and phenotypic variation.
BMC Genomics. 2016 Jun 1;17:418.
Haque MM, Nilsson EE, Holder LB, Skinner MK.

Representative DMR 
clusters. a DMR cluster on 
chromosome 1 (76500000-
81650000) b DMR cluster on 
chromosome 20 (2900000-
6200000). The chromosome 
map with megabase location 
is indicated for all genes, 
regulated genes and DMR 
(red arrowhead). Gene 
symbols associated with 
regulated genes and DMR 
associated genes are listed

!"#$ !"#$

%&#'($)*%*+$

,'-$

Epigenetic Control Region  (2-5 megabase)
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Germ
Line

Germ
Line

F1 Generation
Em bryo Adult

Altered 
Epimutations 
(Imprint?)

Primordial
Germ Cell 
Epigenetic 
Programming

Gonadal Differentiation 
Sex Determination

ROLE OF GERM LINE IN EPIGENETIC 
TRANSGENERATIONAL INHERITANCE 

F2 Generation F3 Generation

Environmental 
Factor

FO
Generation
(Mechanisms?) 

Germ
Line

Somatic Cell 
Transcriptome 
Alteration

Adult
Onset
Disease

Somatic Cell 
Transcriptome 
Alteration

Adult
Onset
Disease

Ovarian
Granulosa Cell
Vinclozolin Lineage
F3 Generation
Transgenerational
Epigenome
(>100 DMR)
Transcriptome
(~500 genes)

!"#$%&''&()&*$+,&-.$

/-)'0-1)&($20(()3(#4$5*6-&($20(()3(#$

+,7(&60-.$20(()3(#$

80-974$:76#7'$
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Testis
Sertoli Cell
F3 Generation
Transgenerational Transcriptome
(~400 genes)

Epigenetic Transgenerational Inheritance of Sertoli Cell Abnormalities 

Potential Cover Art / Digital Abstract 

Male Testis 

Endocrine Disrupting 

Chemical (EDC) 

Gestating Mother (F0) 

(F1) 

(F2) 

(F3) 
Testis 

Sertoli 

Germinal 
Interstitium 

Seminiferous Tubules Leydig 

Peritubular 

Male Infertility 

Adipocyte Epigenetic Alterations and Potential Therapeutic Targets in Transgenerationally Inherited Lean and Obese 
Phenotypes Following Ancestral Exposures 
King SE, Nilsson E, Beck D, Skinner MK
Adipocyte 2019 8(1) 362-378

DDT obese male adipocyte DMRs 

Chromosome length (Mb)
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EPIGENETIC 
TRANSGENERATIONAL 
INHERITANCE

Gestating 
Female (F0)

Environmental 
Exposures (DDT)

(F1)

(F2)

(F3)

Germline
Epimutations

Trans-generational 
Disease

No Change in 
Obesity

(1950s  5%)

50% Obesity
(2017  ~45%)

Epigenetic transgenerational inheritance of parent-of-origin allelic transmission of outcross pathology and sperm 
epimutations.
Ben Maamar M, King SE, Nilsson E, Beck D, Skinner MK. 
Dev Biol. 2020 Feb 1;458(1):106-119.

Diet Induced Epigenetic 
Transgenerational Inheritance



42

High-fat diet reprograms the epigenome of rat spermatozoa and 
transgenerationally affects metabolism of the offspring.
Mol Metab. 2015 Dec 25;5(3):184-97. 
de Castro Barbosa T, Ingerslev LR, et al. 

Dunn GA, Bale TL. (2011) Maternal high-fat diet effects on third-generation female body size via the paternal 
lineage. Endocrinology. 152(6):2228-36.

Involvement of circulating factors in the transmission of paternal experiences through the germline.
van Steenwyk G, Gapp K, Jawaid A, Germain PL, Manuella F, Tanwar DK, Zamboni N, Gaur N, Efimova A, Thumfart KM, Miska EA, Mansuy IM. 
EMBO J. 2020 Dec 1;39(23):e104579.
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Toxicant & Chemical Exposures
Induced Epigenetic 

Transgenerational Inheritance

Prenatal Glucocorticoid Exposure Modifies Endocrine Function and Behaviour for 3 Generations Following Maternal and 
Paternal Transmission.
Sci Rep. 2017 Sep 18;7(1):11814. 
Moisiadis VG, Constantinof A, Kostaki A, Szyf M, Matthews SG.

Bruner-Tran KL, Osteen KG. (2011) Developmental exposure to TCDD reduces fertility and negatively affects 
pregnancy outcomes across multiple generations. Reprod Toxicol. 31(3):344-50.

Prenatal Exposure to Environmentally-Relevant Contaminants Perturbs Male Reproductive Parameters Across Multiple 
Generations that are Partially Protected by Folic Acid Supplementation.
Lessard M, Herst PM, Charest PL, Navarro P, Joly-Beauparlant C, Droit A, Kimmins S, Trasler J, Benoit-Biancamano MO, MacFarlane AJ, 
Dalvai M, Bailey JL. 
Sci Rep. 2019 Sep 25;9(1):13829. 

Early-life exposure to POPs harms male 
reproduction across multiple generations. FA 
supplementation partly mitigated the impact of 
POPs. The two-cell embryo transcriptome is 
susceptible to paternal environment and could be 
the foundation for later pregnancy outcomes. 
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Association of Exposure to Diethylstilbestrol During Pregnancy With Multigenerational Neurodevelopmental Deficits.
Kioumourtzoglou MA, Coull BA, O'Reilly ÉJ, Ascherio A, Weisskopf MG. 
JAMA Pediatr. 2018 Jul 1;172(7):670-677.

This study provides evidence that diethylstilbestrol 
exposure is associated with multigenerational 
neurodevelopmental deficits. The doses and potency 
level of environmental endocrine disruptors to which 
humans are exposed are lower than those of 
diethylstilbestrol, but the prevalence of such exposure 
and the possibility of cumulative action are potentially 
high and thus warrant consideration. 

Gestational arsenic exposure and paternal intergenerational epigenetic inheritance. 
Nohara K, Suzuki T, Okamura K. 
Toxicol Appl Pharmacol. 2020 Dec 15;409:115319. 

Multigenerational DNA methylation responses to copper exposure in Daphnia: Potential 
targets for epigenetic biomarkers? 
Jeremias G, Veloso T, Gonçalves FJM, Van Nieuwerburgh F, Pereira JL, Asselman J.
Chemosphere. 2022 Dec;308(Pt 1):136231. 

Highlights
•Direct and inherited effects of Cu in DNA methylation of Daphnia were explored.
•Methylation changes targeted genes that offset metal toxicity and oxidative stress.
•Distinct methylation effects noticed in daphnids differing in Cu exposure history.
•Exposure history promoted transgenerational inheritance in a specific manner.

Environmentally induced DNA methylation is inherited across generations in an aquatic keystone species. 
Feiner N, Radersma R, Vasquez L, Ringnér M, Nystedt B, Raine A, Tobi EW, Heijmans BT, Uller T. 
iScience. 2022 Apr 25;25(5):104303. 

Highlights
•Naturally induced DNA-methylation persists until generation F4 in Daphnia
•Drug-induced de-methylation is reset after one generation
•Methylation is enriched in exons suggesting a gene regulatory function
•Epigenetic inheritance may influence eco-evolutionary dynamics
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Epigenetic Transgenerational Inheritance of the Effects of Obesogen Exposure. 
Mohajer N, Joloya EM, Seo J, Shioda T, Blumberg B. 
Front Endocrinol (Lausanne). 2021 Dec 16;12:787580. 

Epigenetic Transgenerational Inheritance of Obesity Susceptibility.
King SE, Skinner MK. 
Trends Endocrinol Metab. 2020 Jul;31(7):478-494.

EPIGENETIC 
TRANSGENERATIONAL 
INHERITANCE
OF OBESITY
SUSCEPTIBILITY

Gestating 
Female (F0)

Environmental 
Exposures (DDT)

(F1)

(F2)

(F3)

Germline
Epimutations

Trans-generational 
Disease

No Change in 
Obesity

(1950s  5%)

50% Obesity
(2020  ~45%)

Role of epigenetic transgenerational inheritance in generational toxicology. 
Nilsson EE, Ben Maamar M, Skinner MK.
Environ Epigenet. 2022 Feb 16;8(1):dvac001. 

Environmentally induced epigenetic transgenerational 
inheritance. 

Stress Induced Epigenetic 
Transgenerational Inheritance
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Transgenerational epigenetic inheritance in birds.
Environ Epigenet. 2018 Apr 26;4(2):dvy008. 
Guerrero-Bosagna C, Morisson M, Liaubet L, Rodenburg TB, de Haas EN, Košťál Ľ, Pitel F.

The maternal environment directly impacts F1 
and F2 offspring while the paternal 
environment only impacts F1 offspring. (a) A 
change in the maternal environment can affect 
egg components and thus may impact F1 
individuals. However, as these F1 developing 
offspring bear the PGCs that will lead to 
differentiated gametes, the change in maternal 
environment may also impact F2 individuals. 
Thus only the effects observed on the F3 
individuals will be considered as 
transgenerational effects. (b) A change in the 
paternal environment only affects its own 
gametes that will lead to the F1 generation. 
The effects observed on the F2 individuals will 
be considered as transgenerational effects

Prenatal maternal stress and offspring aggressive behavior: Intergenerational and 
transgenerational inheritance. 
Mbiydzenyuy NE, Hemmings SMJ, Qulu L. 
Front Behav Neurosci. 2022 Sep 23;16:977416. 

Other Inducers Epigenetic 
Transgenerational Inheritance

Trans-generational epigenetic 
regulation of C. elegans primordial 

germ cells.

Furuhashi H, Takasaki T, Rechtsteiner A, Li T, 
Kimura H, Checchi PM, Strome S, Kelly WG.

Epigenetics Chromatin. 2010 Aug 12;3(1):15.
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Rechavi O, Minevich G, Hobert O. (2011) Transgenerational inheritance of an acquired small RNA-based antiviral 
response in C. elegans. Cell. 9;147(6):1248-56. 

Reprogramming the piRNA pathway for multiplexed and transgenerational gene silencing in C. elegans. 
Priyadarshini M, Ni JZ, Vargas-Velazquez AM, Gu SG, Frøkjær-Jensen C. 
Nat Methods. 2022 Feb;19(2):187-194. 

piRNAi tools for specific and scalable gene silencing.

Molecular insights into the transgenerational inheritance of stress memory. 
Zhang Q, Tian Y.
J Genet Genomics. 2022 Feb;49(2):89-95. 

Environmental stresses can influence the 
phenotypes of offspring. 

Transgenerational inheritance of increased 
mtDNA levels and the UPRmt. 
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Review of the toxicity and potential molecular mechanisms of parental or successive 
exposure to environmental pollutants in the model organism Caenorhabditis elegans.
Li H, Zeng L, Wang C, Shi C, Li Y, Peng Y, Chen H, Zhang J, Cheng B, Chen C, Xiang M, Huang Y. 
Environ Pollut. 2022 Oct 15;311:119927. 

Advantages of using C. elegans as a model to 
evaluate toxicity from multi/transgenerational 
exposure to environmental pollutants.

Multi/transgenerational toxicity in C. elegans
induced by environmental pollutant exposure.

Long-term effects of wildfire smoke exposure during early life on the nasal epigenome in 
rhesus macaques. 
Brown AP, Cai L, Laufer BI, Miller LA, LaSalle JM, Ji H. 
Environ Int. 2022 Jan;158:106993. 

Epigenetic responses to heat: From adaptation to maladaptation. 
Murray KO, Clanton TL, Horowitz M. 
Exp Physiol. 2022 Oct;107(10):1144-1158. 

Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders.
Weber-Stadlbauer U. 
Transl Psychiatry. 2017 May 2;7(5):e1113. 
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Pathogenic Infection in Male Mice Changes Sperm Small RNA Profiles and Transgenerationally Alters Offspring Behavior
Shiraz Tyebji, Anthony J Hannan, Christopher J Tonkin  
Cell Rep. 2020 Apr 28;31(4):107573.

Highlights
• F1 and F2 generation of T. gondii-

infected males display behavioral 
abnormalities

• Offspring behavioral changes display 
sexual dimorphism

• T. gondii infection leads to changes in 
sperm small RNA levels

• Zygotic microinjection of isolated sperm 
small RNA recapitulates behavioral 
changes

Transgenerational inheritance of fetal alcohol exposure adverse effects on immune gene interferon-ϒ
Omkaram Gangisetty, Ajay Palagani, Dipak K Sarkar
Clin Epigenetics. 2020 May 24;12(1):70. 

Overall, these findings provide the evidence 
that fetal alcohol exposures produce an 
epigenetic mark on the Ifn-ɣ gene that 
passes through multiple generations via the 
male germ line. These data provide the first 
evidence that the male germ line transmits 
fetal alcohol exposure's adverse effects on 
the immune system. 

Sex-specific transgenerational effects of morphine exposure on reward and affective behaviors.
Brynildsen JK, Sanchez V, Yohn NL, Carpenter MD, Blendy JA. 
Behav Brain Res. 2020 Oct 1;395:112842.

One generation later, affective behaviors 
were no longer altered in F2 males but F2 
females from the F0 male morphine exposure 
buried more marbles in the MB test. In 
summary, early exposure to morphine in 
males and females causes lineage-specific 
inheritance of reward and affective behaviors. 

Epigenetic Responses to Temperature and Climate
Beth A McCaw, Tyler J Stevenson, Lesley T Lancaster
Integr Comp Biol. 2020 Dec 16;60(6):1469-1480.

Although the evidence points towards a conserved 
role of epigenetics in responding to temperature 
change, there appears to be an element of 
temperature- and species-specificity in the specific 
effects of temperature change on epigenetic 
modifications and resulting phenotypic responses. 
The review identifies areas of future research in 
epigenetic responses to environmental temperature 
change.
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Developmental exposure to Pb 2+ induces transgenerational changes to zebrafish brain transcriptome
Danielle N Meyer, Emily J Crofts, Camille Akemann, et al.
Chemosphere. 2020 Apr;244:125527.

Preterm birth is associated with epigenetic programming of transgenerational hypertension in mice
Laurence Dumeige, Mélanie Nehlich, Say Viengchareun, Julie Perrot, Eric Pussard, Marc Lombès, Laetitia Martinerie
Exp Mol Med. 2020 Jan;52(1):152-165.

ncRNA Role Epigenetic 
Transgenerational Inheritance

Hypoxia-induced epigenetic transgenerational miRNAs dysregulation involved in 
reproductive impairment of ovary. 
Lai KP, Tim Leung CC, Boncan DAT, Tam N, Lin X, Wang SY, Chan TF, Sun Wu RS, Chong Kong RY. 
Chem Biol Interact. 2022 Nov 1;367:110176. 
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Ashe A, et al. (2012) piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. 
Cell. 6;150(1):88-99. 

Mango SE. (2011) Ageing: generations of longevity. Nature. 16;479(7373):302-3.
The lifespan of some organisms can be extended by mutations that alter how DNA is packaged in their cells. A 
study reveals that this effect can last for generations, even in descendants that are genetically normal.

Ito H, et al. (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. 
Nature. 7;472(7341):115-9. 

Small RNAs Reflect Grandparental Environments in Apomictic Dandelion.
Mol Biol Evol. 2017 Aug 1;34(8):2035-2040. 
Morgado L, Preite V, Oplaat C, Anava S, Ferreira de Carvalho J, Rechavi O, Johannes F, Verhoeven KJF.

Abstract
Plants can show long-term effects of environmental stresses and in some cases a stress "memory" has been 
reported to persist across generations, potentially mediated by epigenetic mechanisms. However, few documented 
cases exist of transgenerational effects that persist for multiple generations and it remains unclear if or how 
epigenetic mechanisms are involved. Here, we show that the composition of small regulatory RNAs in apomictic 
dandelion lineages reveals a footprint of drought stress and salicylic acid treatment experienced two generations ago. 
Overall proportions of 21 and 24 nt RNA pools were shifted due to grandparental treatments. While individual genes 
did not show strong up- or downregulation of associated sRNAs, the subset of genes that showed the strongest shifts 
in sRNA abundance was significantly enriched for several GO terms including stress-specific functions. This suggests 
that a stress-induced signal was transmitted across multiple unexposed generations leading to persistent changes in 
epigenetic gene regulation.
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Small-RNA-mediated transgenerational silencing of histone genes impairs fertility in piRNA mutants
Giorgia Barucci, Eric Cornes, Meetali Singh, Blaise Li, et al.
Nat Cell Biol. 2020 Feb;22(2):235-245.

Small RNAs in the Transgenerational Inheritance of Epigenetic Information
Lea Duempelmann, Merle Skribbe, Marc Bühler
Trends Genet. 2020 Mar;36(3):203-214.

poly(UG)-tailed RNAs in genome protection and epigenetic inheritance
Aditi Shukla, Jenny Yan, Daniel J Pagano, et al.
Nature. 2020 Jun;582(7811):283-288.

Our results show that cycles of pUG RNA-templated 
siRNA synthesis and siRNA-directed pUG RNA 
biogenesis underlie double-stranded-RNA-directed 
transgenerational epigenetic inheritance in the C. 
elegans germline. We speculate that this pUG RNA-
siRNA silencing loop enables parents to inoculate 
progeny against the expression of unwanted or 
parasitic genetic elements. 

Small-RNA-mediated transgenerational silencing of histone genes impairs fertility in piRNA mutants
Giorgia Barucci, Eric Cornes, Meetali Singh, et al.
Nat Cell Biol. 2020 Feb;22(2):235-245.

PIWI-interacting RNAs (piRNAs) promote fertility in many animals. 
However, whether this is due to their conserved role in repressing 
repetitive elements (REs) remains unclear. Here, we show that the 
progressive loss of fertility in Caenorhabditis elegans lacking piRNAs 
is not caused by derepression of REs or other piRNA targets but, 
rather, is mediated by epigenetic silencing of all of the replicative 
histone genes. In the absence of piRNAs, downstream components of 
the piRNA pathway relocalize from germ granules and piRNA targets 
to histone mRNAs to synthesize antisense small RNAs (sRNAs) and 
induce transgenerational silencing. Removal of the downstream 
components of the piRNA pathway restores histone mRNA expression 
and fertility in piRNA mutants, and the inheritance of histone sRNAs in 
wild-type worms adversely affects their fertility for multiple generations. 
We conclude that sRNA-mediated silencing of histone genes impairs 
the fertility of piRNA mutants and may serve to maintain piRNAs 
across evolution. 



53

Germ
Line

Germ
Line

F1 Generation
Em bryo Adult

Altered 
Epimutations 
(Imprint?)

Primordial
Germ Cell 
Epigenetic 
Programming

Gonadal Differentiation 
Sex Determination

ROLE OF GERM LINE IN EPIGENETIC 
TRANSGENERATIONAL INHERITANCE 
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Epigenetic Alterations Promote Genetic Instability

Environmentally Induced Epigenetic Transgenerational Inheritance of 
Sperm Epimutations Promote Genetic Mutations
Skinner MK, Guerrero-Bosagna C, Haque M. 
Epigenetics 2015; 10:8, 762-771
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Tertiary Epimutations - A Novel Aspect of Epigenetic Transgenerational 
Inheritance Promoting Genome Instability.
PLoS One. 2016 Dec 19;11(12):e0168038. 
McCarrey JR, Lehle JD, Raju SS, Wang Y, Nilsson EE, Skinner MK.

Mutation frequencies in F1 and F3 generation samples.
(A) Mutation frequencies in kidney and sperm samples from F1 generation
control- and vinclozolin-lineage animals. There were no statistically
significant differences among the mutation frequencies detected in kidney
or sperm samples from F1 generation control- and vinclozolin-lineage
samples, except for one of the vinclozolin-lineage sperm samples (F1VL–
marked with an asterisk) which showed a mutation frequency that was
significantly lower than the mean of the F1 generation control-lineage
samples (p = 0.00352). (B) Mutation frequencies in kidney and sperm
samples from F3 generation control- and vinclozolin-lineage animals. A
subset of both kidney and sperm samples from F3 vinclozolin-lineage
descendants showed mutation frequencies that were not significantly
different than the mean of the corresponding F3 generation control-lineage
samples, although several of the F3 generation vinclozolin-lineage
samples trended higher than the mean of the corresponding F3 generation
control-lineage samples. However another subset of both kidney and
sperm samples from F3 generation vinclozolin-lineage descendants
showed mutation frequencies that were significantly higher than the mean
of the corresponding F3 control-lineage samples. These mutation
frequencies are marked with astrices, and include those found in the
following samples: F3VLK6 (p = 0.00342), F3VLK7 (p = 0.00131), F3VLK8
(p = 0.0222), F3VLS1 (p = 0.00185), F3VLS2 (p = 0.03611)) and F3VLS6
(p = 0.00018). F1 = samples from F1 generation descendants, F3 =
samples from F3 generation descendants, CL = samples from control-
lineage descendants, VL = samples from vinclozolin-lineage descendants,
K = kidney samples, S = sperm samples.
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Summary
Epigenetic Transgenerational Inheritance

-Non-Genetic Form Inheritance
-Toxicology / Environmental 
-Molecular Mechanism for Disease Etiology and DOHAD
-All Epigenetic Processes Involved and Integrated in Germline
-Generational Toxicology

Environmental Epigenetics, Disease and Evolution 
-Integration Epigenetics and Genetics Essential Biology
-Evolution and Disease Etiology Requires Inclusion Epigenetics
-Doom and Gloom/ Biomarkers & Preventative Medicine

Environmental induced transgenerational inheritance impacts systems epigenetics in disease etiology. 
Beck D, Nilsson EE, Ben Maamar M, Skinner MK. 
Sci Rep. 2022 Apr 19;12(1):5452. 

Epigenome-wide association study for glyphosate induced transgenerational sperm DNA methylation and 
histone retention epigenetic biomarkers for disease.
Ben Maamar M, Beck D, Nilsson EE, Kubsad D, Skinner MK. 
Epigenetics. 2020 Dec 9:1-18.
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Transgenerational disease specific epigenetic sperm biomarkers after ancestral exposure to dioxin.
Ben Maamar M, Nilsson E, Thorson JLM, Beck D, Skinner MK. 
Environ Res. 2021 Jan;192:110279.

DMR-associated genes within the 
pathology biomarker DMR set for 
each individual pathology. The 
physiologic and pathology process is 
listed with direct gene links. (a) 
Prostate disease, (b) kidney 
disease, and (c) obesity

Epigenome-wide association study for pesticide (Permethrin and DEET) induced DNA methylation epimutation biomarkers 
for specific transgenerational disease.
Thorson JLM, Beck D, Ben Maamar M, Nilsson EE, Skinner MK. 
Environ Health. 2020 Nov 4;19(1):109. 

Specific disease DMR associated 
gene correlation with previously 
identified disease genes. a
Epimutation associated prostate 
disease genes. b Epimutation 
associated kidney disease genes. c
Epimutation associated testis 
disease genes. The gene functional 
category shapes are identified as 
follows inset in Fig. 8

https://ehjournal.biomedcentral.com/articles/10.1186/s12940-020-00666-y
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Sperm DNA Methylation Epimutation Biomarkers for Male Infertility and FSH Therapeutic Responsiveness
Luján S, Caroppo E, Niederberger C, Arce J-C, Sadler-Riggleman I, Beck D, Nilsson E, Skinner MK
Scientific Reports (2019)
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PCA Infertility DMR Signature Analysis

Sperm DNA Methylation Epimutation Biomarker for Paternal Offspring Autism Susceptibility
Garrido N, et al., and Skinner MK
Clinical Epigenetics 2021 13:6 p3-13

Autism versus Control DMR PCA 
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