Spring 2023 – Epigenetics and Systems Biology Lecture Outline (Epigenetics and Disease Etiology) Michael K. Skinner – Biol 476/576 Weeks 13 and 14

Epigenetics and Disease Etiology

- Epigenetics and Disease Etiology Introduction
- Epigenetic Disease
- Environmental Epigenetics and Disease
- Epigenetics and Cancer
- Epigenetics and Neuroscience
- Epigenetics and Metabolic Syndrome
- Epigenetic Therapy Development
- Epigenetic Transgenerational Inheritance of Disease

Required Reading

- Wolkenhauer and Green (2013) The search for organizing principles as a cure against reductionism in systems medicine. FEBS J. 280(23):5938-48.
- Loike (2018) Opinion: Consumer DNA Testing is Crossing into Unethical Territories. The Scientist. Aug. 16, 2018

Books (Reserve in Library)

Haslberger, Alexander G, and Sabine Gressler. Epigenetics and Human Health: Linking Hereditary, Environmental, and Nutritional Aspects. Weinheim: Wiley-VCH, 2010. (e-book)

<u>Literature</u>

- Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol. 2022 Nov;18(11):643-660.
- Liotti A, Ferrara AL, Loffredo S, Galdiero MR, Varricchi G, Di Rella F, Maniscalco GT, Belardo M, Vastano R, Prencipe R, Pignata L, Romano R, Spadaro G, de Candia P, Pezone A, De Rosa V. Epigenetics: An opportunity to shape innate and adaptive immune responses. Immunology. 2022 Aug 31. Online ahead of print.
- Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci. 2022 Jul 9;23(14):7611.
- G N, Zilbauer M. Epigenetics in IBD: a conceptual framework for disease pathogenesis. Frontline Gastroenterol. 2022 Jun 7;13(e1):e22-e27.

Das DN, Ravi N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. Environ Res. 2022 Oct;213:113677.

- Novati A, Nguyen HP, Schulze-Hentrich J. Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis. 2022 Sep;171:105725.
- Wilson NRC, Veatch OJ, Johnson SM. On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines. 2022 Mar 14;10(3):668.

Colonna Romano N, Fanti L. Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells. 2022 Mar 19;11(6):1048.

Chénais B. Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int J Mol Sci. 2022 Feb 25;23(5):2551.

Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. Environmental Impact on the Epigenetic Mechanisms Underlying Parkinson's Disease Pathogenesis: A Narrative Review. Brain Sci. 2022 Jan 28;12(2):175.

Nilsson EE, Ben Maamar M, Skinner MK. Role of epigenetic transgenerational inheritance in generational toxicology. Environ Epigenet. 2022 Feb 16;8(1):dvac001.

Chen Z, Rasheed M, Deng Y. The epigenetic mechanisms involved in mitochondrial dysfunction: Implication for Parkinson's disease. Brain Pathol. 2022 May;32(3):e13012.

Qi Z, Li J, Li M, Du X, Zhang L, Wang S, Xu B, Liu W, Xu Z, Deng Y. The Essential Role of Epigenetic Modifications in Neurodegenerative Diseases with Dyskinesia. Cell Mol Neurobiol. 2022 Nov;42(8):2459-2472.

Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. THE TRANSLATIONAL GENETICS OF ADHD AND RELATED PHENOTYPES IN MODEL ORGANISMS. Neurosci Biobehav Rev. 2022 Nov 8:104949.

Campagna MP, Xavier A, Lechner-Scott J, Maltby V, Scott RJ, Butzkueven H, Jokubaitis VG, Lea RA. Epigenome-wide association studies: current knowledge, strategies and recommendations. Clin Epigenetics. 2021 Dec 4;13(1):214.

Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol. 2022 Jul;127:121-132.

Recillas-Targa F. Cancer Epigenetics: An Overview. Arch Med Res. 2022 Nov 18:S0188-4409(22)00142-4. Online ahead of print.

Kowluru RA, Mohammad G. Epigenetic modifications in diabetes. Metabolism. 2022 Jan;126:154920.

- Garmpis N, Damaskos C, Garmpi A, Nonni A, Georgakopoulou VE, Antoniou E, Schizas D, Sarantis P, Patsouras A, Syllaios A, Vallilas C, Koustas E, Kontzoglou K, Trakas N, Dimitroulis D. Histone Deacetylases and their Inhibitors in Colorectal Cancer Therapy: Current Evidence and Future Considerations. Curr Med Chem. 2022;29(17):2979-2994.
- Aerqin Q, Wang ZT, Wu KM, He XY, Dong Q, Yu JT. Omics-based biomarkers discovery for Alzheimer's disease. Cell Mol Life Sci. 2022 Nov 8;79(12):585.
- Glavač D, Mladinić M, Ban J, Mazzone GL, Sámano C, Tomljanović I, Jezernik G, Ravnik-Glavač M. The Potential Connection between Molecular Changes and Biomarkers Related to ALS and the Development and Regeneration of CNS. Int J Mol Sci. 2022 Sep 26;23(19):11360.

Banik S, Bardhan M, Basak S. Genetic, Epigenetic, and Molecular Biology of Obesity: From Pathology to Therapeutics the Way Forward. J Assoc Physicians India. 2022 Sep;70(9):11-12.

Williams LA, LaSalle JM. Future Prospects for Epigenetics in Autism Spectrum Disorder. Mol Diagn Ther. 2022 Nov;26(6):569-579.

- Scarfò G, Daniele S, Fusi J, Gesi M, Martini C, Franzoni F, Cela V, Artini PG. Metabolic and Molecular Mechanisms of Diet and Physical Exercise in the Management of Polycystic Ovarian Syndrome. Biomedicines. 2022 Jun 2;10(6):1305.
- Zhang T, Huang P, Qiu C. Progresses in epigenetic studies of asthma from the perspective of highthroughput analysis technologies: a narrative review. Ann Transl Med. 2022 Apr;10(8):493.
- Abu Samra N, Jelinek HF, Alsafar H, Asghar F, Seoud M, Hussein SM, Mubarak HM, Anwar S, Memon M, Afify N, Manzoor R, Al-Homedi Z, Osman W. Genomics and Epigenomics of Gestational Diabetes Mellitus: Understanding the Molecular Pathways of the Disease Pathogenesis. Int J Mol Sci. 2022 Mar 23;23(7):3514.
- Załęcka J, Pankiewicz K, Issat T, Laudański P. Molecular Mechanisms Underlying the Association between Endometriosis and Ectopic Pregnancy. Int J Mol Sci. 2022 Mar 23;23(7):3490.
- Yang C, Li D, Teng D, Zhou Y, Zhang L, Zhong Z, Yang GJ. Epigenetic Regulation in the Pathogenesis of Rheumatoid Arthritis. Front Immunol. 2022 Mar 24;13:859400.
- Heindel JJ, Howard S, Agay-Shay K, et al. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol. 2022 May;199:115015.
- Wilson NRC, Veatch OJ, Johnson SM. On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines. 2022 Mar 14;10(3):668.
- Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. Environmental Impact on the Epigenetic Mechanisms Underlying Parkinson's Disease Pathogenesis: A Narrative Review. Brain Sci. 2022 Jan 28;12(2):175.
- Kuo FC, Chao CT, Lin SH. The Dynamics and Plasticity of Epigenetics in Diabetic Kidney Disease: Therapeutic Applications Vis-à-Vis. Int J Mol Sci. 2022 Jan 13;23(2):843.
- Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M, Nikfar S, Tsatsakis A, Abdollahi M. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. Int J Mol Sci. 2022 Jan 6;23(2):583.
- Romão VC, Fonseca JE. Etiology and Risk Factors for Rheumatoid Arthritis: A State-of-the-Art Review. Front Med (Lausanne). 2021 Nov 26;8:689698.
- Zhao X, Liu HQ, Wang LN, Yang L, Liu XL. Current and emerging molecular and epigenetic disease entities in acute myeloid leukemia and a critical assessment of their therapeutic modalities. Semin Cancer Biol. 2022 Aug;83:121-135.
- Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet. 2022 Nov 2;13:994471.
- Czaja AJ. Missing Causality and Heritability of Autoimmune Hepatitis. Dig Dis Sci. 2022 Oct 19. Online ahead of print.
- Wheatley LM, Holloway JW, Svanes C, Sears MR, Breton C, Fedulov AV, Nilsson E, Vercelli D, Zhang H, Togias A, Arshad SH. The role of epigenetics in multi-generational transmission of asthma: An NIAID workshop report-based narrative review. Clin Exp Allergy. 2022 Nov;52(11):1264-1275.
- Cao N, Lan C, Chen C, Xu Z, Luo H, Zheng S, Gong X, Ren H, Li Z, Qu S, Yu C, Yang J, Jose PA, Chen Y, Wu G, Hu C, Yu J, Zeng C. Prenatal Lipopolysaccharides Exposure Induces Transgenerational Inheritance of Hypertension. Circulation. 2022 Oct 4;146(14):1082-1095.
- Tie K, Zhao Z, Wu Z, Qin J, Zhang J, Pei L, Wang H, Chen L. Low miR-92a-3p in oocytes mediates the multigenerational and transgenerational inheritance of poor cartilage quality in rat induced by prenatal dexamethasone exposure. Biochem Pharmacol. 2022 Sep;203:115196.
- Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr. 2022 Jul 11:1-17.

- Nicolella HD, de Assis S. Epigenetic Inheritance: Intergenerational Effects of Pesticides and Other Endocrine Disruptors on Cancer Development. Int J Mol Sci. 2022 Apr 23;23(9):4671.
- Beck D, Nilsson EE, Ben Maamar M, Skinner MK. Environmental induced transgenerational inheritance impacts systems epigenetics in disease etiology. Sci Rep. 2022 Apr 19;12(1):5452.
- Kleeman EA, Gubert C, Hannan AJ. Transgenerational epigenetic impacts of parental infection on offspring health and disease susceptibility. Trends Genet. 2022 Jul;38(7):662-675.
- Youssef NA. Potential Societal and Cultural Implications of Transgenerational Epigenetic Methylation of Trauma and PTSD: Pathology or Resilience? Yale J Biol Med. 2022 Mar 31;95(1):171-174.
- Nilsson EE, Ben Maamar M, Skinner MK. Role of epigenetic transgenerational inheritance in generational toxicology. Environ Epigenet. 2022 Feb 16;8(1):dvac001.
- Mohajer N, Joloya EM, Seo J, Shioda T, Blumberg B. Epigenetic Transgenerational Inheritance of the Effects of Obesogen Exposure. Front Endocrinol (Lausanne). 2021 Dec 16;12:787580.
- Cheuquemán C, Maldonado R. Non-coding RNAs and chromatin: key epigenetic factors from spermatogenesis to transgenerational inheritance. Biol Res. 2021 Dec 20;54(1):41
- Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet. 2022 Aug;60(4):1107-1140.
- Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol. 2021 Dec;36(12):1124-1140.
- Yin G, Xia L, Hou Y, Li Y, Cao D, Liu Y, Chen J, Liu J, Zhang L, Yang Q, Zhang Q, Tang N. Transgenerational male reproductive effect of prenatal arsenic exposure: abnormal spermatogenesis with Igf2/H19 epigenetic alteration in CD1 mouse. Int J Environ Health Res. 2022 Jun;32(6):1248-1260.
- Farhadova S, Gomez-Velazquez M, Feil R. Stability and Lability of Parental Methylation Imprints in Development and Disease. Genes (Basel). 2019 Dec 2;10(12):999.
- da Cruz RS, Chen E, Smith M, Bates J, de Assis S. Diet and Transgenerational Epigenetic Inheritance of Breast Cancer: The Role of the Paternal Germline. Front Nutr. 2020 Jul 15;7:93.
- King SE, Skinner MK. Epigenetic Transgenerational Inheritance of Obesity Susceptibility. Trends Endocrinol Metab. 2020 Jul;31(7):478-494.
- Tyebji S, Hannan AJ, Tonkin CJ. Pathogenic Infection in Male Mice Changes Sperm Small RNA Profiles and Transgenerationally Alters Offspring Behavior. Cell Rep. 2020 Apr 28;31(4):107573.
- Yatsenko SA, Rajkovic A. Genetics of human female infertility⁺. Biol Reprod. 2019 Sep 1;101(3):549-566.
- Zhuo C, Hou W, Tian H, Wang L, Li R. Lipidomics of the brain, retina, and biofluids: from the biological landscape to potential clinical application in schizophrenia. Transl Psychiatry. 2020 Nov 9;10(1):391.
- Zhang L, Zhu B, Zeng Y, Shen H, Zhang J, Wang X. Clinical lipidomics in understanding of lung cancer: Opportunity and challenge. Cancer Lett. 2020 Feb 1;470:75-83.
- Global Burden of Disease Cancer Collaboration, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019 Dec 1;5(12):1749-1768.
- Akbari M, Hassan-Zadeh V. The inflammatory effect of epigenetic factors and modifications in type 2 diabetes. Inflammopharmacology. 2020 Apr;28(2):345-362.

- Hendrickx JO, van Gastel J, Leysen H, Martin B, Maudsley S. High-dimensionality Data Analysis of Pharmacological Systems Associated with Complex Diseases. Pharmacol Rev. 2020 Jan;72(1):191-217.
- Li J, Xu C, Lee HJ, Ren S, Zi X, et al. A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature. 2020 Apr;580(7801):93-99.
- Li X, Liu R. Long non-coding RNA H19 in the liver-gut axis: A diagnostic marker and therapeutic target for liver diseases. Exp Mol Pathol. 2020 Aug;115:104472.
- Saw PE, Song EW. siRNA therapeutics: a clinical reality. Sci China Life Sci. 2020 Apr;63(4):485-500.
- Lee JH, Xiong F, Li W. Enhancer RNAs in cancer: regulation, mechanisms and therapeutic potential. RNA Biol. 2020 Nov;17(11):1550-1559.
- Jeffries MA. The Development of Epigenetics in the Study of Disease Pathogenesis. Adv Exp Med Biol. 2020;1253:57-94.
- Anania C, Lupiáñez DG. Order and disorder: abnormal 3D chromatin organization in human disease. Brief Funct Genomics. 2020 Mar 23;19(2):128-138.
- van der Vos KE, Vis DJ, Nevedomskaya E, et al. Epigenetic profiling demarcates molecular subtypes of muscle-invasive bladder cancer. Sci Rep. 2020 Jul 2;10(1):10952.
- Su Y, Ko ME, Cheng H, Zhu R, Xue M, et al. Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nat Commun. 2020 May 11;11(1):2345.
- Zhang Y, Li Y, Hu Q, et al. The lncRNA H19 alleviates muscular dystrophy by stabilizing dystrophin. Nat Cell Biol. 2020 Nov;22(11):1332-1345.
- Pomerantz MM, Qiu X, Zhu Y, et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020 Aug;52(8):790-799.
- Venø MT, Reschke CR, Morris G, et al. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15977-15988.
- Allum F, Shao X, Guénard F, Simon MM, Busche S, Caron M, et al. Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nat Commun. 2015 May 29;6:7211.
- Carli D, Riberi E, Ferrero GB, Mussa A. Syndromic Disorders Caused by Disturbed Human Imprinting. J Clin Res Pediatr Endocrinol. 2020 Mar 19;12(1):1-16.
- Yang R, Wu GWY, Verhoeven JE, Gautam A, Reus VI, et al. A DNA methylation clock associated with age-related illnesses and mortality is accelerated in men with combat PTSD. Mol Psychiatry. 2020 May 7. https://doi.org/10.1038/s41380-020-0755-z
- Parkhitko AA, Filine E, Mohr SE, Moskalev A, Perrimon N. Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev. 2020 Dec;64:101188.
- Mehdipour P, Marhon SA, Ettayebi I, et al. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature. 2020 Dec;588(7836):169-173.
- Xiao J, Gao Y, Yu Y, et al. Associations of parental birth characteristics with autism spectrum disorder (ASD) risk in their offspring: a population-based multigenerational cohort study in Denmark. Int J Epidemiol. 2021 Jan 7;dyaa246.
- Pollock RA, Abji F, Gladman DD. Epigenetics of psoriatic disease: A systematic review and critical appraisal. J Autoimmun. 2017 Mar;78:29-38.

- Bennett SA, Tanaz R, Cobos SN, Torrente MP. Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl Res. 2019 Feb;204:19-30.
- Rodríguez A, Pajukanta P. Genomics and Systems Biology Approaches in the Study of Lipid Disorders. Rev Invest Clin. 2018;70(5):217-223.
- Navarro-Sánchez L, Águeda-Gómez B, Aparicio S, Pérez-Tur J. Epigenetic Study in Parkinson's Disease: A Pilot Analysis of DNA Methylation in Candidate Genes in Brain. Cells. 2018 Sep 26;7(10).
- Nilsson E, Klukovich R, Sadler-Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics. 2018;13(8):875-895.
- Felix JF, Cecil CAM. Population DNA methylation studies in the Developmental Origins of Health and Disease (DOHaD) framework. J Dev Orig Health Dis. 2018 Aug 13:1-8.
- Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet. 2018 Jul 17;4(2):dvy016.
- Xia X, Jiang Q, McDermott J, Han JJ. Aging and Alzheimer's disease: Comparison and associations from molecular to system level. Aging Cell. 2018 Oct;17(5):e12802.
- Stoccoro A, Coppedè F. Role of epigenetics in Alzheimer's disease pathogenesis. Neurodegener Dis Manag. 2018 Jun;8(3):181-193.
- Nebbioso A, Tambaro FP, Dell'Aversana C, Altucci L. Cancer epigenetics: Moving forward. PLoS Genet. 2018 Jun 7;14(6):e1007362.
- Palumbo D, Affinito O, Monticelli A, Cocozza S. DNA Methylation variability among individuals is related to CpGs cluster density and evolutionary signatures. BMC Genomics. 2018 Apr 2;19(1):229.
- Carnero-Montoro E, Alarcón-Riquelme ME. Epigenome-wide association studies for systemic autoimmune diseases: The road behind and the road ahead. Clin Immunol. 2018 Nov;196:21-33.
- Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie Y, Tang C, Yan W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin. 2018 Feb 27;11(1):8
- Chen Y, Widschwendter M, Teschendorff AE. Systems-epigenomics inference of transcription factor activity implicates aryl-hydrocarbon-receptor inactivation as a key event in lung cancer development. Genome Biol. 2017 Dec 20;18(1):236.
- Gulìa C, Baldassarra S, Signore F, Rigon G, Pizzuti V, Gaffi M, Briganti V, Porrello A, Piergentili R. Role of Non-Coding RNAs in the Etiology of Bladder Cancer. Genes (Basel). 2017 Nov 22;8(11).
- Nowacka-Zawisza M, Wiśnik E. DNA methylation and histone modifications as epigenetic regulation in prostate cancer (Review). Oncol Rep. 2017 Nov;38(5):2587-2596.
- Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, et al. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet. 2017 Oct 15;26(20):4067-4085.
- Li N, Johnson DC, Weinhold N, Kimber S, Dobbins SE, et al. Genetic Predisposition to Multiple Myeloma at 5q15 Is Mediated by an ELL2 Enhancer Polymorphism. Cell Rep. 2017 Sep 12;20(11):2556-2564.

- Bussler S, Penke M, Flemming G, Elhassan YS, Kratzsch J, Sergeyev E, Lipek T, Vogel M, Spielau U, Körner A, de Giorgis T, Kiess W. Novel Insights in the Metabolic Syndrome in Childhood and Adolescence. Horm Res Paediatr. 2017;88(3-4):181-193.
- Herceg Z, Ghantous A, Wild CP, Sklias A, Casati L, et al. Roadmap for investigating epigenome deregulation and environmental origins of cancer. Int J Cancer. 2018 Mar 1;142(5):874-882.
- Roubroeks JAY, Smith RG, van den Hove DLA, Lunnon K. Epigenetics and DNA methylomic profiling in Alzheimer's disease and other neurodegenerative diseases. J Neurochem. 2017 Oct;143(2):158-170.
- Nemoda Z, Szyf M. Epigenetic Alterations and Prenatal Maternal Depression. Birth Defects Res. 2017 Jul 17;109(12):888-897.
- Bahari-Javan S, Varbanov H, Halder R, Benito E, et al. HDAC1 links early life stress to schizophrenia-like phenotypes. Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4686-E4694.
- Toth R, Scherer D, Kelemen LE, Risch A, Hazra A, Balavarca Y, Issa JJ, Moreno V, Eeles RA, Ogino S, Wu X, Ye Y, Hung RJ, Goode EL, Ulrich CM; OCAC, CORECT, TRICL, ELLIPSE, DRIVE, and GAME-ON consortia. Genetic Variants in Epigenetic Pathways and Risks of Multiple Cancers in the GAME-ON Consortium. Cancer Epidemiol Biomarkers Prev. 2017 Jun;26(6):816-825.
- Mykhalchenko K, Lizneva D, Trofimova T, Walker W, Suturina L, Diamond MP, Azziz R. Genetics of polycystic ovary syndrome. Expert Rev Mol Diagn. 2017 Jul;17(7):723-733.
- Sales VM, Ferguson-Smith AC, Patti ME. Epigenetic Mechanisms of Transmission of Metabolic Disease across Generations. Cell Metab. 2017 Mar 7;25(3):559-571.
- Ek WE, Tobi EW, Ahsan M, Lampa E, Ponzi E, Kyrtopoulos SA, Georgiadis P, Lumey LH, Heijmans BT, Botsivali M, Bergdahl IA, Karlsson T, Rask-Andersen M, Palli D, Ingelsson E, Hedman ÅK, Nilsson LM, Vineis P, Lind L, Flanagan JM, Johansson Å; Epigenome-Wide Association Study Consortium. Tea and coffee consumption in relation to DNA methylation in four European cohorts. Hum Mol Genet. 2017 Aug 15;26(16):3221-3231
- Gregory DJ, Kobzik L, Yang Z, McGuire CC, Fedulov AV. Transgenerational transmission of asthma risk after exposure to environmental particles during pregnancy. Am J Physiol Lung Cell Mol Physiol. 2017 Aug 1;313(2):L395-L405.
- Jiang X, Finucane HK, Schumacher FR, et al. Shared heritability and functional enrichment across six solid cancers. Nat Commun. 2019 Jan 25;10(1):431.
- Huang KK, Ramnarayanan K, Zhu F, Srivastava S, et al. Genomic and Epigenomic Profiling of High-Risk Intestinal Metaplasia Reveals Molecular Determinants of Progression to Gastric Cancer. Cancer Cell. 2018 Jan 8;33(1):137-150.e5.
- Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004 May 27;429(6990):457-63.
- Stone ML, Chiappinelli KB, Li H, Murphy LM, Travers ME, et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):E10981-E10990.
- Perez-Polo JR. Epigenetics: Stress and disease. Int J Dev Neurosci. 2017 Nov;62:54-55.
- Soubry A. Epigenetics as a Driver of Developmental Origins of Health and Disease: Did We Forget the Fathers? Bioessays. 2018 Jan;40(1).
- Lock MC, Botting KJ, Tellam RL, Brooks D, Morrison JL. Adverse Intrauterine Environment and Cardiac miRNA Expression. Int J Mol Sci. 2017 Dec 6;18(12).
- Mochizuki K, Hariya N, Honma K, Goda T. Relationship between epigenetic regulation, dietary habits, and the developmental origins of health and disease theory. Congenit Anom (Kyoto). 2017 Nov;57(6):184-190.

- Hoffman DJ, Reynolds RM, Hardy DB. Developmental origins of health and disease: current knowledge and potential mechanisms. Nutr Rev. 2017 Dec 1;75(12):951-970.
- Van Baak TE, Coarfa C, Dugué PA, et al. Epigenetic supersimilarity of monozygotic twin pairs. Genome Biol. 2018 Jan 9;19(1):2.
- Sun W, Dong H, Becker AS, Dapito DH, et al. Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring. Nat Med. 2018 Sep;24(9):1372-1383.
- Webster AP, Plant D, Ecker S, Zufferey F, et al. Increased DNA methylation variability in rheumatoid arthritis-discordant monozygotic twins. Genome Med. 2018 Sep 4;10(1):64.
- Helsley RN, Zhou C. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view. Environ Epigenet. 2017 Oct 1;3(4). pii: dvx017.
- Peixoto P, Renaude E, Boyer-Guittaut M, Hervouet E. Epigenetics, a key player of immunotherapy resistance. Cancer Drug Resist 2018;1:219-29.
- Daniūnaitė K, Jarmalaitė S, Kriukienė E. Epigenomic technologies for deciphering circulating tumor DNA. Curr Opin Biotechnol. 2019 Feb;55:23-29.
- Bassi S, Tripathi T, Monziani A, Di Leva F, Biagioli M. Epigenetics of Huntington's Disease. Adv Exp Med Biol. 2017;978:277-299.
- Mackay DJG, Temple IK. Human imprinting disorders: Principles, practice, problems and progress. Eur J Med Genet. 2017 Nov;60(11):618-626.
- Gonzalez-Nahm S, Mendez MA, Benjamin-Neelon SE, Murphy SK, Hogan VK, Rowley DL, Hoyo C. DNA methylation of imprinted genes at birth is associated with child weight status at birth, 1 year, and 3 years. Clin Epigenetics. 2018 Jun 28;10:90.
- Bell CG. The Epigenomic Analysis of Human Obesity. Obesity (Silver Spring). 2017 Sep;25(9):1471-1481.
- Jain S, Thakkar N, Chhatai J, Pal Bhadra M, Bhadra U. Long non-coding RNA: Functional agent for disease traits. RNA Biol. 2017 May 4;14(5):522-535.
- Kelly AD, Issa JJ. The promise of epigenetic therapy: reprogramming the cancer epigenome. Curr Opin Genet Dev. 2017 Feb;42:68-77.
- Nilsson E, Ling C. DNA methylation links genetics, fetal environment, and an unhealthy lifestyle to the development of type 2 diabetes. Clin Epigenetics. 2017 Oct 3;9:105.
- Riemens RJM, Soares ES, Esteller M, Delgado-Morales R. Stem Cell Technology for (Epi)genetic Brain Disorders. Adv Exp Med Biol. 2017;978:443-475.
- Loche E, Ozanne SE. Early nutrition, epigenetics, and cardiovascular disease. Curr Opin Lipidol. 2016 Oct;27(5):449-58.
- Martinez-Arguelles DB, Papadopoulos V. Prenatal phthalate exposure: epigenetic changes leading to lifelong impact on steroid formation. Andrology. 2016 Jul;4(4):573-84
- Gunes S, Arslan MA, Hekim GN, Asci R. The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet. 2016 May;33(5):553-69.
- Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity. 2016;49(2):69-83.
- Prokopuk L, Western PS, Stringer JM. Transgenerational epigenetic inheritance: adaptation through the germline epigenome? Epigenomics. 2015 Aug;7(5):829-46.
- Yamada L, Chong S. Epigenetic studies in Developmental Origins of Health and Disease: pitfalls and key considerations for study design and interpretation. J Dev Orig Health Dis. 2017 Feb;8(1):30-43.
- Elshenawy S, Simmons R. Maternal obesity and prenatal programming. Mol Cell Endocrinol. 2016 Nov 5;435:2-6.

Lopomo A, Burgio E, Migliore L. Epigenetics of Obesity. Prog Mol Biol Transl Sci. 2016;140:151-84. Kappil M, Wright RO, Sanders AP. Developmental Origins of Common Disease: Epigenetic

- Contributions to Obesity. Annu Rev Genomics Hum Genet. 2016 Aug 31;17:177-92.
- Trump S, Bieg M, Gu Z, et al. Prenatal maternal stress and wheeze in children: novel insights into epigenetic regulation. Sci Rep. 2016 Jun 28;6:28616.
- Joubert BR, Felix JF, Yousefi P, et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet. 2016 Apr 7;98(4):680-96.
- Talwar P, Sinha J, Grover S, et al. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective. Mol Neurobiol. 2016 Sep;53(7):4833-64.
- Harb H, Renz H. Update on epigenetics in allergic disease. J Allergy Clin Immunol. 2015 Jan;135(1):15-24.
- Chapman CG, Pekow J. The emerging role of miRNAs in inflammatory bowel disease: a review. Therap Adv Gastroenterol. 2015 Jan;8(1):4-22.
- Chinaranagari S, Sharma P, Bowen NJ, Chaudhary J. Prostate cancer epigenome. Methods Mol Biol. 2015;1238:125-40.
- Crujeiras AB, Casanueva FF. Obesity and the reproductive system disorders: epigenetics as a potential bridge. Hum Reprod Update. 2015 Mar;21(2):249-261.
- Lolak S, Suwannarat P, Lipsky RH. Epigenetics of depression. Prog Mol Biol Transl Sci. 2014;128:103-37.
- Turgeon PJ, Sukumar AN, Marsden PA. Epigenetics of Cardiovascular Disease A New "Beat" in Coronary Artery Disease. Med Epigenet. 2014 Apr;2(1):37-52.
- Sterns JD, Smith CB, Steele JR, Stevenson KL, Gallicano GI. Epigenetics and type II diabetes mellitus: underlying mechanisms of prenatal predisposition. Front Cell Dev Biol. 2014 May 5;2:15.
- Tordjman S, Somogyi E, Coulon N, et al., Gene × Environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry. 2014 Aug 4;5:53.
- Mann DA. Epigenetics in liver disease. Hepatology. 2014 Oct;60(4):1418-25.
- Glant TT, Mikecz K, Rauch TA. Epigenetics in the pathogenesis of rheumatoid arthritis. BMC Med. 2014 Feb 26;12:35.
- Knower KC, To SQ, Leung YK, Ho SM, Clyne CD. Endocrine disruption of the epigenome: a breast cancer link. Endocr Relat Cancer. 2014 Mar 12;21(2):T33-55.
- Liu Y, Li H, Xiao T, Lu Q. Epigenetics in immune-mediated pulmonary diseases. Clin Rev Allergy Immunol. 2013 Dec;45(3):314-30.
- Ruchat SM, Hivert MF, Bouchard L. Epigenetic programming of obesity and diabetes by in utero exposure to gestational diabetes mellitus. Nutr Rev. 2013 Oct;71 Suppl 1:S88-94.
- Zovkic IB, Meadows JP, Kaas GA, Sweatt JD. Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Front Psychiatry. 2013 Jun 26;4:60.
- Lesogor A, Cohn JN, Latini R, et al. Interaction between baseline and early worsening of renal function and efficacy of renin-angiotensin-aldosterone system blockade in patients with heart failure: insights from the Val-HeFT study. Eur J Heart Fail. 2013 Nov;15(11):1236-44.
- Rao CV, Yamada HY. Genomic instability and colon carcinogenesis: from the perspective of genes. Front Oncol. 2013 May 21;3:130.
- Wild CP, Scalbert A, Herceg Z. Measuring the exposome: a powerful basis for evaluating environmental exposures and cancer risk. Environ Mol Mutagen. 2013 Aug;54(7):480-99.

Qureshi IA, Mehler MF. Understanding neurological disease mechanisms in the era of epigenetics. JAMA Neurol. 2013 Jun;70(6):703-10.

Gapp K, Woldemichael BT, Bohacek J, Mansuy IM. Epigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience. 2014 Apr 4;264:99-111.

Pogribny IP, Rusyn I. Environmental toxicants, epigenetics, and cancer. Adv Exp Med Biol. 2013;754:215-32.

Leow MK. Environmental origins of hypertension: phylogeny, ontogeny and epigenetics. Hypertens Res. 2015 Feb 19. doi: 10.1038/hr.2015.7. [Epub ahead of print]

Jasoni CL, Sanders TR, Kim DW. Do all roads lead to Rome? The role of neuro-immune interactions before birth in the programming of offspring obesity. Front Neurosci. 2015 Feb 3;8:455.

Feng Y, Jankovic J, Wu YC. Epigenetic mechanisms in Parkinson's disease. J Neurol Sci. 2015 Feb 15;349(1-2):3-9.

Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther. 2015 Mar;147C:91-110.

Roadmap Epigenomics Consortium, Kundaje A, et al., Integrative analysis of 111 reference human epigenomes. Nature. 2015 Feb 19;518(7539):317-30.

- Turgeon PJ, Sukumar AN, Marsden PA. Epigenetics of Cardiovascular Disease A New "Beat" in Coronary Artery Disease. Med Epigenet. 2014 Apr;2(1):37-52.
- Taylor EM, Jones AD, Henagan TM. A Review of Mitochondrial-derived Fatty Acids in Epigenetic Regulation of Obesity and Type 2 Diabetes. J Nutrit Health Food Sci. 2014 Aug 7;2(3):1-4.
- Broen JC, Radstake TR, Rossato M. The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat Rev Rheumatol. 2014 Nov;10(11):671-81.
- Deng Y, Tsao BP. Advances in lupus genetics and epigenetics. Curr Opin Rheumatol. 2014 Sep;26(5):482-92.
- Bahari-Javan S, Sananbenesi F, Fischer A. Histone-acetylation: a link between Alzheimer's disease and post-traumatic stress disorder? Front Neurosci. 2014 Jun 24;8:160.
- Küçükali C, Kürtüncü M, Coban A, Cebi M, Tüzün E. Epigenetics of Multiple Sclerosis: An Updated Review. Neuromolecular Med. 2014 Mar 21. [Epub ahead of print]
- Mann DA. Epigenetics in liver disease. Hepatology. 2014 Oct;60(4):1418-25.
- Martínez JA, Milagro FI, Claycombe KJ, Schalinske KL. Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv Nutr. 2014 Jan 1;5(1):71-81.

Liu MM, Chan CC, Tuo J. Epigenetics in ocular diseases. Curr Genomics. 2013 May;14(3):166-72.

Gay S, Wilson AG. The emerging role of epigenetics in rheumatic diseases. Rheumatology (Oxford). 2014 Mar;53(3):406-14.

Wing MR, Ramezani A, Gill HS, Devaney JM, Raj DS. Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin Nephrol. 2013 Jul;33(4):363-74.

Tezza G, Mazzei F, Boner A. Epigenetics of allergy. Early Hum Dev. 2013 Jun;89 Suppl 1:S20-1.

Sun C, Burgner DP, Ponsonby AL, et al., Effects of early-life environment and epigenetics on cardiovascular disease risk in children: highlighting the role of twin studies. Pediatr Res. 2013 Apr;73(4 Pt 2):523-30.

- Youngson NA, Morris MJ. What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 5;368(1609):20110337.
- Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. (2013) Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 8(1):e55387.

The search for organizing principles as a cure against reductionism in systems medicine

Olaf Wolkenhauer^{1,2} and Sara Green³

1 Department of Systems Biology and Bioinformatics, University of Rostock, Germany

2 Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, South Africa

3 Centre of Science Studies, Department of Physics and Astronomy, Aarhus University, Denmark

Keywords

fragmentation; generalization; mathematical general systems theory; mathematical modelling; multi-scale modelling; organizing principles; systems biology; systems medicine; systems theory; theorem proving

Correspondence

O. Wolkenhauer, Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany Fax: +49 381 498-7572 Tel: +49 381 498-7570 E-mail: olaf.wolkenhauer@uni-rostock.de

(Received 31 January 2013, revised 19 April 2013, accepted 22 April 2013)

doi:10.1111/febs.12311

Biological complexity has forced scientists to develop highly reductive approaches, with an ever-increasing degree of specialization. As a consequence, research projects have become fragmented, and their results strongly dependent on the experimental context. The general research question, that originally motivated these projects, appears to have been forgotten in many highly specialized research programmes. We here investigate the prospects for use of an old regulative ideal from systems theory to describe the organization of cellular systems 'in general' by identifying key concepts, challenges and strategies to pursue the search for organizing principles. We argue that there is no tension between the complexity of biological systems and the search for organizing principles. On the contrary, it is the complexity of organisms and the current level of techniques and knowledge that urge us to renew the search for organizing principles in order to meet the challenges that are arise from reductive approaches in systems medicine. Reductive approaches, as important and inevitable as they are, should be complemented by an integrative strategy that de-contextualizes through abstractions, and thereby generalizes results.

Introduction

Cell-biological systems are difficult to study because they are complex in several ways [1]. One aspect of biological complexity that is particularly important to systems medicine is multi-levelness: the structural and functional organization of the human body into organ systems and tissues composed of cells. From molecules to organs, levels are inter-related and inter-dependent, so that the organism is able to conserve and adapt the integrity of its structural and functional organization against a back-drop of continuous changes within the organism and its environment. This capacity, whether it is described as 'autoconservation' [2], 'functional stability' [3], 'evolvability' or 'robustness' [4-6], is a consequence of non-linear spatio-temporal intra- and inter-cellular interactions. To understand diseaserelevant cellular processes, we therefore require methodologies that allow us to study non-linear spatio-temporal systems with multiple levels of structural and functional organization.

The most recent decades of research in the life sciences have been largely driven by development of new technologies, which have brought about unprecedented insights into the structural organization of cells [7,8]. Together with these technological developments, a form of reductionism, i.e. studying higher-level phenomena by analysing the lower levels, has been established [9]. While some aspects of this 'zooming in' are a pragmatic and indispensible response to biological complexity, we here demonstrate the negative sideeffects of molecule-, pathway- and cell-centred approaches.

The emergence of systems biology is connected to the limitations of molecule-centred approaches [10]. Systems biology has shifted the focus from identification and characterization of molecular components towards an understanding of networks and functional activity. As a consequence, dynamic systems theory has played an increasingly important role in understanding cellular processes [11,12]. We argue that, for the transition from systems biology to systems medicine, a further shift of perspective has to occur: re-focusing our attention away from pathwaycentred approaches to an understanding of complex multi-level systems. Looking at the developments from biochemistry to systems biology, it becomes quite apparent that reductive approaches are rather limited when it comes to answering questions in systems medicine [13]. In systems medicine, our understanding of cellular functions must be integrated across multiple levels of structural and functional organization: from cells to tissues and organs to whole organisms, and from cell functions (growth, proliferation, differentiation and apoptosis) to the physiology of organs or the human body [14]. Multi-levelness is a hallmark of disease-relevant processes, which challenges conventional dynamic systems theory [15,16]. Here we provide an example from cancer research that demonstrates the limitations of pathway- and cell-centred approaches.

Our goal in this review is to evaluate, from a personal and necessarily biased perspective, reductive approaches and their limitations in answering questions at the tissue and organ level by conducting experiments at the molecular and cell level. We first consider how biological complexity challenges experimentalists and modellers alike, and then look at how the associated difficulties have led to specialization, fragmentation and the contextualization of knowledge. Following a discussion of reductive approaches and their negative consequences (in our view), we suggest possible future directions for research in systems medicine. In particular, we argue that the search for organizing principles may serve as a cure against the side-effects of reductive approaches in systems medicine.

While not essential to our arguments, here we understand systems biology as the science that studies how biological function emerges from interactions between the components of living systems, and how these emergent properties constrain the behaviour of these components. In practice, systems biology is an inter-disciplinary approach by which biological questions are addressed by integrating experiments in iterative cycles with mathematical and computational analysis. Systems medicine should be understood as application of the systems biology approach to disease-focused or clinically relevant research problems. A research challenge arising from systems medicine, that is discussed in detail here, is the fact that, for many diseases, it is necessary to study and model complex systems from the molecular to the organ level.

Reductionism and specialization

In studying networks rather than individual molecular components, some proponents of systems biology have considered systems biology a 'holistic approach' [17-19]. This unfortunate misconception ignores the fact that technological advances have continued to enforce reductive approaches, along with increasing levels of specialization. Ten years ago, the focus on pathways rather than single molecules may have been seen to be a more comprehensive approach, but even today we are still far down the reductive route, with the current dominance of pathway-centred approaches to understand disease phenomena. Reductive strategies are indeed an indispensible response to biological complexity, but, as we discuss here, they have negative sideeffects. One such side-effect is over-specialization, which, in the current practice of systems biology, means that the choice of experimental and modelling strategies is more frequently guided and limited by personal and practical considerations than by the need to validate a general hypothesis that underlies the research project. The approaches chosen are frequently linked to decisions based on pragmatic considerations of the associated efforts in terms of time and costs required for experiments. For example, in research on metastasis, many projects are focused on single molecules or small pathways, frequently using specific cell lines. There is a mismatch between the research goal (understanding mechanisms underlying metastasis in humans) and the highly specialized projects, whose results are only valid in a narrowly defined context. There is an obvious need for integration of results from individual research projects and a need for generalization (de-contextualization) of results.

Below, we describe several reductive strategies used in biological and biomedical research. We first emphasize how the use of model organisms and the development of new experimental technologies provide key resources for biomedical research, but also require a high degree of specialization that may lead to fragmentation. Next, we indicate the difficulties arising from pathway-centred approaches and mechanistic modelling. Finally, we discuss the limitation of cell-centred approaches in cancer research.

The use of model organisms is one response to biological complexity, allowing us to study a complex organism by using another one that is either simpler or easier to handle in experiments. An example is yeast studies in cancer research, motivated by questions related to the cell cycle and its consequences for carcinogenesis or tumor progression [20]. The experimental focus on a particular model organism, the decision to perform cell line in vitro experiments or the availability of a suitable in vivo model are our first examples of a common reductive approach, which also imply a disciplinary specialization with separate conferences and journals. However, research on model organisms also provides de-contextualized insights. A basic assumption in using model organisms or cell lines is that, while details may differ, there are some generalizable principles at work. We believe that the relationship between reductive choices, inevitable and successful as they are, and the generalization of results obtained, requires more attention from scientists, philosophers of science and funding bodies. For reductive approaches to succeed, they must be complemented by integrative strategies. We argue that these integrative strategies also require higher levels of abstraction than most biological and biomedical researchers currently feel comfortable with, and this requires further mathematical research.

What have been heralded as revolutionary advances in molecular and cell biology are largely due to technological developments, allowing us to study molecules and cells in greater detail and more comprehensively. The costs and the specialist expertise required to perform experiments with state-of-the-art measurement devices have meant that only one or a selection of technologies are used in any one study for most research projects. Whether the choice is microscopy, proteomics, transcriptomics or deep sequencing, their use requires a high degree of specialization. 'Omics' technologies are frequently tied to a focus on a particular class of subcellular processes, i.e. gene regulation (e.g. transcriptomics), signal transduction (e.g. proteomics) or metabolism (e.g. metabolomics). Again, a disciplinary fragmentation, with specialized conferences and journals, may be observed. Furthermore, another enforcement of scientific specialization is linked to the focus on a particular cell function, such as cell growth, proliferation, differentiation and apoptosis. It is quite obvious, albeit not generally appreciated, that, for application of systems biology approaches in biomedical research, there is not only a need for computational tools that enable integration of data from heterogeneous sources, but also a need for radically new methodologies that enable generalization of context-dependent experimental results.

Our next example of a reductive strategy is the focus on selected pathways or networks. Pathways are frequently defined by practical considerations, meaning that only a relatively small number of molecules are considered in experiments. However, for most disease-

relevant processes, these pathways are sub-systems of a larger whole. Rational criteria to identify modules or sub-systems are largely lacking. In practice, one is usually forced to define a boundary for the network as it is investigated experimentally. If this pathway is one of several that contribute to a particular cell function, for example, the notion of 'cross-talk' between pathways has been used. However, for most pathways that interact, this notion of cross-talk raises questions about the conceptual and experimental isolation of the two systems. In order to use the experimental results related to a specific pathway in a wider context (e.g. studying the Jak-Stat signalling pathway to investigate cell differentiation), we require new methodological and conceptual frameworks to de-contextualize and generalize. A similar situation occurs when studies at the cellular level (looking at single cells, cell cultures and single pathways) need to be related to tissue-level phenomena and the physiology of an organ. We believe that the problem of generalization through de-contextualization and the integration of experimental results requires more attention and research, as otherwise the currently favoured pathway-centred approaches will be of limited value.

Systems biology is largely defined as an inter-disciplinary approach that combines experiments with mathematical and computational modelling. Like experimentalists, who are often not free to choose any technology they want, most modellers are not really free to choose a conceptual framework for modelling. Despite the development of user-friendly tools that guide the modelling and simulation of biological systems, the construction of a model and its parameterization requires expert knowledge. Although the choice of an appropriate approach should in principle be guided by the question under consideration alone, more often, practical considerations and personal choices are decisive. Similar to the efforts required to perform experiments, the construction and analysis of a model may be challenging, requiring a high degree of specialization and experience. For example, non-linear ordinary differential equations are the most frequently used framework, but, for larger numbers of variables, parameterization and analysis of these models is difficult. Dynamic systems theory is particularly intuitive if systems can be reduced to a few variables. For systems with only two variables, and for systems that are linearized around a steady state, the theory is most powerful and well developed. It is therefore not surprising that some case studies are selected to fit the tools, rather than the other way round. In contrast to differential equation models, agent-based simulation models handle many variables and represent spatial

aspects more easily, but the 'model' is programmed, lacking the desirable simplicity of representation. Also, stochastic approaches, even if the most appropriate, are often avoided because they require a deeper understanding of the maths by the modeller. The choice of an appropriate modelling formalism, the construction of the model, the estimation of parameter values and subsequent exploration of the model through simulation and formal analysis are aspects of a craft that requires specialization. Tailoring a model around a particular question, making various assumptions and simplifications along the way, will unfortunately also make it context-dependent.

The creation of large collections of information from experiments using various experimental models and employing a wide range of technologies and methodologies requires integrative strategies through which fragmented information may be put together [13,21,22]. A pragmatic, computational way forward is to support integration of information through visualization of information in data management systems or data warehouses. However, this would only be a partial contribution to what is the actual scientific challenge: how can we, from large collections of information, extract principles, understood as robust generalizations, independent of the experimental context of any particular study? Take, for example, our understanding of cell functions, say apoptosis, for which numerous studies, using different technologies and experimental models (e.g. cell lines, genetic mouse models), have provided pieces of a puzzle that give us deeper insights into apoptosis in the context of carcinogenesis. Many experiments in molecular and cell biology are however valid only within a well and often narrowly defined experimental context, determined by the choice of technology and the biological model. Furthermore, most mathematical models are constructed to answer specific questions, and, while the assumptions made may be valid in this particular context, it is difficult if not impossible to merge models for complex multi-level systems. An important challenge for systems medicine is thus the integration and decontextualization of results, to put the pieces of a puzzle together.

A survey of review articles focusing on epithelial cell renewal in the context of colon cancer uncovers numerous speculations about the theories and (explanatory) models that may be formulated as organizing principles, including the 'unitarian hypothesis' of monoclonal conversion, the 'single stem cell hypothesis' or the 'stem cell niche hypothesis' in the context of niche succession, the 'hierarchical model' compared to the 'stochastic model' for niche homeostasis, the

'somatic mutation theory' versus 'tissue field organization theory' to explain carcinogenesis, or the 'topdown' versus 'bottom-up' hypothesis of clonal expansion linked to early growth of adenomas, or cancer progression being discussed in terms of the 'cancer stem cell model' versus the 'clonal evolution model' versus the 'interconversion model'. What this selection exemplifies is that the formulation of such principles and arguments for or against them are developed in exceptionally well-written review articles in biological journals: leading experts integrate knowledge by interpreting collections of fragmented pieces of information. Very often, the experimental studies are about cellular processes, but the results are interpreted with respect to consequences at the tissue level. What we propose is not simply to support this integrative process through data management and visualization tools. In addition, the search for organizing principles should be supported by systems theoretic approaches, specifically new forms of mathematical modelling to formalize cross-level relationships from molecules and cells to tissues and organs.

Our argument here is that a review of current practice leads us to the proposition that, if you want to understand a tissue, you need to study it as a whole! Interestingly, this argument mirrors an aspect in the transition from biochemistry to systems biology. In 1986, Kacser, commenting on whole-part relationships in metabolism, wrote 'to understand the whole, one must study the whole' [21]. Here, however, we reach an apparent contradiction because we also argue that reductive approaches, focusing on pathways and cells, are inevitable in the light of biological complexity and the experimental/technical challenges. How then may we escape the reductive cul-de-sac? One avenue is to 'up-scale' experiments and models, to incrementally increase the number of molecular components and pathways to be looked at. However, we have come to the conclusion that it is necessary to try to complement such reductive strategies by novel approaches that provide higher levels of abstraction, using systems theory. Abstraction in mathematical modelling allows us to link evidence and knowledge of the subcellular domain or cell level with the tissue and whole-organ level. A conceptual framework that provides a straightforward generalization of mechanistic models and that has been considered elsewhere is mathematical general systems theory [22,23]. An interesting problem that arises in this context is transition of a mechanistic model as an 'ontological' description of a biochemical and biophysical reality to a mathematical representation of what we know about the biological system - an 'epistemological' version of logical possibilities that link evidence [24]. The move to higher levels of abstraction poses a number of challenges. For example, abstraction implies generalization, which in turn implies a lack of specificity – the more abstract the representation becomes, the less predictive the models are about a specific experimental context. In our view, this aspect is in fact showing the way forward: reductive approaches that 'zoom in' on cellular mechanisms in the context of human medicine ought to be complemented by a search for general organizing principles at higher levels of structural and functional organization in tissues and organs.

Below, we identify the challenges specific to systems medicine, leading up to a proposal for a way forward that addresses the complexity of disease-relevant processes. We argue that, despite its limitations, modelling is essential not only for systems biology and systems medicine, but for science in general. In our view, the response to biological complexity should not only be a reductive one. To go forward, there is also a need to strategically focus on the development of approaches that 'zoom out' to help us understand multi-level systems. Addressing experimentalists and modellers alike, we wish to proclaim that, to study disease-relevant processes in tissues, one should also study tissues through an active search for organizing principles.

Consequences for systems medicine

Many diseases represent problems of tissue organization: changes in the structure and function of a tissue may be the results of changes within cells (e.g. mutations), leading to cellular malfunction, but, simultaneously, tissue organization may also induce changes within cells (e.g. through epigenetic mechanisms). It therefore appears obvious that we require methodologies to investigate systems across multiple levels of functional and structural organization.

Cancer research is an example that illustrates the problems arising from reductive approaches, fragmentation and the dependency of results on a particular technological and/or experimental context. Hanahan and Weinberg's review 'The hallmarks of cancer' [25] may serve as a classification of research efforts. Most cancer projects focus on a particular cancer and on either carcinogenesis, tumour progression, or metastization and invasion. These high-level/tissue-level phenomena provide the motivation and background for the projects, but, in practice, the highly specialized research in most projects actually does not address such general questions directly. Instead, the current practice is rather 'pathway-centred', where most proO. Wolkenhauer and S. Green

jects ask a very specific question, related to a specific pathway, say the Jak-Stat pathway or an MAPK pathway, or concentrate on the role of a particular molecule, say p53 or E2F1 [26]. The 'zooming in' on molecular components has been very important and has generated enormous amounts of valuable information. The work on a particular molecule, say p53, is argued to be justified on the basis of its role in a cellular process, like DNA damage response. This focus on a particular molecule leads to definition of a network of molecules linked to p53, small enough to be experimentally tractable. However, as the cancer biologist Lazebnik notes: 'the mystery of what the tumour suppressor p53 actually does seems only to deepen as the number of publications about this protein rises above 23 000 [27]. In this famous and provocative paper, Lazebnik asks whether biologists can meet two challenges described as analogous: fixing a radio and developing a general characterization of apoptosis. He comes to the conclusion that the strategy of biologists would fail in both cases, as this most likely would be to crush the radio down to all its components and analyse these, just as much of medical research has been a search for a miracle target whose malfunction is thought to explain the investigated disease. If no such master gene exists that can explain cancer, Lazebnik argues, the status of research is like the Chinese proverb alluding to the search for a cat in darkness that is not even there.

It appears that we have become so preoccupied with molecular details that we have forgotten to ask how all the research results relate to answering the big (higher-level) questions. We believe that, for some disease-related phenomena, we are failing to see the wood for the trees. It is paradoxical that most cancer research projects are motivated by a far more general research question that is largely ignored in the execution of these research programmes. The pragmatic reductionism that focuses on particular molecules and pathways creates a fundamental problem. The focus on a particular molecule or pathway may be justified by researchers on the basis of its relevance for an important cellular process (e.g. DNA repair), which in turn is associated to some cell function (e.g. apoptosis), that is then linked to some disease-relevant process (e.g. carcinogenesis). However, starting with a high-level phenomenon, say angiogenesis, one may easily identify a large number of molecules and pathways that are relevant. Therefore, how may any single project, motivated by a higher-level process but limited to a particular experimental context, provide any meaningful contribution? In our view, the current practice is not sustainable, and requires re-thinking of how we go about answering bio-medically relevant questions in molecular and cell biology.

Systems biology emerged from a shift of focus, away from identification of cellular components and their molecular characterization towards an understanding of functional activity [28,29]. For systems medicine, it will be of utmost importance to move on from pathway-centred approaches. Rather than starting with subcellular mechanisms and models thereof, before generalizing these to the level of cell functions and their role in phenomena at the tissue level, we wish to promote an alternative route that starts with a hypothesized general principle about tissue organization, to then identify and investigate cellular functions and subcellular processes in an effort to validate the original hypothesis.

We believe that such a search for organizing principles is happening but is mostly hidden in a few review articles and left to the inspiration of a few scientists. Cancer research is an area in which review articles play a particularly important role due to the above-mentioned flood of information about individual molecular components. Exceptionally good review articles not only gather and list information in a summarized form, but the authors try to organize the information to speculate about the larger picture into which the pieces of the puzzle may fit. Take, for example, the highly cited review article 'The hallmarks of cancer' by Hanahan and Weinberg [25]. Looking at a quarter of a century of rapid advances in cancer research, the authors argue that rather than 'adding further layers of complexity to a scientific literature that is already complex beyond measure', the search for the origin and treatment of cancer will not only be driven by developments at the technical level 'but ultimately, the more fundamental challenge will be conceptual'. In 2000, Hanahan and Weinberg foresaw 'cancer research developing into a logical science, where the complexities of the disease, described in the laboratory and clinic, will become understandable in terms of a small number of underlying principles' [25]. In their seminal review article, Hanahan and Weinberg 'suggest that the vast catalog of cancer cell genotypes is a manifestation of six essential alterations in cell physiology that collectively dictate malignant growth' which 'are shared in common by most and perhaps all types of human tumors'. They refer to the functional capabilities that cancers acquire during their development as 'hallmarks of cancer'. A hallmark of cancer is here understood to be a generalization in the sense that it may be acquired by various cellular mechanisms. Hanahan and Weinberg's hallmarks therefore take us some way towards the search for organizing principles as an epistemological tool.

As discussed further below, organs and tissues are multi-level systems manifesting both 'regressive determination' and 'progressive determination': the whole (organ or tissue) is the product of the parts (tissue or cells, respectively), but the parts in turn depend upon the whole for their own functioning and existence. Karsenti's initial definition of self-organization implied that understanding of functions in living systems implied an understanding of (self) organization [30]. This also implies that we should focus on principles rather than on single molecules or pathways alone. In our view, the current practices in cancer systems biology require re-thinking. The technological advances that have enabled us to 'zoom in' should be complemented by methodologies that allow us to 'zoom out': the microscope of molecular and cell biology should be complemented by the 'macroscope' of systems theory.

Multi-levelness and the search for organizing principles

Living systems, from organisms to organs, tissues and cells are phenomena of organized complexity [31] whose relationships and properties are largely determined by their function as a whole. The tissues of our human body are self-organizing systems: every cell owes its presence to the action of all its surrounding cells, and also exists for the sake of the others. The whole (tissue) and its parts (cells) reciprocally determine functioning of each other. For instance, the pacemaker rhythm of the heart is not only caused by the activity of the ion channels at the molecular level, but is also dependent on the functioning of the organ, and even the body, as a whole. The systems biologist Denis Noble elegantly demonstrated the importance of such downward determination in simulations of the heart rhythm, where feedback from cell voltage was removed and fluctuations in ion current ceased [32,33]. To understand such phenomena in multi-level systems, it is not only important to understand molecular mechanisms but also to understand the organizational maintenance of the system at higher levels.

The human body provides the prototypical example of a multi-level system, where molecules, cells, tissues and organs are sub-systems of physiological systems (e.g. the cardiovascular system, the digestive system, the immune system etc.) The human body is thus structurally organized into spatio-temporal scales and functionally organized into behavioural levels (Fig. 1). A characteristic of the system, as a whole, is its functional stability against a back-drop of continuously changing and perturbed sub-systems [3].

Fig. 1. Structural and functional (self) organization of tissues using the intestinal colon as an example.

Take, for example, the large intestine (colon) of the digestive system, which is also a common site for carcinogenesis. The inner lining of the colon is organized into millions of crypts [34,35]. The base of the crypts form a niche and micro-environment for a small number of stem cells that continuously renew the epithelial layer in order to maintain the physiological function of the colon (nutrient absorption) and to repair or avoid possibly detrimental effects from mechanical or chemo-toxic stress, which may lead to the formation of neoplasms and possibly carcinomas. The structural organization of the crypt emerges 'bottom-up', and its function is maintained through division and differentiation of stem cells. At the same time, the behaviour of these stem cells is coordinated by higher-level phenomena resulting from the need for tissue maintenance and repair. In the more general framework of multi-level systems with reciprocal and simultaneous cross-level determination, levels are inter-dependent but not necessarily causally linked [36]. Here, intra-level relationships may be conventional causal interactions, such as the mechanisms realized through subcellular biochemical networks, where causality is understood as a principle of explanation of change, not changes of things, but changes of states, represented with mechanistic models from dynamical systems theory. Inter-level relationships, on the other hand, constitute an interdependence in which levels are allowed a degree of autonomy [35,37]. The fact that levels are inter-dependent, but not necessarily causally linked, challenges the current practice of reductive approaches in experimentation and modelling. While systems approaches have been quite successful in describing mechanisms underlying intra-level relationships or 'causal interactions', we are in need of new ideas when it comes to understanding inter-level relationships. Below, we argue that mathematical general systems theory is one possible conceptual framework that abstracts conventional dynamical models and thus provides a basis for generalization from mechanistic models.

Let us consider an example from cancer research, where the need for identification and understanding of cross-level principles is of crucial importance. This example continues our discussion about the negative side-effects of reductive approaches. A widely accepted view on cancer is that it is a cell-based disease [38]. With cancer research following closely the developments in molecular and cell biology, pathway- and cell-centred (reductive) approaches have enforced the view that sporadic cancers are initiated and largely driven by accumulation of mutations in what may then be called a 'cancer cell' that loses control over its proliferation. Hanahan and Weinberg state that, 'By simplifying the nature of cancer - portraying it as a cell-autonomous process intrinsic to the cancer cell these experimental models have turned their back on a central biological reality of tumor formation in vivo: cancer development depends upon changes in the heterotypic interactions between incipient tumor cells and their normal neighbors' [25]. Soto and Sonnenschein [39], who refer to the cell-centred view of carcinogenesis as the 'somatic mutation theory', have proposed an appealing alternative theory that considers cancer to be a problem of tissue organization. A key premise to their 'tissue field organization theory' is that 'carcinogenesis takes place at the tissue level of biological organization, as does normal morphogenesis'. Here cancer is not a cell-based phenomenon but a tissuebased phenomenon, comparable to organogenesis during early development. A startling conclusion is that the genetic instability of tumours is likely to be a consequence, not a cause, of cancer. As new deep-sequencing technologies are pushing forward the reductionist agenda, we here call for a reflection about the original questions at tissue level, and ask whether the technology-driven reductionism should not be complemented by an equally well supported research programme into new, integrative and abstract methodologies. The purchase of technologies that dig deeper into the molecular details of a tumour sample is the seemingly more comfortable route. However, if cancer is a problem of tissue organization rather than of single cells, new experimental designs will be required. For modelling, the outlook is as challenging as it is exciting: if cancer is a problem of tissue organization, reciprocal interactions between cells and their environment come into focus, and ordinary differential equations are no longer sufficient to capture the spatial coupling of biochemical and biophysical/mechanical interactions. As discussed below, modelling complex systems across multiple scales of spatial and temporal organization may take two routes.

From multi-scale to multi-level systems analysis

How does one study multi-level systems, i.e. investigate, the functioning at higher levels of tissue organization? One possibility, proposed by several large-scale research projects such as the Virtual Physiological Human Project [14,40] or the Human Brain Project [41-43] is to simulate organs in physical and chemical detail, bottom-up, from molecules to organs. However, the attempt to meet biological complexity with a complexity of models that include ever increasing details seems somewhat to be analogous to Lewis Carroll's and Jorge Borge's fictions, where the art of cartography attains such perfection that the maps become as detailed and as big as the countries they represent. These maps are abandoned as useless, not because of the lack of precision, but because of their exact accuracy [44,45]. Similarly, it has been argued that the way forward in the biological and biomedical sciences is not to try to include all details and to add further levels of complexity to models and the scientific literature, but rather to develop approaches that zoom out and focus on key aspects of the phenomena studied [46-48].

An alternative response to the complexity of tissues and organs is to abstract away from the biophysical and biochemical details. The basis for such generalization of mechanistic models into more abstract representations is mathematical general systems theory [23]. While more abstract, and therefore less specific about a particular system, these approaches provide a framework to formulate and identify organizing principles [24,35,37]. An example of what such a theory should deliver is a formal framework to represent tissue organization, which may then be used to decide between the alternative theories of carcinogenesis discussed above.

The focus here on organizing principles is a re-introduction of an old regulative ideal in systems sciences dating back to Bertalanffy's ideals for a general systems theory [49], to Rashevsky and Rosen's notion of optimality principles [50-52], and to Savageau's so-called demand theory for gene expression, which exemplify design principles in biochemical systems theory [53,54]. The prospects of a more theoretically grounded biology searching for general and perhaps even law-like principles of living systems has been the issue of long debate in philosophy of biology [55–57]. However, the search for organizing principles need not rest on the widely criticized optimality approach [37,58,59], but is here understood as robust generalizations that account for the general behaviour of a class of (often different) systems. This strategy is not an attempt to reduce away biological complexity with abstract approaches. Our proposed focus on organizing principles is not an alternative to bottom-up approaches, or mechanistic modelling; it is a complementary approach. For that matter, it is also reductionist, but in a different sense. Every model or scientific theory is a reduction of something complex to something simpler [47]. The search for organizing principles is a matter of reducing the number of details and the amount of context-dependent information for the sake of the generality achieved through abstraction. This ideal is not in opposition to finding biological mechanisms but rather has a different aim, namely to find out how a class of systems works in principle.

In recent years, interest in general principles underpinning the organization of biological systems has intensified, and we expect this to continue. Efforts in network modeling have led to the discovery of general topological aspects and shared functional constraints of various networks [54,60–63]. Evolutionary systems biology has initiated the search for evolutionary design principles that demonstrate general features of evolving networks [59]. Furthermore, attempts to develop abstract cell models and explore the potential of category theory and mathematical general systems theory have recently been initiated [35,37,64–68]. As these approaches address questions at a higher level of abstraction, the relationships between theoretical models and experimental practices will be an important point of discussion in future biology and medicine [69]. Another example from our own work is the study of epithelial cell renewal in the context of colon cancer [35]. Using simple-order relationships to link the division of stem cells in their niche to the fate of the crypt, we formulated a theorem that shows how the fate of the tissue is determined by a single lineage. The approach does not use any numbers to characterize the system, but analyses what is logically possible 'in principle' [24]. In such approaches, the definition of (and assumptions about) variables and the subsequent formulation of the theorem create an argument about an organizing principle relating to a tissue. To identify or suggest a principle is to generalize a phenomenon from particular instances, to de-contextualize it, for example, generalizing it beyond a specific experimental context. We believe that, if the gap between systems theory and mainstream biology can be bridged through more research in this direction, theoretical models may be of high practical value because they address fundamental properties of the system under consideration.

In summary, we here considered the transition from systems biology to systems medicine by personal reflection upon the developments that took us from biochemistry and molecular biology to systems biology. We noted that advances in molecular and cell biology were largely technology-driven, leading to high degrees of specialization and a reduction of the validity of results to the specific experimental context. In the context of many diseases, which cross multiple levels of structural and functional organization, reductive approaches and conventional dynamic systems theory are limited in facilitating identification of general principles underlying these diseases. Another contribution of our analysis is the proposal for a strategy that promotes integrative approaches and the search for organizing principles. While new technologies are widely welcome and their development is well supported, we hope that our analysis contributes to a better appreciation of the development of new and abstract methodologies. We firmly believe that systems medicine not only requires new means of measuring things, but also new ways of thinking.

Conclusions

A review of the current practice of molecular and cell biology reveals negative side-effects of technology-driven reductive approaches. Although much has been learned about molecular components and subcellular processes, these sub-systems are part of a larger whole that is frequently ignored when it comes to understanding tissue- and organ-level questions. Many diseases are a problem of tissue organization, and require us to integrate our knowledge from the molecular level all the way up to the tissue and organ level. Multi-levelness is a hallmark of biological complexity, and, in our view, is the final frontier and the greatest hurdle in the success of systems medicine. In our analysis, pathway- and cell-centred approaches have severe limitations when it comes to understanding disease-relevant multi-level systems. As a consequence, we believe that the future of systems medicine will rely not only on technologies, but will also require a strategic focus on the development of new methodologies. Our analysis has revealed a need for generalization through abstraction, and we proposed the search for organizing principles as a cure against negative side-effects of reductive approaches. To this end, we suggest systems theory as systems medicine's next stethoscope.

The search for organizing principles is not only of theoretical value but of high relevance for solving practical problems. The ideal of general principles has a long history [49,50,70-72], but is still not fully appreciated [24,35,37,66]. The focus on general principles enables a shift away from molecule- and cell-centred studies and from what Robert Rosen called 'thinghood properties', towards an understanding of 'systemhood similarities' [57]. Organizing principles do not provide fine-grained causal explanations of biological mechanisms. Their epistemic value lies elsewhere; as higherlevel abstractions, organizing principles may facilitate transfer of methods across disciplinary boundaries, and development of what Bertalanffy called 'in principle explanations' [49]. These are coarse-grained descriptions of the behaviour of a system that may be seen as templates for how such a system can be investigated. Organizing principles thus signify an epistemological framework for understanding complex phenomena. The formal framework of mathematical general systems theory forces us to be precise about our assumptions, and helps us to check the logical consistency of the argument made about a biology system [24,35]. Understood this way, they are not fruitful despite their abstract and often idealized nature, but because of it.

We believe that the limitations of reductive approaches will be particularly detrimental to progress in systems medicine. We provided an example from cancer research, demonstrating that many phenomena at the level of tissues and organs cannot be reduced to cellular events. Tissue organization, the tissue's structure and function are emergent properties that reciprocally determine the behaviour of the cells that make up the tissue. Cancer provides an example of a problem of tissue organization, and we argue that if one wants to study tissues, one has to study tissues as a whole and not only focus on single pathways and single cells.

Acknowledgements

S.G. acknowledges support from the Danish Research Council for Independent Research, Humanities, for funding the project group of Philosophy of Contemporary Science in Practice. O.W. acknowledges support of the Deutsche Forschungsgemeinschaft through grant number WO 991/10-1 (Models, Mechanisms, Complexity – Towards a Philosophy of Systems Biology). The definition of systems biology as the science that studies how biological function emerges from the interactions between the components of living systems was communicated to us by Jan-Hendrik Hofmeyr (University of Stellenbosch, South Africa).

References

- Wolkenhauer O & Muir A (2011) The complexity of cell-biological systems. In Philosophy of Complex Systems (Hooker C, ed), pp. 345–385. Elsevier Publishers, Amsterdam, The Netherlands.
- 2 Cornish-Bowden A & Cárdenas M (2008) Selforganization at the origin of life. J Theor Biol 252, 547–563.
- 3 Strand A & Oftedal G (2009) Functional stability and systems level causation. *Philos Sci* **76**, 809–820.
- 4 Wagner A (2005) Robustness and Evolvability in Living Systems. Princeton University Press, Princeton, NJ.
- 5 Conant G & Wagner A (2003) Convergent evolution of gene circuits. *Nat Genet* **34**, 264–266.
- 6 Wagner A (2011) The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living Systems. Oxford University Press, New York.
- 7 Aderem AS (2005) Systems biology: its practice and challenges. *Cell* **121**, 511–513.
- 8 Motta S & Pappalardo F (2012) Mathematical modeling of biological systems. *Brief Bioinform* 1, 1–12.
- 9 Van Regenmortel M (2004) Reductionism and complexity in molecular biology. *EMBO Rep* **5**, 1016–1020.
- 10 Cornish-Bowden A (2011) Systems biology how far has it come? *Biochemist* 33, 16–18.
- 11 Wolkenhauer O, Fell D, De Meyts P, Blüthgen N, Herzel H, Le Novère N, Höfer T, Schürrle K & Van Leeuwen I (2009) SysBioMed report: advancing systems biology for medical applications. *IET Syst Biol* **3**, 131–136.
- 12 Wolkenhauer O, Auffray C, Baltrusch S, Blüthgen N, Byrne H, Cascante M, Ciliberto A, Dale T, Drasdo D & Fell D (2010) Systems biologists seek fuller integration of systems biology approaches in new cancer research programs. *Cancer Res* **70**, 12–13.

- 13 Wolkenhauer O, Auffray C, Jaster R, Steinhoff G & Damman O (2013) The road from systems biology to systems medicine. *Pediatr Res* 73, 502–507.
- 14 Kohl P & Noble D (2009) Systems biology and the virtual physiological human. *Mol Syst Biol* 5, 292.
- 15 Wiggins S (2003) Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York.
- 16 Ullah M & Wolkenhauer O (2011) Stochastic Approaches for Systems Biology. Springer, New York.
- 17 Gatherer D (2012) So what do we really mean when we say that systems biology is holistic? *BMC Syst Biol* 4, 1–12.
- 18 Calvert J (2010) Systems biology, interdisciplinarity and disciplinary identity. In Collaboration in the New Life Sciences (Parker JN, Vermeulen N & Penders B, eds), pp. 219–244. Ashgate, London.
- Calvert J & Fujimura JH (2011) Calculating life? Duelling discourses in interdisciplinary systems biology. *Stud Hist Philos Biol Biomed Sci* 42, 155–163.
- 20 Pray L (2008) LH Hartwell's yeast: a model organism for studying somatic mutations and cancer. *Nat Educ* 1, 1.
- 21 Kacser H (1986) On parts and wholes in metabolism. In The Organization of Cell Metabolism (Welch GR & Clegg JS, eds), pp. 327–337. Plenum Press, New York.
- 22 Mesarović M & Takahara Y (1970) Theory of Hierarchical, Multilevel, Systems. Academic Press, New York.
- 23 Mesarović M & Takahara Y (1975) General Systems Theory: Mathematical Foundations. Academic Press, New York.
- 24 Wolkenhauer O, Shibata D & Mesarović M (2012) The role of theorem providing in systems biology. J Theor Biol 7, 57–61.
- 25 Hanahan D & Weinberg RA (2000) The hallmarks of cancer. Cell 100, 57–70.
- 26 Kreeger PK & Laufenburger DA (2010) Cancer systems biology: a network modeling perspective. *Carcinogenesis* 31, 2–8.
- 27 Lazebnik Y (2002) Can a biologist fix a radio? Or, what I learned while studying apoptosis. *Cancer Cell* **2**, 179–182.
- 28 Alberghina L, Hohmann S & Westerhoff HV (2005) Systems biology: necessary developments and trends. In Systems Biology. Definitions and Perspectives (Westerhoff HV & Alberghina L, eds), pp. 389–402. Springer, New York.
- 29 Wolkenhauer O & Mesarović M (2005) Feedback dynamics and cell function: why systems biology is called Systems Biology. *Mol BioSyst* 1, 14–16.
- 30 Karsenti J (2008) Self-organization in cell biology: a brief history. *Nat Rev Mol Cell Biol* **9**, 255–262.
- 31 Weaver W (1948) Science and complexity. *Am Sci* **36**, 536–544.
- 32 Noble D (2006) The Music of Life: Biology beyond the Genome. Oxford University Press, Oxford.
- 33 Noble D (2012) A theory of biological relativity: no privileged level of causation. *Interface Focus* 2, 55–64.

- 34 Potten CS & Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. *Development* **110**, 1001–1020.
- 35 Wolkenhauer O, Shibata DK & Mesarović M (2011) A stem cell niche dominance theorem. *BMC Syst Biol* 5, 1–16.
- 36 Craver C & Bechtel W (2007) Top-down causation without top-down causes. *Biol Philos* 22, 547–563.
- 37 Mesarovi M, Sreenath SN & Keene JD (2004) Search for organizing principles: understanding in systems biology. *Syst Biol* 1, 19–27.
- 38 Weinberg RA (2007) The Biology of Cancer. Garland Science, New York.
- 39 Soto A & Sonnenschein C (2011) The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. *BioEssays* 5, 322–340.
- 40 Hunter P, Coveney PV, De Bono B, Diaz V, Fenner J, Frangi AF, Harris P, Hose R, Kohl P, Lawford P, *et al.* (2010) A vision and strategy for the virtual physiological human in 2010 and beyond. *Philos Trans R Soc A* **368**, 2595–2614.
- 41 Markram H (2007) The blue brain project. *Nat Rev Neurosci* 7, 153–160.
- 42 Markram H (2012) The human brain project. *Sci Am* **306**, 50–55.
- 43 Shepherd G, Mirsky J, Healy M, Singer M, Skoufos E, Hines M, Nadkarni PM & Miller P (1998) The human brain project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. *Trends Neurosci* 21, 406–468.
- 44 Carroll L (1939) Sylvia and Bruno concluded. In The Complete Works of Lewis Carroll (Carroll L, ed.), pp. 461–670. Penguin Books, London.
- 45 Borges J (1960) On exactitude in science. In Jorge Luis Borges: Collected Fictions (Hurley A, ed.), pp. 325. Penguin Books, London.
- 46 Hanahan D & Weinberg RA (2011) Hallmarks of cancer: the next generation. *Cell* **144**, 646–667.
- 47 Nurse P & Hayles J (2011) The cell in an era of systems biology. *Cell* 144, 850–854.
- 48 Loscalzo J & Barabasi A (2011) Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med 3, 619–627.
- 49 Bertalanffy Lv (1969) General Systems Theory. Foundations, Development, Applications. George Braziller, New York.
- 50 Rashevsky N (1961) Mathematical Principles in Biology and their Applications. Charles C Thomas, Springfield, IL, USA.
- 51 Velazquez JL (2009) Finding simplicity in complexity: general principles of biological and nonbiological organization. J Biol Phys 35, 209–221.
- 52 Rosen R (1967) Optimality Principles in Biology. Butterworths, London.

- 53 Savageau M (1976) Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Boston, MA.
- 54 Alon U (2006) An Introduction to Systems Biology. Design Principles of Biological Circuits. Chapman & Hall, Boca Raton, FL.
- 55 Bray D (2001) Reasoning for results. Nature 412, 863.
- 56 Dupré J (1993) The Disorder of Things: Metaphysical Foundations for the Disunity of Science. Harvard University Press, Cambridge, MA.
- 57 Klir GJ (1991) Facets of Systems Science. Plenum Press, New York.
- 58 Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. *Proc Natl Acad Sci USA* 104, 8597–8604.
- 59 Soyer O (2012) Evolutionary Systems Biology. Springer, London.
- 60 Hartwell LH, Hopfield JJ, Leibler S & Murray AW (1999) From molecular to modular cell biology. *Nature* 402, C47–C51.
- 61 Li X, Erten S, Bebek G, Koyuturk M & Li J (2009) Comparative analysis of modularity in biological systems. *Bioinformatics* 2009, 104–109.
- 62 Ravasz N (2009) Detecting hierarchical modularity in biological networks. *Methods Mol Biol* 541, 145–160.
- 63 Gunawardena J (2010) Biological systems theory. *Science* **328**, 581–582.
- 64 Hofmeyr J-HS (2007) The biochemical factory that autonomously fabricates itself: a systems biological view of the living cell. In Systems Biology: Philosophical Foundations (Boogerd F, Bruggeman FJ, Hofmeyr J-HS & Westerhoff HV, eds), pp. 215–241. Elsevier, Amsterdam, The Netherlands.
- 65 Letelier JC, Cárdenas M & Cornish-Bowden A (2011) From L'Homme Machine to metabolic closure: steps towards understanding life. J Theor Biol 286, 100– 113.
- 66 Mulej M, Potocan V, Zenko Z, Kajzer S, Ursic D, Knez-Riedl J, Lynn M & Ovsenik J (2004) How to restore Bertalanffian systems thinking. *Kybernetes* 33, 48.
- 67 Piedrafta G, Montero F, Morán F, Cárdenas ML & Cornish-Bowden A (2010) A simple self-maintaining metabolic system: robustness, autocatalysis, bistability. *PLoS Comput Biol* 6, e1000872.
- 68 Wolkenhauer O & Hofmeyr J (2007) An abstract cell model that describes the self-organization of cell function in living systems. J Theor Biol 246, 461–476.
- 69 Lander A (2004) A calculus of purpose. *PLoS Biol* 2, 712–714.
- 70 Mendoza E (2009) System biology: its past, present and potential. *Philipp Sci Lett* **2**, 16–34.
- 71 Bertalanffy Lv (1950) An outline of general system theory. *Br J Philos Sci* 1, 134–165.
- 72 Bertalanffy Lv (1950) The theory of open systems in physics and biology. *Science* **111**, 23–29.

Opinion: Consumer DNA Testing Is Crossing into Unethical Territories

Data don't support many direct-to-consumer products, from telomere assessments to bespoke diets based on genetic sequences.

Aug 16, 2018 John D. Loike

ABOVE: © ISTOCK, STEVANOVICIGOR

John D. Loike, a Professor of Biology at Touro College and University Systems, writes a <u>regular column</u> on bioethics for *The Scientist*.

Direct-to-consumer DNA testing has provided genetic information to more than <u>12 million</u> <u>individuals</u>, traditionally for exploring ancestry. While such testing does not violate ethical guidelines, other uses of consumer DNA testing may cross the line. Over the past few years, many of these DNA testing companies have branched out into the realm of precision health, treading into ethically dangerous territories.

For example, 23andMe, with US <u>Food and Drug Administration (FDA)</u> permission, now reveals to consumers whether they possess a whole suite of genetic mutations, including those associated with Lynch syndrome and breast cancer, under the assumption that awareness will likely improve the health of its consumers. Other companies advertise that their DNA testing will better educate customers on what type of diet or lifestyle they should incorporate to lose weight.

The major problems with these tests are two-fold. First, many of the tests lack scientific validity to support the genetic outcomes revealed to their customers. Not all of the 25 major companies engaged in direct-to-consumer DNA testing have been Clinical Laboratory Improvement Amendments certified. Second, there is no professional counseling required before and after the consumer receives her results.

A single telomere test, even when it is highly accurate, can't provide a true picture of biological aging because what is important is how fast the telomeres are shortening.

For example, companies such as Vitagene, TeloYears, and 23andMe use DNA testing to assess a person's health and/or longevity. Vitagene claims that its product helps individuals choose which vitamins are most appropriate for their bodies and will even sell a personalized "optimum" vitamin regimen for \$79/month. TeloYears measures telomere length in blood cells "to help you stay younger longer." Helix informs their clients their athletic abilities, diet, and sleep patterns. 23andMe claims to inform the customer about recessive genetic variants that may not affect their health but could affect the health of their children.

The lack of context attendant with consumer DNA testing for health reasons is a serious and potentially harmful issue. 23andMe, for example, only tests for three of the most common *BRCA*

mutations associated with an increased risk of getting breast cancer. In fact, there are almost 1,000 *BRCA* mutations that need to be assayed to provide an accurate assessment. In addition, not all of these mutations are deleterious because there are other gene variants that an individual may carry that mitigate the risk for breast cancer.

<u>In one small study</u>, Ambry Genetics examined 49 samples sent in by physicians whose patients had been told that they had disease-causing mutations by a third-party vendor. Ambry Genetics found that 40 percent of the results were wrong. In addition, some genetic variations classified by these companies as threatening were actually benign. The problem is that the customers think they are getting the same kind of precision genetic testing that they would get from a certified clinical laboratory.

The idea of measuring telomere length to estimate longevity has some scientific merit. There are studies and patents that provide methods of determining human telomere length and correlating shorter telomeres with an increased mortality rate and increased susceptibility to certain types of conditions, such as cardiovascular disease. Moreover, unhealthy lifestyle factors, such as smoking, junk food, obesity, inactivity, and chronic stress, all are associated with shorter telomeres. However, there is a wide range of "normal" telomere lengths. Scientists have shown that cells don't trigger apoptosis unless telomeres get extremely short. In addition, many consumer companies use quantitative polymerase chain reaction to assess telomere length. This test has a 20 percent variability rate and sometimes testing on different days can yield different results. In contrast, clinical labs typically use flow cytometry and fluorescent in situ hybridization to measure telomere length, a protocol that has a lower variability rate (5 percent). Equally important is that a single telomere test, even when it is highly accurate, can't provide a true picture of biological aging because what is important is how fast the telomeres are shortening. To determine that rate, a baseline test must be followed up over time by other tests, something these consumer labs do not generally do.

Equally disturbing are the companies advertising DNA tests designed to inspire their consumers to develop more personalized diets, workouts, and supplements, often with the overall goal of weight loss. There are no published scientific data that support the idea that current genetic testing can help design a bespoke diet that will benefit one's health. In fact, the few studies published show absolutely no connection between existing DNA testing and choosing the best diet to lose weight. Further, scientists have not identified a general "overweight gene," although hundreds of weight-associated genes have been identified in genome-wide association studies, including a few rare obesity genes.

Aside from the accuracy problem, revealing these genetic results to customers may pose serious psychological and medical ramifications. In my experience, the public does not really understand the complexities of genetics and epigenetics in predicting disease onset or severity. Will customers whose DNA testing reveals a deleterious mutation seek out a consultation with a certified genetic counselor? It is also unclear how many clients will seek medical advice after receiving news that they carry a genetic disease. Conversely, if customers are told they have no breast cancer risks, will this information lead them to forgo recommended cancer testing, such as mammograms, as they age? Testing companies such as 23andMe say they are not at fault, because they make it clear that their data are not meant to be used for medical diagnoses. Why then provide such elliptical information to the uneducated consumer?

Understandably, many people want to know about their health or longevity without making that information available to insurance companies for fear their insurance rates will go up. Yet, consumer DNA testing companies offering gene health tests promote an illusion of private, personalized medical information under the aegis of empowerment. However appealing that may sound, the truthfulness and utility of these tests are not obvious. Who really benefits from such testing?

The complexity of genetics and disease risks mandates an ethical directive that customers requesting such tests should also require genetic counseling and education, both prior to doing the tests and after receiving their results. DNA testing for health by clinically certified laboratories is the only logical way to proceed. Only certified geneticists should be presenting genetic results to consumers and patients in a comprehensive manner that reduces the medical and psychological repercussions of either positive or negative data. The same reason why certain drugs require a physician's prescription sets a precedent that DNA testing requires a physician's supervision. While medicine is heading towards precision care, direct-to-consumer DNA testing companies are crossing into unethical territories by not yet providing precision health information. Therefore, the FDA should warn the public of the potential harm in using these DNA tests for medical reasons and doctors should discourage patients from taking them until the science has improved.

Keywords:

23andMe, diet, direct-to-consumer, genetic testing, genetics & genomics, opinion, pharma & biotech, telomere

Spring 2023 - Epigenetics and Systems Biology Lecture Outline (Epigenetics and Disease Etiology) Michael K. Skinner - Biol 476/576 Weeks 13 and 14

Epigenetics and Disease Etiology

- Epigenetics and Disease Etiology Introduction
- Epigenetic Disease
- Environmental Epigenetics and Disease
- Epigenetics and Cancer
- Epigenetics and Neuroscience
- Epigenetics and Metabolic Syndrome
- Epigenetic Therapy Development
- Epigenetic Transgenerational Inheritance of Disease

Required Reading

Wolkenhauer and Green (2013) The search for organizing principles as a cure against reductionism in systems medicine. FEBS J. 280(23):5938-48.

Loike (2018) Opinion: Consumer DNA Testing is Crossing into Unethical Territories. The Scientist. Aug. 16, 2018

Books (Reserve in Library)

Haslberger, Alexander G, and Sabine Gressler. Epigenetics and Human Health: Linking Hereditary, Environmental, and Nutritional Aspects. Weinheim: Wiley-VCH, 2010. (ebook)

Spring 2023 - Epigenetics and Systems Biology Discussion Session (Epigenetics and Disease Etiology) Michael K. Skinner - Biol 476/576 Week 13 (April 6)

Epigenetics and Disease Etiology

Primary Papers

- 1. Godfrey, et al. (2007) Pediatr Res. 61(5 Pt 2):5R-10R. (PMID: 17413851)
- 2. Sun, et al. (2018) Nature Medicine. 24(9):1372-1383. (PMID: 29988127)
- 3. Garrido, et al (2021) Clinical Epigenetics. 13(1):6. (PMID: 33413568)

Discussion

- Student 31 Ref #1 above • What is the mismatch concept?
- · How does epigenetics apply to the hypothesis?
- What mechanism is involved in the developmental origins of disease?

Student 32 - Ref #2 above

- · What preconception exposure was studied?
- · What sperm epigenetic effect was observed?
- · How was offspring metabolism altered?

Student 33 - Ref #3 above

- What was the experimental design and technology used?
- What EWAS epimutations were detected in sperm?
- What do the observations suggest regarding autism etiology and how it can be used?

Spring 2023 - Epigenetics and Systems Biology Discussion Session (Epigenetics and Disease Etiology) Michael K. Skinner – Biol 476/576 Week 14 (April 13)

Epigenetics and Disease Etiology

Primary Papers

- 1. Nilsson et al. (2018) Epigenetics. 13(8): 875-895. (PMID: 30207508)
- 2. King and Skinner (2020) Trends Endocrinol Metab. 31(7):478-494. (PMID: 32521235)
- 3. Beck et al. (2022) Sci Rep. 12(1):5452. (PMID: 35440735)

Discussion

Student 34 – Ref #1 above

- What environmental contaminants were examined?
- What is the transgenerational disease?
- · How is the ovarian somatic cell epigenome modified to promote ovarian disease?

Student 35 – Ref #2 above

- What is the epigenetic transgenerational inheritance mechanism?
- Could the rise in obesity in the population today be in part due to transgenerational phenomenon from ancestral exposure?
- Do we have a responsibility to our future generations?
- Student 1 Ref #3 above
 - What is the experimental design?
 - · What are the epigenetic and disease observations?
 - How do the observations fit with classic genetic causes for disease?

General Medicine

	Disability-adjusted life-years (%)
Physiological risk factors	
High blood pressure	53%
High total cholesterol	29%
High body-mass index	23%
High fasting plasma glucose	16%
Alcohol use	33%
Tobacco smoking, including second-hand smoke	31%
Dietary risk factors and physical inactivity	
Diet low in nuts and seeds	40%
Physical inactivity and low physical activity	31%
Diet low in fruits	30%
Diet low in seafood omega-3 fatty acids	22%
Diet low in whole grains	17%
Diet high in sodium	17%
Diet high in processed meat	13%
Diet low in vegetables	12%
Diet low in fibre	11%
Diet low in polyunsaturated fatty acids	9%
Diet high in trans fatty acids	9%
Diet high in sugar-sweetened beverages	2%
Air pollution	
Ambient particulate matter pollution	22%
Household air pollution from solid fuels	18%
Other environmental risks	
Lead exposure	4%

in the state of the second second	al mechanism		
Potential moderators:		Potential moderators:	
 Offspring factors (e.g. genetics, sex Maternal factors (e.g. genetics, heal Exposure factors (e.g. timing.) 	() Int. lifestyle) The methylation	 Offspring factors. (e.g. genetics, sex, oge) Postnatal exponences. 	Utility & translational applications
duration, severily)	(accessible tissues for population studies; placenta, cord/whole blood, buced celle/salies)	6 mile	 Advance understanding of etiological pathways
	server, server concentration	-	to health outcomes
			· Inform DNA methylation
exposures	c' nath	outcomes	targets for personalized intervention and treatment
(e.g. dictary, chemical and	Other biological	(e.g. physical and	(e.g. epigenetic therapy)
psychosocial exposures)	processes?	mental health/disease)	
Exposure biomarker	Risk prediction biomarker	tie tier biomarker biomarker	applications • Utility as research and clinical biomarker for exposure detection, disease risk and management as well as response to intervention
	No Prodromal Diseas ditessa /tubclinical onset	e Disease Disease progression treatment	Non-causal biomarker
Prenatal	Heal outcom	h	unlikely to have utility as intervention/treatment target
exposures			
exposures			
exposures			

Table 1. Environmental conditions and sperm epigenome. Few studies have explored epigenetic effects in human sper conditions.	n from environmental

Epigenetics as a Driver of Developmental Origins of Health and Disease: Did We Forget the Fathers? Bioessays. 2018 Jan;40(1). Soubry A.

Reference	Study design	Subjects	Geographic area	Exposure	Epigenetic outcome
Soubry et al., 2017 ^[46]	Cross-sectional	67 volunteers	NC, USA	Flame retardants (OP)	DNA methylation at 12 DMRs
Shnorhavorian et al., 2017 ⁽⁵⁴⁾	Retrospective	9 patients (exposed) versus 9 non-exposed	5 States, USA versus 1 State, USA	Chemotherapy	DNA methylation at DMRs (MeDIP-Seq analysis)
Soubry et al., 2016 ^[25]	Cross-sectional	67 volunteers	NC, USA	Overweight/obesity (BMI)	DNA methylation at 12 DMRs
Donkin et al., 2015 ^[36]	Cross-sectional; Intervention	23 volunteers; 6 bariatric- interventions	Denmark	Obesity; bariatric intervention	Genome-wide DNA methylation, RNA expression, Histone positioning
Denham et al., 2015 ⁽²⁷⁾	Intervention	13 interventions versus 11 controls	Victoria, Australia	Exercise (3 months)	Global DNA methylation, Genome-wide DNA methylation
Marczylo et al., 2012 ^[57]	Cross-sectional	10 volunteers from Fertility clinic	UK	Smoking	miRNAs
Tunc et al., 2009 ^[29]	Intervention	45 infertile men	South Australia	Supplements of folate and antioxidants	Global DNA methylation
Ouko et al., 2009 ^[52]	Cross-sectional	16 volunteers	Johannesburg, South- Africa	Alcohol (self-reported)	DNA methylation at 2 DMRs

he search for genetic causes of common hum	nan disease
Possible disease link	New approach to common disease search
Epigenome changes in absence of sequence variant	Methylome arrays, capture bisulfite sequencing, chromatin immunoprecipitation with sequencing
Noncoding RNAs	RNA sequencing and methods above
Intra- and interchromosomal interactions	Chromatin network mapping
Coregulated gene clusters	Genome-scale methylation, chromatin mapping
Sequence variants controlling epigenome	Linked GWAS and epigenome studies
Sequence variants controlling epigenomic variance	New statistics for reexamining and integrating GWA
LOCKs and LADs	Native chromatin whole-genome analysis
-	e search for genetic causes of common hun Possible disease link Epigenome changes in absence of sequence variant Noncoding RNAs Intra- and interchronocomal interactions Consputated gune clusters Sequence variants controlling epigenomis Sequence variants controlling epigenomic variance LOCKs and LADs

Disease	IncRNA	Status"	Molecular mechanisms/role in disease	Ref.
Colorectal cancer (CRC)	PINT	1	PINT acts as a tumor suppressor that reduces cell proliferation by regulating the expression of genes involved in p53 signaling via a PRC2-desendent mechanism.	[59]
Liver tumor	HULC	t	HULC act as a molecular sponge that can bind and inhibit the function a number of miRNA, including the tumor suppressor miR-372.	[48, 60]
Breast, uterus, ovary tumors	SRA	t	SRA forms ribonucleoprotein complexes with a number of nuclear receptors generally acting to stimulate transcriptional activation. SRA is a potential biomarker of steroid-dependent tumors	[61, 62]
Breast, colorectal turnors, prostate cancer, etc	HOTAIR	1	HOTAIR function as a molecular scatfold to link and target PRC2 and LSD1, leading to chromatin remodeling via IDK27 methylation and H3K4 demethylation and silencing genes implicated in inhibiting cancer progression/industasis.	[29, 63, 64]
Breast tumor, type 2 diabetes	GAS5	1	GAS5 act as a decoy and competes for binding to the DNA-binding domain of the glucocorticoid receptor. GAS5 expression induces growth arrest and apoptosis. Decreased serum levels of GAS5 has been associated with diabetes	[65-67]
Cancer, type 2 diabetes, coronary artery disease, myocardial infarction	ANRIL	-	Several SNPs in the ANRIL locus on chromosome 9p are involved in coronary attery disease, diabetes and cancer. ANRIL binds PRC1/PRC2 and regulate the tamor suppressors CI5KN2AB. However, the clear role in the pathogenesis of these conditions is vet to be understood	[68-73]
Myocardial infarction, diabetic retinopathy, schizophrenia	MIAT or GOMAFU		MIAT is involved in pathological angiogenesis and is suggested as a predictor of mycoardial inflaterion. MIAT forms inboauce/oprotein complex with three splicing proteins, SRSF1, SF-1, and QKL Downregalation of MIAT leads to alternative splicing, suggesting a thrRNA-driven mode of splicing-defect pathogenesis.	[58, 74-77]
Alzheimer's disease	BACEI-AS	t	BACE1-AS increases BACE1 mRNA stability leading to accelerated anyloid β42 accumulation	[78]
Autism spectrum disorder	MSNPIAS	t	MSNP1AS regulates the moesin protein, regulator of synapse development and function, by stabilizing moesin mRNA. This mechanism may causally connect SNP variants in the MSNP1AS locus to autism spectrum disorder pathogenesis.	[79, 80]
* downregulated, † upregulated				
LncRNAs are important regulators of destroubation of IncRNAs is not only	f physiological and path associated with seven	sological	responses. Their role and functions have been mostly studied in tume of concers but a variety of human diseases.	rigenesis but

able 1 nprinting disorders.							
Disorder	chromosome(s)	prevalence	OMIM	% genetic error (SNV/CNV)	% chromosomal error (UPD)	% imprinting error (% MLID)	references
Angelman Syndrome (AS)	15q11.2	1:15000	#105830	70% CNV (del15mat) 15% SNV (U8E3A)	<5% (upd15pat)	<5% (rare)	Buiting, 2010
Prader-Willi syndrome (PWS)	15q11.2	1:15000	#176270	70% CNV (del15pat)	<30% (upd15mat)	<1% (nk)	Buiting, 2010
Beckwith-Wiedemann syndrome (BWS)	11p15.5	1:10500	#130650	5% SNV (CDKN1C) <5% CNV and SNV of H19/IGF2 IG-DMR	20%	10% H19/IGF2 IG-DMR hypermethylation (rare) 60% KCNQ10T1 TSS-DMR hypomethylation (30%)	Choufani et al., 2010
Silver-Russell syndrome (SRS)	11p15.5, chr7	1:500007	#180860	<1%	10% (upd7mat) <1% (upd11mat)	40% (15-38%)	Eggermann 2010, wakeling et al., 2016
Pseudohypoparathyroidism type 1b (PHP1b)	20q13.3	nk	#603233	27% CNV (delSTX16mat) 3% SNV (GNAS)	5% (upd20mat)	61% (rare)	Mantovani et al., 2016; E et al., 2016
Transient neonatal diabetes mellitus type 1 (TNDM)	6q24	1:300000	#601410	40% CNV (dup6pat)	40% (upd6pat)	20% (50%)	Mackay and Temple, 201
Kagami-Ogata syndrome (KOS)	14q32	nk	#608140	15% CNV (del14mat)	65% (upd14pat)	20% (nk)	Ogata and Kagami, 2016. Kagami et al., 2017
Temple syndrome (TS14)	14q32	nk	#616222	10% CNV (del14pat)	78% (upd14mat)	12% (rare)	Ioannides et al., 2014; Kagami et al., 2017
Mulchandani-Bhoj-Conlin syndrome (MBCS)	chr20	nk	#617352	nk	100% (upd20mat)	nk (nk)	Mulchandani et al., 2015
Schaaf-Yang syndrome (SHFYNG)	chr15	nk	#615547	100% inactivation of MAGEL2 (SNV/CNV)	-	-	Fountain et al., 2017
Central precocious puberty 2 (CPPR2)	chr15	nk	#615436	100% inactivation of MKRN3 (SNV)	-	-	Abreu et al., 2013

Gene/protein	Disease
DNA methylation system	
MeCP2	Rett syndrome
MBD2	Colon cancer antigen
MBD4	Tumors with microsatellite instability
DNMT3b	ICF syndrome
Epigenetic regulation of genes	
FMR-1	Fragile X mental retardation
IGF2	Wilms' tumor
Imprinted genes	Prader-Willi & Angelman syndromes, Beckwith-
	Wiedemann syndrome
Tumor suppressor genes	Many tumors
X-Inactivation center	Functional disomy of X-linked
	genes
Histone acetylation system	
CBP	Rubinstein-Taybi syndrome
p300	Gastric cancer, colon cancer, brain tumor
MOZ-CBP	Acute myelocytic leukemia
MLL-CBP	Leukemias
Histone modification	
Phosphorylation defect of histone H3	Coffin-Lowry syndrome
Chromatin remodeling system	
Mi2	Autoantibody in dermatomyositis
MTA1	Metastatic potential of cancer
hSNF5/Ini-1	Rhabdoid tumor
BRG1	Tumors
ATRX	α-Thalassemia/mental retardation syndrome, X-linked
Transcriptional control	
PML-RARa	Acute promyelocytic leukemia

Disease	Cell type	Epigenetic difference from control	Reference
RA	RASE	♦DNA methylation of cell adhesion and migration genes	[35, 92]
	Decisional blood menonuclear cells	Histone acetylation and HDAC1 expression	[39]
	CD4 T collo	VIL-6 methylation	[/]
OA	Chondrocytes	Lantin MMP-9 MMP-13 II -16 and ADMSTS-4 methylation	[45]
SIF	T cells		[41, 53]
66.0	Dermal fibroblast	ADNA methylation and DNMT1 expression	[60]

Advances in lupus genetics and epigenetics. 2urr Opin Rheumatol. 2014 Sep;26(5):482-92. Deng Y, Tsao BP. Table 2. MisrePNA demodelse is extensible as demoters.							
Table 2. Mi	croRNA dysregulatio	n in systemic lupus erythematosus	2010/2010				
runction	mikina	Expression in SLE patients	larger gene	Keterend			
Hyperactivation	of type I IFN pathwa	y		10/1			
	miR-146a	Downregulated in PBMCs	IRAKI, IRAFO, IRFS, SIAII	[96]			
Aberrant cyto/	chemokines release						
	miR-125a	Downregulated in PBMCs	KLF13	[97]			
	miR-23b	Downregulated in kidney tissue	TAB2, TAB3, CHUK	[98]			
	miR-21	Upregulated in CD4 ⁺ T cells	PDCD4	[99]			
	miR-31	Downregulated in CD4 ⁺ T cells	RHOA	[100]			
DNA hypometh	ylation						
	miR-126	Upregulated in CD4 ⁺ T cells	DNMTI	[101]			
	miR-21	Upregulated in CD4 ⁺ T cells	RASGRP1	[102]			
	miR-148a	Upregulated in CD4 ⁺ T cells	DNMTI	[102]			

CHUK, conserved helix-loop-helix ubiquitous kinase; DNMITI, DNA methyltransferase 1; IRAK1, interleukin-1 receptor associated kinase 1; IRF5, interferon regulatory factor 5; KIF13, Kruppel-like factor 13; FBMCs, peripheral blood mononuclear cells; FDCD4, programmed cell edus 4; RASSRP1, RAS guaryl releasing protein 1; IRH0A; ratiomolog family member A; STAT1, signal transfuer and activator 6 transcription 1; TAB2, TGF8, activated kinase 1/AMP3X7 binding protein 2; TAB3, TGF8, activated kinase 1/AMP3K7 binding protein 3; TRAF6, tumor necrosis factor receptor-associated factor 6.

TABLE III. Examples of environmental exp	osure on clinical phe	notype mediated three	ough epigenetic modifications: c	urrent
examples Effector	Epigenetic regulation	Clinical phenotype	Genes (cell type)	Referen
Allergens (OVA)	Histone deacetylation Histone acetylation	AA, COPD AA	LAT (CD4 ⁺) PDE4E (CD4 ⁺) ACLS3 (CD4 ⁺)	48
Microbes/farm environment	DNA methylation	AA	RAD50 (PBMC) ILI 3 (PBMC) ILI (PBMC) IENG (CD4 ⁺)	50,51
Tobacco smoke	DNA methylation Histone acetylation	COPD COPD COPD	GSTM1/GSTP (macrophages) TNF (macrophages)	61-63
Diesel exhaus#polycyclic aromatic hydrocarbons	Histone deacetylation DNA methylation	COPD, AA A	FOXP3 (CD4 ⁺) IFNG (CD4 ⁺) FOXP3 (CD4 ⁺) ACSL3 (CD4 ⁺)	4,60,73,75
Folic acid	DNA methylation Histone Acetylation	AA AA	ZFP57 (CD4 ⁺)	83,84
Fish oil	Histone deacetylation	Cell-culture analysis	IL6 (macrophages) TNF (macrophages)	91,92
Lifestyle (obesity) Stress	DNA methylation DNA methylation	AA AA	CCL5, IL2RA, and TBX21 (PBMC) ADCYAPIR1 (PBMC)	100

Czaja AJ. Dig Dis Sci. 2022 Oct 19.	Heritability of <i>I</i>	Autoimmune Hepatitis.	
	MISS	ING CAUSALITY	
ENVIRONMENTALLY-INDU EPIGENETIC CHANGE	JCED S	↓ Choline ↓ Methionine	
DIET DEFICIENCIES ↓ Methionine ↓ Choline ↓ Folate ↓ Zinc ↓ B ₁₂ TOXINS • Alcohol • Tobacco	1 NAD/NADH	AC DNA Me SAM Me H H H H H H H H H H H H H	TOXINS • Nickel • Arsenic
Arsenic CONS UNA Histor Histor	EQUENCES Methylation ne Methylation ne Acetylation	The Me DNA NUCLEOSOME	CONSEQUENCES
↑ Gene	Transcription	ALTERED IMMUNE REGULATION	Gene Transcription

Table 1 Impaired DN	A methylation in immune-mediated	pulmonary diseases					
Disease	Tissue/cells	Gene/molecules	Methylation status	Expression level	Function	Contribution to the pathogenesis of disease	Reference
Asthma	Human blood or saliva	ADRB2	t	ţ	Beta-adrenergic response	Asthma severity, nocturnal asthma, airway hyperresponsiveness, hung function	[41]
	Human peripheral blood	ZPBP2	4	Ť	Influence gene expression	The development of	[43]
	mononuclear cell Distal airway tissue from mouse model	IL-4	1	t	levels in the 17q12-q21 region Th2 cell differentiation	childhood-onset asthma Th2-driven inflammation	[44]
	Human cord blood	IL-2 (site 1)	Ť	Ţ	Response to virus infection	Asthma exacerbation via an alteration of the response to thinovinus	[48]
	CD4+ T cells from mouse models	IFNG	Ť	1	Th1 cytokine(IFN-γ) expression	Th1/Th2 polarization, dominant Th2 phenotype	[36]
ldiopathic pulmonary fibrosis (IPF)	Fibroblasts from lung biopsy specimens of patients with IPF and lung of mouse model	PTGER2	Ť	Ţ	Antifibrotic mediator	Increase the PGE2 resistance of fibroblasts	[80]
	Fibroblasts from patients with IPF	Thy-1	Ť	Ţ	Cell-cell and cell-matrix interactions and regulates intracellular signaling nathways	Promote myofibroblastic differentiation of lung fibroblasts	[81]
	IPF lung tissue	STK17B, STK3 HIST1H2AH	1	Ť	Apotosis and nucleosome formation	ND	[79]
Silicosis	Primary macrophages and fibroratas from mts model	Genomic DNA of cFb	1	Ť	Activation of fibroblasts	Fibrosis	[138]
	Serum from the patients with silicosis	MGMT p16INK4a	Ť	Ļ	Tumor suppressor genes	Promote the tumorigenesis in lung	[139]
		RASSFIA					
		BAR					
Sarcoidosis	Peripheral blood leukocytes from sarcoidosis patients	Subtelomere	Ţ	t	Accessory peptide factors	Accelerated telomere shortening	[132]

	(able 1. DNA Methylation and Histone Modifications in Ocular Diseases.									
Gene	Modification	Study Population	Tissue	Effect/significance	Reference [16]					
IL17RC	Hypomethylation of pro- moler region	AMD patients	Peripheral blood mono- miclear cells	Increased frequency of IL- 17RC*CD14* monomiclear cells in peripheral blood						
GSTM1 and GSTM5	Hypermethylation of pro- moter region	AMD patients	RPE/choroid and neu- rosensory refina	Decreased mRNA and protein levels of GSTM1 and GSTM5	[17]					
CRYAA	Hypermethylation of CpG island at -856 to -640	Age-related cataract patients	Lens epithelial cells	Decreased mRNA and protein levels of CRYAA	[18]					
TGM2	Hypermethylation of CpG sites at -268, -32, -29 bp	Pterygium patients	Pterygium tissue	Decreased mRNA and protein levels of TGM2	[19]					
MMP2	Hypomethylation of CpG siles at +484 and +602 bp	Pterygium patients	Pterygium tissue	Increased mRNA and protein levels of MMP2	[19]					
CD24	Hypomethylation of CpG sites at -809, -762, -631, - 629 bp	Pterygium patients	Pterygium tissue	Increased mRNA and protein levels of CD24	[19]					
MSH6, CD44, PAX5, ATA5, TP53, VHL, GSTP1, GMT, RB1, and CDKN2	Hypermethylation of pro- moter regions	Retinoblastoma patients	Formalin-fixed paraffin- embedded retinoblastoma tissue	Epigenetic dyuregulation of humor suppressors	[20]					
CXCR/ Hypermethylation of CpG site in promoter region		Ballo/c NOD SCID mice	LS174T human colon adenocarcinoma cells injected into anterior chamber	Ocular microenvironment can regulate promoter methylation and expression of CXCR4	[21]					
Sod2	Increased H4K20me3 and H3K9ac at promoter and enhancer regions	Streptozotocin- induced diabetic rat	Retina	Decreased Sod? expression	[22]					

able 1. Common endocrine disrupto	ors and their actions	
Endocrine disruptor	Effect	Referen
DDT	Reproductive tallure	[110]
Phytoestrogens (e.g. genistein)	Impaired fertility, reproductive effects, breast cancer protection	[15,16]
DES	Vaginal cancer in humans	[111-11
	Developmental toxicity in hamsters	
Dicofol	Abnormal ovarian follicles, high plasma estrogen levels	[114]
BPA	Prostate cancer	[14,115
Aflatoxin	Liver cancer	[17]
Cadmium	Lung cancer, reproductive problems	[18]
Heterocyclic amines	Cancer of colon, stomach and breast	[19]
Arsenic	Liver cancer	[21]
Dioxins (TCDD)	Mammary tumor	[116]
Vinclozolin	Impaired male fertility	[33]
Methoxychlor	Impaired male fertility	[117]
Phthalates	Impairs male reproductive tract and testis	[13]

Mechanisms in PTSE Front Psychiatry. 2013 Jun Zovkic IB, et al.). 26;4:60.			
Table 1 A summary of epigenetic n	nodifications reporte	d in rodent models	of fear	conditioning.
Epigenetic modification measured	Gene	Brain region	Effect	Reference
MEMORY CONSOLIDATION (30 min	n-2 h AFTER FEAR C	ONDITIONING)		
	Global	CA1	1	Chwang et al. (2006), Levenson et al. (2004), Miller et al. (2008
		CA1	Ť	Lubin et al. (2008)
H3 acetylation	Bdnt IV promoter	Hippocampus	1	Takei et al. (2011)
	Homer 1 promoter	Hippocampus	1	Mahan et al. (2012)
	Global	Lateral amygdala	1	Monsey et al. (2011), Maddox et al. (2013)
H3 phosphorylation	Global	CA1	1	Chwang et al. (2006)
H3 phosphoacetylation	Global	CA1	1	Chwang et al. (2006)
H3K9me2	Global	Entorhinal cortex	1	Gupta-Agarwal et al. (2012)
	Global	CA1	1	Gupta et al. (2010), Gupta-Agarwal et al. (2012)
	zif268 promoter	CA1	1	Gupta et al. (2010)
H3K4me3	BDNFI	CA1	1	Gupta et al. (2010)
	Homer 1 promoter	Amygdala	Ļ	Mahan et al. (2012)
	PP1	a face of the	1	Miller and Sweatt (2007)
DNM d L C	Reelin	C14	Ļ	Miller and Sweatt (2007)
DNA methylation	Bdnf	CAT	Ļ	Lubin et al. (2008)
	zif268		1	Gupta et al. (2010)
MEMORY MAINTENANCE (7-30 DA	AYS)			
DNA methylation	Calcineurin	PFC	1	Miller et al. (2010)

Indocrine disruptor	Route of exposure	Breast epigenetic effect	Epigenetic effect: other tissues	References
Bisphenol A (BPA)	Plastics, dental sealarits, epoxy resins, thermal paper	Albered methylation of LAMP3_BRCAT, CONAT, CDNK2A, THEST, TNFRSFTOC and TNFRSFTOD Upregulation of E2HQ Unique miRNA closebra	Increase in DNMT activity in brain and testis	Doherty et al. (2010), Weng et al. (2010), Doshi et al. (2011), Gin et al. (2012), Tilginnan et al. (2012) and Kundakovic et al. (2013)
Phytoestrogens	Plant-derived senoestrogens (e.g. soy, tomatoes and red wine)	Demethylation of BRCA1, BRCA2, GSTP1, RAR32, CCND2 Repression of DNMT activity	miRNA changes in cancers of prostate, pancreas and ovaries	King Batoon et al. (2008), Li er al. (2009), Qin et al. (2009), Paluszczak et al. (2010) and Bosviel et al. (2012)
Diethylstilbestrol (DES)	Prescribed drug (discontinued 1970s)	Increase in H3 trimethylation by upregulation of E2H2 expression	Methylation pattern of Hox genes, Fos and Nsbp1 different in mouse uterus and endometrium Drimt1 expression increased in mouse uterus	Li et al. (2003), Tang et al. (2008), Bromer et al. (2009), Sato et al. (2009) and Doherty et al. (2010)
2,3,7,8 tetrachloridi- benzo p dioxin (TCDD)	Combustion and manufacture of chemicals	Hypermethylation of BRCA1	Transgenerational effects on sperm methylome Methylation-induced silencing of p.SJ and p16/NK4a in keratonites Increased DMMT activity in mouse embryos	Ray & Swamon (2008), Wu et al. (2008), Papoutsis et al. (2010) and Manikkam et al. (2012)
Polychlorinated biphenyls (PCBs)	Coolants and heat- transfer agents		Increased abundance of SAM and DNM7, leading to increased methylation in rat liver cells H4K16Ac post-translational histone modifications reduced	Praga et al. (2009) and Desaulnies at al. (2009)
Polycyclic aromatic hydrocarbons (PAPb)	Incomplete combustion, including wood, dgarettes, coal and crude oil	Forms DNA adducts near methylation sites in breast epithelium and breast milk Alters DNA methylation and histone modification patterns		Li et al. (1990), Gorlevaka- Roberts et al. (2002), Thompson et al. (2002), Brodley et al. (2007) and Sadikovic et al. (2007, 2008)
Perfluorooctanoic acid (I# QA)	Chemical in surfactants, waterproofing, insulating agents and dental products		Inverse correlation between in utero exposure and cord blood methylation GSTP hypermethylated in normal liver cells, leukemia, prostate and liver cancer cells	2hong et al. (2002), Nakayanna et al. (2004), Guerrero- Preston et al. (2016), Karlus et al. (2011) and Tian et al. (2012)
DDT and DDE	Insecticides	Distinct miRNA signature in MCF-7 cells	Reduced expression of Drimt1 in rat hypothalamus	Shutoh et al. (2009) and Tilghman et al. (2012)
Vinclozolin	Pesticide	100000 0.00000	Germ line epigenetic	Anway et al. (2006)

Table 1. M	icroRNAs in response	to different environment	al exposures and relation	en to cardiovascular dis	ease
Exposure	miRNA/miRNA regulatory gene	Change/effect of	Target/function	CVD relevance	Reference
PM, carbon black	Dicer polymorphism rs13078	Minor allele A	miRNA biogenesis	Correlated with higher serum sICAM-1 and sVCAM-1 levels	[26]
	GEMIN 4 polymorphism rs1062923	Minor allele C	miRNA biogenesis	Higher sVCAM-1 levels	
Air pollution, metal pollutants	miR 222	Increased in peripheral blood	cKit, p57 (Kip2)	Induce vascular smooth muscle cell growth, angiogenesis [27]; reduction in eNOS, vasoconstriction [25]	[24]
	miR 21		Phosphatase PTEN, PI3 Kinase pathway	Prevents cardiomyocyte apoptosis in MI [28]	
Aluminum	miR 146a	Increased, in-vitro experimental model	NF-ĸB dependent, oxidoreductive pathway, ErbB pathway	Cardiomyocyte apoptosis cardiac hypertrophy [29]	[30]
Bisphenol A	miR 146a	Increased in placental cells			[31]
Alcohol	miR 199a	Increased in liver sinusoidal endothelial cells	Hypoxia Inducible Factor HIF-1 a, Sirtuin 1	Prevents hypoxia injury	[32]

Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Renurnosing.

Drug Repurposing. Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M, Nikfar S, Tsatsakis A, Abdollahi M. Int J Mol Sci. 2022 Jan 6;23(2):583.

Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, et al. Int J Mol Sci. 2022 Jul 9:23(14):7611.

Summary (adapted norm Sawari et al. (203)). The environmental factors epigenetically initiativity initiation are breastfeeding, microbiota, diet, smoking habits, drugs, infections, vitamin D and physical activity. Although present at all times, it is mainly during the prenatal period, at birth and just before the onset of the disease that these factors play a key role in triggering the disease. These environmental factors, by inducing DNA methylation, histone modifications and ncRNAs in different cell types, trigger the pathways involved in IBD pathophysiology and contribute to disease initiation.

Modes of abnormal gene silencing in cancer The currently suggested routes to abnormally silenced genes in cancer are shown. Genes that are active in cells throughout development and adult cell renewal initially have active promoter chromatin that is characterized by the presence of the histone modification, H3K4me (indicated by green circles and dashed arrows), and a lack of DNA methylation (indicated by pale blue circles). Genes that become silenced (indicated by a red X) can do so either by the acquisition of DNA methylation (indicated by red circles) and the presence of the repressive mark, H3K9me (indicated by orange circles and black arrows), or by the presence of Polycombmediated repressive chromatin (PRC) marks, H3K27me (purple circles and grey arrows). DNA methylation and H3K9me marks during tumour progression are shown. The wide yellow arrows at the sides of the figure depict movements that link stem and progenitor cells and differentiated cells and which can be impeded by epigenetic abnormalities in cancer or which can be corrected by epigenetic therapy.

	AR	FOXA1	HOXB13	H3K27ac	H3K4me2	H3K4me3	H3K27me3	ATAC-seq	All marks
Total	59	42	42	86	8	10	11	10	268
Normal prostate epithelium	13*	14	14	37 ^b	4	3	4	4	93
Primary prostate tumor	314	13	13	32	4	7	7	6	113
mCRPC	15	15	15	17	0	0	0	0	62
Median no. of peaks (range)	20,619 (1,577- 73,723)	37,691 (3,174- 99,041)	47,338 (1,709- 90,075)	34,609 (2,337- 127,042)	69,558 (41,095-83,869)	33,215 (28,952- 38,447)	254,148 (112,809- 316,413)	48,139 (25,324- 60,232)	1

genes silenced by D	NA hypermethylation in o	cancer
Cancer type	Tumor suppressor gene	Refs
Retinoblastoma	pRb	72
Breast cancer	BRCA1	73
Colorectal carcinoma	MLH1, APC	56,74
Melanoma	p16INKK4a	75
Haematological neoplasia	p15INKK4b	76
Renal carcinoma	VHL	77

	N	No. of CpG	Genomic size	Median size (bp)	Overlap with islands	Overlap with shores	Overlap with Refseq mRNA TSS
Normal genome (reference)	N/A	28.2M	3.10 Gb	N/A	27.7K	55.4K	36,983
Hypomethylated blocks	13,540	16.2M	1.95 Gb	39,412	17.6%	26.8%	10,453
Hypermethylated blocks	2,871	485K	35.8 Mb	9,213	13.4%	36.4%	976
Hypomethylated small DMRs	4,315	59.5K	2.91 Mb	401	2.2%	51.0%	1,708
Novel hypomethylated	448	8.35K	367 kb	658	2.9%	19.9%	30
Shift of methylation boundary	1,516	17.5K	741 kb	261	2.1%	92.8%	1,313
Other	2,351	33.7K	1.80 MB	479	2.1%	29.9%	368
Hypermethylated small DMRs	5,810	403K	6.14 Mb	820	67.2%	17.0%	3,068
Loss of boundary ^a	1,756	165K	2.36 Mb	1,159	80.9%	3.4%	1,091
Shift of methylation boundary	1,774	96.3K	1.40 Mb	502	60.3%	33.0%	1,027
Other	2,280	142K	2.38 MB	769	62.2%	15.1%	983
	ne note opaa n		the another. Hire, for a	pricacio, as ony in gen	nne azzenioù ng 2 5 e		

Acute myeloid leukaemia	p15, E-cadherin, SOCS-1, p73, DAPK1,
	HIC1, RARβ2, ER
Myelodysplastic syndromes	p15, E-cadherin, calcitonin, HIC1, and ER
Acute lymphoid leukaemia	E-cadherin, p16, p15, p73, DAPK1, MGMT
Lymphoma	DAPK1, p73, p16, MGMT, GSTP1, RARβ2, CRBP1
Multiple myeloma	p15, p16, SOCS-1, E-cadherin, p73, DAPK1, PF4

12	Π																					
er types 0 01			Г																			
of canc]																
Jaquin 4									₽		Π	Π	Π-	Π	Π							
2			$\left \cdot \right $			$\left \right $					╢	╢				₽	\square		$\left\ \right\ $	╟	\mathbb{H}	H
0	4a	ц Т 2	2 2	27	22	6 6	T,	26	8	16	2	8	1 <u>2</u>	7a		2	22	4	8	95		9a 25
	mir-3	hir-12	nir-124	mir-1	199a-	mir-3	mir-9	mir-1	mir-2	mir-5	let-7a	mir-20	mir-5	mir-51	mir-9	nir-129	mir-1	mir-1	mir-14	mir-4	mir-51	mir-51

NA Biol. 2020 Nov;17(11):155()-1559.		
able 1. A list of reported eRNA bir	nding proteins and underlying mechanis	ns.	
eRNA-Binding Proteins	Identification methods	Potential regulatory mechanisms	Reference
Cohesin (RAD21, SMC3)	IVT RNA pulldown and RIP-qPCR	Modulation of chromatin Looping	[19]
CICF	IVT RNA pulldown and RIP-qPCR	Modulation of chromatin Looping	[59]
MED1, AR	RIP-qPCR	Modulation of chromatin Looping	[30]
NELF-E	RIP-qPCR, IVT RNA pulldown	NELF complex release	[31]
1111	CLIP-Seq, EMSA	Transcription factor trapping	[32]
PGC1a	RIP-Northern blot, RIP-qPCR, EMSA	Regulation of PGC1a mediated transcription	[117]
Cydin T1, CDK9	IVT RNA pulldown, RIP-qPCR, GST- pulldown	P-TEFb activation	[76]
CBP	PAR-CLIP, In vitro protein pulldown, EMSA	CBP HAT activity regulation via direct interaction at the catalytic domain of HAT	[87]
CDK9 and NELF	RIP-aPCR	Recruitment of CDK9 and removal of NELF complex	[88]
hnRNPU	IVT RNA pulldown	Modulation of chromatin Looping	[85]
hnRNPA2B1, cohesin complex, Integrator	IVT RNA pulldown	Chromatin Remodelling	[44]
p300, NELF-A, CBP, CDK9	RIP-gPCR	P300 recruitment and NELF complex release	[89]
BRD4, BRD2, BRD3, BRDT, BRG1, BRD7	RIP-qPCR, EMSA, In vitro protein pulldown	Promote the interaction between bromodomain and acetylated histories	[62]
MED12	RIP-gPCR, IVT RNA pulldown	Modulation of chromatin looping	[86]

Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer.

Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, Yang AS, Jones PA, Liang G.

PLoS Genet. 2010 Apr 22;6(4):e1000917.

Gene	Chromosomal location	Function	Hypermethylation in prostate cancer (%)	Refs.
GSTP1	11g13	Detoxification, DNA repair	13-100	(13,16,72-82
MGMT	10q26	Detoxification, DNA repair	0-76	(17-19,35)
CDH1	16q22.1	Cell adhesion	0-72	(22,29,83)
CD44	11p13	Cell-cell interactions, cell adhesion and migration	20-78	(21,23,84)
CCND2	12p13	Regulation of cyclin-dependent protein serine/threonine kinase activity	8.4-99	(19,73,75)
APC	5q21-q22	Tumor suppressor; antagonist of the Wnt signaling pathway; regulator of cell migration, adhesion, transcriptional activation and apoptosis	14.5-100	(19,27,75,76 80,82,85-87)
RARβ	17q21	Tumor suppressor; regulation of development, differentiation, apoptosis, granulopoeisis, and transcription of clock genes	32.6-100	(19,73,75-77
RASSFIA	3p21.3	Tumor suppressor; Ras protein signal transduction	19.2-100	(19,72,73,86)

DNA methylation and histone modifications as epigenetic regulation in prostate cancer (Review).

22

Environmental factor(s)	Associated with
Alzheimer's disease Metals (iton, copper, zinc, mercury, aluminum) Pesticides Solvents	Increased risk, inconclusive result increased risk
Electromagnetic fields Caloric restriction Antioxidants Mediterrancean diet, fruit and vegetables Fish and omega-3 fatty acids Traumatic brain injuries Infectiones and inflammation	Increased risk, inconclusive result Increased risk, inconclusive result Protection Protection Protection Protection Increased risk Increased risk
Parkinson's disease Metals (iron, copper, manganese, lead) Rural environment (PestScides, herbicides) Tohacco smoking Caffetne (coffee and tea drinking) Fruit and vegetables, legomes, nuts Fish Head injuries with loss of consciousness	Increased risk, conflicting results Increased risk Protection Protection Protection Protection Increased risk
Amyotrophic lateral sclerosis Métals (lead) Pesticides and insecticides Electromagnetic fields Some sports (soccer, football) Head injuries Tobacco smoking	Increased risk Increased risk Increased risk Increased risk Increased risk, in women

Histone acetyltransferases (HATs) and me	mory*		
Mutation	Memory/Plasticity Impairment	Reference	
Dominant-negative truncated CBP	Cued fear conditioning	Oike et al. 1999	
	Passive avoidance	Routchouladae et al. 2002	
CRP knockout	Contextual fear conditioning	Alarcon et al 2004	
CDF KINCKODL	Novel object recognition	Marcon et al. 2004	
	Cued fear conditioning (trend only)		
	L-LTP		
CBPHAT	Novel object recognition	Korzus et al. 2004	
	Morris water maze		
CBPRIX/KIX	Novel object recognition	Wood et al. 2006	
	Contextual fear conditioning		
CBPA1	Morris water maze	Wood et al. 2005	
	Contextual fear conditioning		
	L-LTP generated by: 1 train E-LTP + D1 agonist	Oliveries et al. 2007	
20041	Novel object recognition	Oliveira et al. 2007	
p30021	Novel object recognition	Oliveira et al. 2007	
PCAE knockout	Morris water mate	Maurice et al. 2008	
	Inhibitory ausidance	madrice et al. 2000	
	Novel object recognition		
	there expect teeghneet		

Location	Functional group/relation to memory	Reference
H3 S10	Phosphate; † in response to fear conditioning/hippocampal slice stimulation	Chwang et al. 2006, 2007
13 K14	Acetyl; T in response to fear conditioning/hippocampal slice stimulation	Current at al 2002
13 K14	Acetyl; 1 in response to treatment with 5-HT in aphysia Acetyl; 2 in response to treatment with 5-HT in aphysia	Guan et al. 2002
14 K8	Acetyl: 1 in response to deadherit with 5-41 in apiysia Acetyl: 1 correlates with long term depression	
13 K14	Acetyl: 1 in response to fear conditioning	Levenson et al. 2004
14 K5/8/12/16	Acetyl: T in response to latent inhibition training	
13 K14	Acetyl; T in response to fear conditioning + TSA	Vecsey et al. 2007
44 K5/8/12/16	Acetyl; T in response to fear conditioning + TSA	

l Psychiatry. 2020 Nov 9	L, Li R. 9;10(1):391.		
			1121-11
Table 1 Potential b	omarkers identified in lipidomics studies of biofluids from schiz	ophrenia patie	ints.
Methods for lipidomics	Lipid species identified by lipidomics	Biofluids	References
UPLC-ESI- QTOF-MS	Triglycerides (lipid cluster, LC4 to LC9)	Serum	Oresić et al. ¹⁰
UPLC-ESI- QTOF-MS	Lysophosphatidylcholines		Orešič et al. ¹⁰
HPLC-ELSD and GC-FID	Triacylglycerols, free fatty acids, phosphatidylcholine, phosphatidylethanolamine	Plasma	Kaddurah-Daouk et al.
TLC and GC-FID	Phosphatidylcholine (n3, n6), phosphatidylethanolamine (n3, n6)		McEvoy et al. ⁹
ESI-MS/MS	Choline plasmalogen, ethanolamine plasmalogen, docosahexaenoic acid		Wood et al. ¹³
UPLC-ESI- QTOF-MS	Free fatty acids, ceramide	Red blood cells	Schwarz et al. ⁶
	Choline plasmalogen, ethanolamine plasmalogen, docosahexaenoic acid	Platelets	Wood et al. ¹³
ESI-MS/MS			
ESI-MS/MS			

pring 202 biol 476/5 chedule/l	23 (Odd Years) 76 Lecture Outline –	
Week 1	January 10 & 12	Systems Biology (History/ Definitions/ Theory)
Week 2	January 17 & 19	Systems Biology (Networks & Emergence)
Week 3	January 24 & 26	Systems Biology (Components: DNA to Phenotype)
Week 4	Jan 31 & Feb 2	Systems Biology (Genomics / Technology)
Week 5	February 7 & 9	Epigenetics (History / Molecular Processes)
Week 6	February 14 & 16	Epigenetics (Molecular Processes & Integration)
Week 7	February 21 & 23	Epigenetics (Genomics and Technology)
Week 8	Feb 28 & March 2	Cell & Developmental Biology
Week 9	March 7 & 9	Epigenetics of Cell & Developmental Biology (& Midterm Exam)
Week 10	March 13 - 17	Spring Break
Week 11	March 21 & 23	Environmental Impact on Biology
Week 12	March 28 & 30	Environmental Epigenetics
Week 13	April 4 & 6	Disease Etiology
Week 14	April 11 & 13	Epigenetics & Disease Etiology
Week 15	April 18 & 20	Evolutionary Biology & Genetics
Week 16	April 25 & 27	Epigenetics & Evolutionary Biology
Week 17	May 2 & 4	Grant Review/ Study Section Meeting (& Final Exam)

Spring 2023 - Epigenetics and Systems Biology Lecture Outline (Epigenetics and Disease Etiology) Michael K. Skinner - Biol 476/576 Weeks 13 and 14 Epigenetics and Disease Etiology Introduction - Epigenetics and Disease Etiology Introduction - Epigenetic Disease - Environmental Epigenetics and Disease - Environmental Epigenetics and Disease - Epigenetics and Reuroscience - Epigenetics and Metabolic Syndrome - Epigenetic Transgenerational Inheritance of Disease - Epigenetic Transgenerational In

Books (Reserve in Library)

Haslberger, Alexander G, and Sabine Gressler. Epigenetics and Human Health: Linking Hereditary, Environmental, and Nutritional Aspects. Weinheim: Wiley-VCH, 2010. (ebook)

Epigenetics and Disease (Metabolic Syndrome and Complex Disease)

Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv Nutr. 2014 Jan 1;5(1):71-81. Martínez JA, et al.

TABLE 1	Examples of nutritional factors having beneficial metabolic effects that are regulated by epigenetic mechanisms ¹
---------	--

Nutritional factor	Metabolic disorder	Epigenetic mechanisms	Reference
Methyl donors			
Betaine	Insulin resistance, liver steatosis	Histone and DNA methylation	(13)
Choline	Liver steatosis	Histone and DNA methylation	(14)
Folate	Insulin resistance, adiposity	DNA methylation	(15)
Methionine	Insulin resistance, obesity	Histone and DNA methylation	(15)
Vitamin B-12	Insulin resistance, obesity	DNA methylation	(15)
Phytochemicals			
Curcumin	Inflammation, obesity	Histone acetylation, DNA methylation, and microRNA	(16)
Epigallocatechin 3-gallate	Obesity, insulin resistance, liver steatosis	Histone acetylation and DNA methylation	(17)
Genistein	Obesity	Histone acetylation and DNA methylation	(18)
Resveratrol	Obesity, liver steatosis	Histone acetylation	(19)
Sulforaphane	Adipocyte differentiation	Histone acetylation	(20)
Fatty acids			
Butyrate and other SCFAs	Insulin resistance, inflammation	Histone acetylation and propionylation	(21)
¹ Based on (12)			
50000 011 (12).			

Metabolic	Gene	Common gene	Epigenetic	-
process	symbol	name	mechanism	Reference
Adipogenesis	CEBPA	CCAAT/enhancer binding protein (C/EBP) α	Histone acetylation and methylation	(24)
	PPARA	Peroxisome proliferator-activated receptor α	DNA methylation	(25)
Appetite regulation	LEP	Leptin	DNA methylation	(26)
	MC4R	Melanocortin 4 receptor	DNA methylation	(27)
	NPY	Neuropeptide Y	DNA methylation	(28)
	POMC	Proopiomelanocortin	DNA methylation and histone acetylation and methylation	(28)
Body weight homeostasis	FTO	Fat mass and obesity associated	DNA methylation	(29)
Slucose homeostasis	ADIPOQ	Adiponectin	DNA methylation and histone acetylation	(30)
	GLUT4	Insulin-responsive glucose transporter 4	DNA methylation and histone acetylation	(31)
	INS	Insulin	DNA methylation and histone acetylation	(32)
-typoxia	HIF1A	Hypoxia inducible factor 1	DNA methylation and histone acetylation and methylation	(33)
nflammation	IFNG	Interferon y	DNA methylation	(34)
	TNF	Tumor necrosis factor α	DNA methylation	(35)
Lipid storage	FASN	Fatty acid synthase	DNA methylation	(36)
Stress	NR3C1	Glucocorticoid receptor	Histone acetylation	(37)
Thermogenesis	UCP1	Uncoupling protein 1	DNA methylation	(38)

Annu Rev Nutr. 2010 Aug 21;30:315-39.

Pathway	PATHWAY ID	Source	P-value	Terms in query ^a	Terms in genome ^b
Statin pathway	Statin_pathway_pharmgkb	MSigDB	5.14e-16	16	18
PPAR signaling pathway	hsa03320	KEGG pathway	5.56e-12	25	70
Lipoprotein metabolic	pw:0000482	Pathway ontology	6.62e-12	12	13
Nuclear receptors in lipid metabolism and toxicity	H_nuclearrspathway	CGAP BioCarta	1.91e-10	17	34
Adipocytokine signaling pathway	hsa04920	KEGG pathway	1.85e-09	22	67
Neuroactive ligand-receptor interaction	hsa04080	KEGG pathway	3.72e-08	42	256
Altered lipoprotein metabolism	pw:0000484	Pathway ontology	1.42e-06	7	7
GPCRDB class a rhodopsin-like	gpcrdb_class_a_rhodopsin_like	MSigDB	1.88e-06	32	183
Reverse cholesterol transport	pw:0000498	Pathway ontology	3.03e-06	8	10
ACE inhibitor pathway	ace_inhibitor_pathway_pharmgkb	MSigDB	1.08e-05	7	8
Visceral fat deposits and the metabolic syndrome	h_vobesitypathway	CGAP BioCarta	1.08e-05	7	8
Obesity pathway	vobesitypathway	MSigDB	1.08e-05	7	8
y-Hexachlorocyclohexane degradation	map00361	GenMAPP	1.21e-05	12	29
Fryptophan metabolism	tryptophan_metabolism	MSigDB	2.16e-05	16	56
Leptin system	pw:0000363	Pathway ontology	3.03e-05	8	12

ACE—angiotensin-converting enzyme; CGAP—Cancer Genome Anatomy Project; GenMAPP—Gene Map Annotator and Pathway Profiler; GPCRDB—G protein-coupled receptor database; KEGG—Kyoto Encyclopedia of Genes and Genomes; MSigDB—Molecular Signatures Database; pharmgkb—The Pharmacogenomics Knowledge Base; PPAR—peroxisome proliferator-activated receptors

^a The number of genes in the training sets belonging to that pathway

^b Similar genes according to the Toppfun application

Maternal diet	Species	Timing of exposure	Cardiovascular outcome	Sex studied	Reference
High fat	Mouse	In utero and lactation	Hypertension	M and F	[44]
	Mouse	In utero and lactation	Hyperglycemia, insulin resistance, obesity, and hypertension	F	[45]
	Rat	In utero and lactation	Increased lipid peroxidation and evidence of mitochondrial dysfunction	Not available	[46]
	Rat	In utero and lactation	Vascular dysfunction	Not available	[47]
	Rat	In utero and lactation	High SBP and DBP, abnormal vascular function, reduced endothelium-dependent relaxation	M and F	[48–52]
	Rat	In utero	Cardiac vulnerability to ischemic injury in adult male offspring	M and F	[53]
	Rat	In utero and lactation	Increased blood pressure, insulin resistance, dyslipidemia, obesity, and mesenteric artery endothelial dysfunction in adult offspring	M and F	[54]
	Sheep	In utero	Fibrosis and collagen deposition	M and F	[55]
	Sheep	In utero	Impaired cardiac insulin signaling and impaired left ventricular- developed pressure in response to high workload stress.	M and F	[56]
	Sheep	In utero	Myofibril hypertrophy and fascicular disarray	M and F	[57]
	Japanese macaque	In utero and lactation	Vascular dysfunction manifested as depressed endothelium- dependent vasodilatation and thickaped intima wall	not available	[58]

High fat/high sugar (obesogenic)	Mouse	In utero and lactation	Hypertension, cardiac hypertrophy, and cardiac dysfunction ex vivo	м	[59",60-62]
Caloric restriction	Mouse	In utero and lactation	Increase in SBP, perivascular fibrosis of the coronary artery, cardiomegaly, and cardiomyocyte hypertrophy	м	[63,64]
	Rat	In utero and lactation	Endothelial dysfunction	м	[65]
	Rat	In utero	Elevated blood pressure	M and F	[66]
	Rat	In utero and lactation	Persistent hypertension and endothelial dysfunction across F1–F3 offspring	м	[67]
	Rat	In utero	Reduced heart weight and cardiomyocytes number at birth	F	[68]
	Rat	In utero	Pathological cardiac remodeling, diastolic dysfunction, altered Ca ²⁺ handling properties in isolated cardiomyocytes	M and F	[69",70]
	Rat	In utero	Hypertension and reduced number of glomeruli	Μ	[71]
	Sheep	Gestation and/or lactation	Hypertension and impaired glomerulogenesis	Μ	[72]
	Sheep	In utero	Left and right ventricular cardiac hypertrophy (fetus and adult offspring)	F	[73,74]

laternal diet	Species	Timing of exposure	Cardiovascular outcome	Sex studied	Reference
ow protein	Mouse	In utero and lactation	Elevated offspring SBP	M and F	[75]
	Mouse	In utero and lactation	Cardiac hypertrophy	M	[76]
	Mouse	In utero and lactation	Hypertension and vascular dysfunction	м	[77]
	Rat	In utero and lactation	Reduced cardiac β-adrenergic responsiveness	M	[78]
	Rat	In utero and lactation	Increase in the cardiovascular sympathetic tone	Μ	[79]
	Rat	In utero	Higher SBP at 4 weeks of age	M and F	[80]
	Rat	In utero and lactation	Increased oxidative stress	Not available	[81]
	Rat	In utero	Increased SBP, impaired recovery of left ventricular developed pressure after ischemia (Langendorff)	M and F	[82]
	Rat	In utero	Hypertension and renal dysfunction	M and F	[83]
	Goat	Late gestation	Reduced heart and body weight at birth	Μ	[84]
w protein and postnatal catch-up growth	Rat	In utero	Cardiac DNA damage and oxidative stress	м	[24,25]

Programmed trajectory

Elevation in BMI,

body fat composition glucose intolerance,

and insulin resistance

Intrauterine environmental agent	Epigenetic locus	Epigenetic assessment	Biospecimen	Outcome measure	Model	Reference
Parental obesity	CCDC112, MCOLN3	DNA methylation	Cord blood	Child BMI	Human	31
	RXRA, NOS, SOD1	DNA methylation	Cord blood	Adiposity at age 9	Human	15
	Zfp423, Clebp-B, Ppary	DNA methylation and expression	Fat	Body weight and fat mass	Rat	6
	Zfp423	DNA methylation, expression, and histone modifications	Fat	Adipogenic potential of fetal tissue	Mouse	43
	let-7g, miR-381, miR-376, Tufrsf4, Fst, Tufα, Il6, Tlr4, Ppury, Clelp-α	miRNA and mRNA	Musde and mesenchymal stem cell line	Adipogenic potential of fetal tissue	Sheep	41
	Thr1, Thr2, Lat, Drent1, Drent 3a/b	DNA methylation	Fat	F1-F2 body weight, adipocyte size, and metabolic dysfunction	Mouse	11
	Pgc-1a	DNA methylation and expression	Muscle	Fat mass	Mouse	21
	miR-503, miR-456b-5p, miR-542-3p, miR-652	miRNA	Sperm	Metabolic dysfunction (glucose intolerance and insulin sensitivity)	Mouse	26
	Honger, Les	DNA methylation	Liver and oocytes	F1-F2 body weight, WAT weight, and metabolic dysfunction	Mouse	40
Dietary supplement	Global methylation	DNA methylation	Fat	Body weight and fat mass	Mouse	19
IUGR	Pgc-la	DNA methylation and expression	Muscle	Fat mass and metabolic dysfunction	Rat	44
	Ig ²	DNA methylation and expression	Fat	Fat mass and metabolic dysfunction	Rat	8
	lg ¹	DNA methylation	Liver	F1-F2 body weight, fat mass, and metabolic dysfunction	Rat	16
PAHs	Ppary, Clebp-B, Cox-2, Fas, Adipoq	DNA methylation and expression	Fat	F1-F2 weight gain and fat mass	Mouse	42
BPA	lg ²	DNA methylation and expression	F2 ambryos	F1-F2 weight gain, fat mass, and metabolic dysfunction	Mouse	35
DDT	Tubb3, Carm1, Slo4a4	DNA methylation	Sperm	F3 body weight and fat mass	Rat	34
Methoxychlor	37 DMRs	DNA methylation	Sperm	F3 obesity incidence	Rat	24
IP-8	33 DMRs	DNA methylation	Sperm	F3 body weight and fat mass	Rat	36

Relationship between DNA methylation in blood and BMI amongst 1,435 participants of the KORA S4/F4 population cohort. Cross-sectional results (x axis) are for the relationship between methylation in blood and BMI at each of the 187 sentinel CpG sites in the baseline samples; longitudinal results are for the relationship between change in methylation (in blood) and change in BMI after 7 year follow-up. Units for both axes are kg m-2 change in BMI per unit increase in methylation (scale O-1, in which 1 represents 100% methylation).

Chromatin Modification	Nomenclature	Chromatin-Reader Motif	Attributed Function
DNA Modifications			
5-methylcytosine	5mC	MBD domain	transcription
5-hydroxymethylcytosine	5hmC	unknown	transcription
5-formylcytosine	5fC	unknown	unknown
5-carboxylcytosine	5caC	unknown	unknown
Histone Modifications			
Acetylation	K-ac	BromodomainTandem, PHD fingers	transcription, repair, replication, and condensation
Methylation (lysine)	K-me1, K-me2, K-me3	Chromodomain, Tudor domain, MBT domain, PWWP domain, PHD fingers, WD40/β propeller	transcription and repair
Methylation (arginine)	R-me1, R-me2s, R-me2a	Tudor domain	transcription
Phosphorylation (serine and threonine)	S-ph, T-ph	14-3-3, BRCT	transcription, repair, and condensation
Phosphorylation (tyrosine)	Y-ph	SH2 ^a	transcription and repair
Ubiquitylation	K-ub	UIM, IUIM	transcription and repair
Sumoylation	K-su	SIM ^a	transcription and repair
ADP ribosylation	E-ar	Macro domain, PBZ domain	transcription and repair
Deimination	R→Cit	unknown	transcription and decondensation
Proline isomerisation	P-cis⇔P-trans	unknown	transcription
Crotonylation	K-cr	unknown	transcription
Propionylation	K-pr	unknown	unknown
Butyrylation	K-bu	unknown	unknown
Formylation	K-fo	unknown	unknown
Hyroxylation	Y-oh	unknown	unknown
O-GIcNAcylation (serine and threonine)	S-GlcNAc; T-GlcNAc	unknown	transcription
Modifications: me1, monometh and Cit, citrulline. Reader don proline-tryptophan-tryptophan motif; SIM, sumo interaction m	ylation; me2, dimethylation; me3, hains: MBD, methyl-CpG-binding -proline domain; BRCT, BRCA1 C totif; and PBZ, poly ADP-ribose b medulae for the pertingent transitions	trimethylation; me2s, symmetrical dim domain; PHD, plant homeodomain; h terminus domain; UIM, ubiquitin intera inding zinc finger.	ethylation; me2a, asymmetrical dimethylation; MBT, malignant brain tumor domain; PWWP, ction motif; IUIM, inverted ubiquitin interaction

Epigenetic Mechanisms of Action	Agents	Relevance to Stroke
Inhibition of DNMT enzyme activity	5-Azacytidine	Treatment with an inhibitor of DNA methylation reduces the extent of ischemic injury following MCAO
	5-Aza-2-deoxycytidine (or decitabline), zebularine, and MG98	Mice with reduced levels of UNMT1 exhibit significantly smaller infarcts following MCAO, compared with control animals
inhibition of HDAC enzyme activity	Trichostatin A	Neuroprotective mechanisms affected by HDAC inhibition include the critical cellular processes that control growth and viability and stress responses
	Suberoylanilide hydroxamic acid, sodium butyrate, sodium 4-phenylbutyrate, valproic acid, and curcumin	Paradigm for the restoration of impaired neural network connections and the recovery of lost neurological functions, including learning and memory

	Class I	Class IIa	Class IIb	Class III
Yeast HDAC	RPD3	HDA1	HDA1	SIR2
Human HDAC	HDAC1_3, 8, 11	HDAC4, 5, 7, 9	HDAC6, 10	SIRT1_7
Distribution	Ubiquitous	Brain, heart, SM*	Testis, liver, kidney	Unknown
Localization	Nuclear	Nuclear/cytoplasmic	Mostly cytoplasmic	Nuclear
Target substrates	Histones, p53, NF-ĸB	Histones	Histones, Tubulin HSP	Histones, Tubulir p53, TAF
Protein complexes	NuRD, SIN3			
Co-repressor complexes	N-CoR, SMRT	N-CoR, SMRT		
Interacting proteins	RB, p53, MyoD, NF-xB, SP11, BRCA1, DNMT1, DNMT3A-B, MBD2-3, MECP2, ATM	MEF2 MEF2	Tubulin, HSP Tubulin, HSP	p53 p53
Co-factor	Zn	Zn	Zn	NAD+
Inhibitor sensitivity	S**	S	S	NT***
	Class I HDAC1 HDAC2 HDAC3 HDAC3 HDAC1			
	Class IIa HDAC5 HDAC7 HDAC9			

Structural class	Drugs	Concentration	HDAC Inhibition Isotone	Reversibility	Clincial trials
Short-chain fatty acids	Sodium butyrate Valproic acid	шM mM	I, Ila I, Ila	R	1/11 1/11
Epoxides	Depudecin Trapoxin	mM щ	I, Ila	IR IR	
Cyclic tetrapeptides	Apicidin Depsipeptide	Ma	(HDAC1, 2)	R	1/11
Hydroxamic acids	TSA SAHA Oxamflatin Scriptaid Peroyamida	Μα Μα Μμ Μι	I, IIa, IIb I, IIa, IIb	R R R P	1/11
	LAQ824 LBH589 PXD101	Ma Ma	l, Ila, Ilb I. Ila, Ilb	R	ļ
Benzamides	MS-275 CI-994	мщ	I (HDAC1, 3)	R	1/11
HybridsCHAP	nM SK-7068	I, Ila (HDAC1, 4)	R I (HDAC1, 2)	R	

Table 3 Tumor-asso is altered b	Tumor-associated proteins whose expression is altered by HDACI treatment		
Upregulation of gene expr	ession		
Cell cycle inhibitory gene	p21, p16, p27		
Tumor suppression gene	p53, VHL, p107, gelsolin, IGFBP-3		
Differentiation game	RARa, TGFB1		
Apoptotic gene	CD95, CD95l, TRAIL, DR4, DR5,		
	Bak, Bax, Bim		
mmune Activation	MHC-1, MHC-II, CD86		
Downregulation of gene ex	pression		
Cell cycle gene	cyclin D1, cyclin A, TS		
Antiapoptotic gene	bcl2, bcl-XL		
Angiogenic factor	HIF1a, VEGF, IL2, IL10		
Downregulation of protein	expression		
EGFR	FIL-3		
ErbB2	Akt		
АЫ	Raf-1		

Evaluation of the Therapeutic Potential of the Novel Isotype Specific HDAC Inhibitor 4SC-202 in Urothelial Carcinoma Cell Lines. Pinkerneil M, Hoffmann MJ, Kohlhof H, Schulz WA, Niegisch G. Target Oncol. 2016 Dec;11(6):783-798.

Figure 2. Repertory of different DNA methylation patterns of miRNAs in normal and caner cells. [A] miRNAs that are not located in a CpG island might not be greatly influenced by DNA methylation changes. [B] miRNAs located in a CpG island that is not methylated either in normal cells but may undergo methylation. Timor suppressor miRNAs, like miR124a, are unnethylated in normal cells but may undergo methylation to DNA demethylation by AM demethylation b

Figure 2. Azacytidine-induced DNA demethylation requires extended drug exposure. Global methylation analysis was performed by capillary electrophoresis,20 after treatment of HCT116 cells with 2 µM azacytidine. Cells were incubated in drug-containing medium for the time indicated. The medium was then exchanged for drug-free medium and cells were grown for a total of 48 hr.

Figure 3. Membrane transport and intracellular metabolism of azanucdeosides. Four candidate transporter protein families (black and gray arrows) are believed to mediate the transport of nucleosides and nucleoside metabolites across the cell membrane (double line). After cellular uptake, azacytidine (5-aza-CR) and decitabine (5-aza-CR) are modified by different metabolic pathways. It is assumed that 80-90% of azacytidine is incorporated into RNA, because ribonucleotide reductase limits the conversion of 5-aza-thoroucleotides to 5-aza-deoxyribonucleotides.

æase/model hma, OVA mouse	Drug 5. Annualdan	References
sease/model htma, OVA mouse	Drug 5. Assessibles	References
sease/model thing, OVA mouse	Drug 5. Annual dan	References
ease/model thma, OVA mouse	Drug 5. doomiliteo	References
sease/model htma, OVA mouse	Drug 5. Association	References
sease/model thma, OVA mouse	Drug E. davastidina	References
sease/model thma, OVA mouse	Drug	References
sease/model thma, OVA mouse	Drug	References
sease/model thma, OVA mouse	Drug	References
sease/model th ma, OVA mouse	Drug	References
sease/model thma, OVA mouse	Drug	References
thma, OVA mouse	E Anostidino	
blesses and a second state	J PLAL V DUITE	Wuet aL 2013b
7. DROHIVCHI IIIOUSE IIIOGE	Decitabine	Dakhlallah et al. 2013
fibroblasts	Decitabine	Huang et al., 2010
ng cancer	C646	Gao et al. 2013
th ma, OVA mouse	Trichostatin A	Banerjee et al., 2012
way smooth muscle	OSU-HDAC-44	Li et al., 2014a
fibroblasts	LBH589 and SAHA	Coward et al., 2009
fibroblasts	Trichostatin A	Huang et al., 2013
5, bleomycin mouse model	SAHA	Sanders et al., 2014
fibroblasts	SAHA	Zhang et al., 2013a
PD, elastase mouse model	Quercetin	Ganesan et al., 2010
PD	Theophylline	Cosio et al, 2004
fibroblasts	BIX-01294 and 3-Deazaneplanocin	Coward et al., 2010, 2014
fibroblasts	JQ1	Filippakopoulos, et al., 201
1 1 1 1 1 1 1	rway smooth muscle F fibroblasts F, bloomycin mouse model F, bloomycin mouse model F fibroblasts DPD, elastase mouse model DPD F fibroblasts F fibroblasts	rway mooth muscle OSU-HOAC-44 Fibroblasts EIM-1989 and SWIA Fibroblasts Trichostarin A Fibroblasts SWIA Fibroblasts SAWA Fibroblasts SAWA Fibroblasts SAWA Fibroblasts BIX-01294 and 3-Deazane plancein Fibroblasts JQ1

Systems biology in drug discovery. Butcher EC, Berg EL, Kunkel EJ. Nat Biotechnol. 2004 Oct;22(10):1253-9.

Table 2 Epigenetic dru	igs	
Target	Drug	Clinical trials
DNA methylation	5-Azacytidine	Phase I/II/III
	5-Aza-2'-deoxycytidine FCDR	Phase I/II/III
	Zebularine	
	Procainamide	
	EGCG	Phase I
	Psammaplin A	
	Antisense oligomers	Phase I
Histone deacetylase	Many ⁵⁵ , including:	
	Phenylbutyric acid	Phase I/II
	SAHA	Phase I/II
	Depsipeptide	Phase I/II
	Valproic acid	Phase I/II

Transgenerational Disease Etiology

- •Spermatogenic Defect (>90%)
- •Male infertility (complete ~10%, severe 20%)
- •Kidney disease (~30-40%)
- •Prostate disease (~50%)
- Increase in mammary tumor formation (~10-20%)
- •Behavior (Mate Preference, Anxiety & Stress) (>90%)
- •Pre-eclampsia-like during late pregnancy (~10%)
- •Premature Ovarian Failure POF (>90%)
- •Ovarian Polycystic Ovarian Disease (>90%)
- •Female Premature Pubertal Onset (>90%)
- •Obesity (~10-50%)

ENVIRONMENTALLY INDUCED EPIGENETIC TRANSGENERATIONAL INHERITANCE

Vinclozolin (Agi	ricultural Fun	gicide)	Perme	ethrin & DEET (Insect Repell	ants)	
Methoxychlor (A	Agricultural F	Pesticide)	DDT (Pesticide)				
Dioxin/TCDD (In	dustrial Con	taminant)	Tribut	yltin (Industrial	Toxicant & E	Biocide)	
Plastic Compou	ınds (BPA & I	Phthalates)	Hydro	carbons (Jet Fu	uel)		
Other Type	s Exposı	ires					
Nutrition (High	Fat or Calorio	Restriction)	Smok	ing & Alcohol			
Temperature &	Drought (Pla	nt Health & Flow	wering) Stress	s (Behavioral)			
Plants	Flies	Worms	Fish	Rodents	Pigs	Humans	

Table 2: examples of transgenerational inheritance from specific exposures and specific effects						
Exposure	Effects	Reference				
Environmental toxicants		100-01-01				
Vinclozolin	Impaired male fertility; prostate, kidney disease, tumors, immune and reproductive pathologies	[37, 78, 94]				
Vinclozolin	Gender-specific changes in anxiety-like behavior	[85]				
Methoxychlor	Impaired male fertility; kidney disease, ovary disease, and obesity	[37, 86]				
Permethrin/DEET	Prostate, kidney disease	[81]				
Dioxin	Prostate, kidney disease, reduced fertility, negative effects on pregnancy outcome	[80, 123]				
BPA/phthalates	Prostate, kidney disease; obesity	[43]				
Hydrocarbon mixture (jet fuel)	Prostate, kidney disease; obesity; immune and reproductive pathologies	[46]				
Vinclozolin, permethrin/DEET, plastics, dioxin, jet fuel	Polycystic ovaries, reduced primordial follicle pool	[82]				
DDT	Obesity	[45]				
Phthalate	Disruption of testicular germ cell organization and spermatogonial stem cell function, changes in hormones and behavior	[40, 124]				
Phthalate	Disrupted ovarian function	[41]				
Tributyltin	Increase in fat depot size	[38]				
BPA	Cardiac disease; reduced fertility	[48, 72]				
BPA	Changes in social behavior and neural gene expression	[42]				
Atrazine	Testicular disease, early puberty, lean phenotype	[125]				
Benzo[a]pyrene	Behavioral and physiological deficits	[50]				
Mercury	Behavior change	[49]				
Other exposures						
Caloric restriction	Cardiovascular mortality	[56, 77]				
High-fat diet	Increased body size; reduced insulin sensitivity, increased mammary cancer	[57-59]				
Folate	Congenital malformations	[126]				
Stress	Reduced social interaction; increased stress resilience; disrupted neural connectivity; physiology changes; increased anxiety	[51-55]				
Drought	DNA methylation changes	[127]				
Heat/salt stress	Accelerated flowering, increased salt tolerance	[128]				
Prediabetes/diabetes	Impaired glucose tolerance; reduced insulin sensitivity, male subfertility	[61, 62]				
Smoking	Abnormal pulmonary function	[129]				
Ethanol	Neurological defects; decreased fertility	[36, 47, 130				
Heat stress	Increased Hsp70 production and tolerance to heat stress, wing structure changes	[131, 132]				

	ible 1. Pediatric and adult cancers resulting from parental exposure to pesticides or endocrine disrupto						
	Type of Cancer	Pesticide or EDC	Reference				
Pediatric							
		Organophosphates					
	Leukemia	Propoxur; Cypermethrin; Chlorpyrifos	[14,48,58-63]				
	Hodgkin and Non-Hodgkin's Lymphoma	Occupational pesticide exposure	[64,65]				
	Brain tumor	Organochlorine; Methyl bromide	[66,67]				
	Neuroblastoma	Residential pesticides, Iazinon, Glyphosate, Malathion, Parathion, and Tetrachloritinghos	[68-70]				
	Ewing Sarcoma and Wilms tumor	Occupational pesticide exposure	[47,65,71]				
	Retinoblastoma	Residential pesticides	[72]				
Adult							
	Breast cancer	DDT	[19,21,43,73-75				
	Cell adenocarcinoma of the vagina and cervix	DES	[79]				
	Melanoma	DES	[79]				
	Uterine adenocarcinoma	DES	[80]				

	ian 		<						
Constitutive		-=		Pacetta					
Placestal	<u> </u>	- "" -	< #						CpG meth
Transient :		- = -	- ==	-	Cpli methylation	(ATRX SETOR	IT (KMTSC)	tanditin 🕴
	Zypete		Entrys		HERETHING HERETHING	HER	HP1Y KAP1		(32) XEAB dom
	0-		~~~						_
Placental	#	- <u>#</u> -	<#						
methylatio			-12. "	-					
Transient	<u>H</u> -	- 14	-造-	in and					

Spring 202 Biol 476/5 Schedule/I	23 (Odd Years) 76 Lecture Outline –	
Week 1	January 10 & 12	Systems Biology (History/ Definitions/ Theory)
Week 2	January 17 & 19	Systems Biology (Networks & Emergence)
Week 3	January 24 & 26	Systems Biology (Components: DNA to Phenotype)
Week 4	Jan 31 & Feb 2	Systems Biology (Genomics / Technology)
Week 5	February 7 & 9	Epigenetics (History / Molecular Processes)
Week 6	February 14 & 16	Epigenetics (Molecular Processes & Integration)
Week 7	February 21 & 23	Epigenetics (Genomics and Technology)
Week 8	Feb 28 & March 2	Cell & Developmental Biology
Week 9	March 7 & 9	Epigenetics of Cell & Developmental Biology (& Midterm Exam)
Week 10	March 13 - 17	Spring Break
Week 11	March 21 & 23	Environmental Impact on Biology
Week 12	March 28 & 30	Environmental Epigenetics
Week 13	April 4 & 6	Disease Etiology
Week 14	April 11 & 13	Epigenetics & Disease Etiology
Week 15	April 18 & 20	Evolutionary Biology & Genetics
Week 16	April 25 & 27	Epigenetics & Evolutionary Biology
Week 17	May 2 & 4	Grant Review/ Study Section Meeting (& Final Exam)