Spring 2024 – Systems Biology of Reproduction Lecture Outline – Female Reproductive Tract Development & Function Michael K. Skinner – Biol 475/575 CUE 418, 10:35-11:50 am, Tuesdays & Thursdays February 6, 2024 Week 5

Female Reproductive Tract Development & Function

- Female Urogential Tract Organogenesis
- Development of Vagina/Cervix
- Mesenchymal-Epithelial Interactions
- Role of Hormones
 - a. Organ Culture
 - b. Fetal Castration
 - c. Estrogen Receptor Knockout
- Molecular Control Wnt and HOX Genes
- DES Story
- Mammary Biology and Disease
 - a. Cell Types
 - b. Structure
 - c. Gland Development
 - d. Disease

Required Reading

Vue, et al. (2018) Fetal and Postnatal Female Tract Development, in: Encyclopedia of Reproduction (Second Edition), Volume 2, 2018, Pages 261-268

References

- Yao H, Sun N, Shao H, Wang T, Tan T. Ex utero embryogenesis of non-human primate embryos and beyond. Curr Opin Genet Dev. 2023 Oct:82:102093.
- Saber M, Shekari F, Mousavi S-A, Moini A, Miri M-S, Esfandiari F. JAK/STAT3 pathway promotes proliferation of ovarian aggregate-derived stem cells in vitro. Exp Cell Res. 2023 Sep 1;430(1):113689.
- Arutyunyan A, Roberts K, Troulé K, et al. Spatial multiomics map of trophoblast development in early pregnancy. Nature. 2023 Apr;616(7955):143-151.
- Martin AAA, Oliveira Jr G, Madureira AML, et al. Reproductive tract size and position score: Estimation of genetic parameters for a novel fertility trait in dairy cows. J Dairy Sci. 2022 Oct;105(10):8189-8198.
- Francés-Herrero E, Lopez R, Hellström M, et al. Bioengineering trends in female reproduction: a systematic review. Hum Reprod Update. 2022 Nov 2;28(6):798-837.

- Mohamed AR, Naval-Sanchez M, Menzies M, Evans B, King H, Reverter A, Kijas JW. Leveraging transcriptome and epigenome landscapes to infer regulatory networks during the onset of sexual maturation. BMC Genomics. 2022 Jun 1;23(1):413.
- Unal E, Karakaya AA, Beştaş A, Yıldırım R, Taş FF, Onay H, Özkınay F, Haspolat YK. Identification of four novel variant in the AMHR2 gene in six unrelated Turkish families. J Endocrinol Invest. 2021 Jun;44(6):1301-1307.
- Moldovan GE, Miele L, Fazleabas AT. Notch signaling in reproduction. Trends Endocrinol Metab. 2021 Dec;32(12):1044-1057.
- Alderman MH 3rd, Taylor HS. Molecular mechanisms of estrogen action in female genital tract development. Differentiation. Mar-Apr 2021;118:34-40.
- Haraguchi R, Yamada G, Murashima A, Matsumaru D, Kitazawa R, Kitazawa S. New Insights into Development of Female Reproductive Tract-Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development. Int J Mol Sci. 2021 Jan 26;22(3):1211.
- Stöck M, Kratochvíl L, Kuhl H, et al. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ' sexomics'. Philos Trans R Soc Lond B Biol Sci. 2021 Aug 30;376(1832):20200426.
- Rotgers E, Nicol B, Rodriguez K, et al. Constitutive expression of Steroidogenic factor-1 (NR5A1) disrupts ovarian functions, fertility, and metabolic homeostasis in female mice. FASEB J. 2021 Aug;35(8):e2177
- Yoshino T, Suzuki T, Nagamatsu G, et al. Generation of ovarian follicles from mouse pluripotent stem cells. Science. 2021 Jul 16;373(6552):eabe0237.
- Kafshgiri SK, Farkhondeh T, Miri-Moghaddam E. Glyphosate effects on the female reproductive systems: a systematic review. Rev Environ Health. 2021 Jul 15.
- Kajioka D, Suzuki K, Matsushita S, et al. Sexual fate of murine external genitalia development: Conserved transcriptional competency for male-biased genes in both sexes. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23):e2024067118.
- de la Filia AG, Mongue AJ, Dorrens J, et al. Males That Silence Their Father's Genes: Genomic Imprinting of a Complete Haploid Genome. Mol Biol Evol. 2021 May 19;38(6):2566-2581.
- Chumduri C, Turco MY. Organoids of the female reproductive tract. J Mol Med (Berl). 2021 Apr;99(4):531-553.
- Mahdavinezhad F, Gharaei R, Farmani AR, et al. The Potential Relationship Between Different Human Female Reproductive Disorders and Sperm Quality in Female Genital Tract. Reprod Sci. 2021 Apr 14. doi: 10.1007/s43032-021-00520-7. Online ahead of print.
- Terakawa J, Serna VA, Nair DM, et al. SIX1 cooperates with RUNX1 and SMAD4 in cell fate commitment of Müllerian duct epithelium. Cell Death Differ. 2020 Dec;27(12):3307-3320.
- Deka N, Hassan S, Kiran GS, Selvin J. Insights into the role of vaginal microbiome in women's health. J Basic Microbiol. 2021 Nov 11. doi: 10.1002/jobm.202100421. Online ahead of print.
- Pruski P, Correia GDS, Lewis HV, et al. Direct on-swab metabolic profiling of vaginal microbiome host interactions during pregnancy and preterm birth. Nat Commun. 2021 Oct 13;12(1):5967.
- Lin X, Wang C, Zhang Q, et al. ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian duct and apoptosis of vaginal epithelial cells in mice. Reprod Biol. 2021 Sep;21(3):100537.

- Zhao J, Cao H, Zhang W, et al. SOX14 hypermethylation as a tumour biomarker in cervical cancer. BMC Cancer. 2021 Jun 7;21(1):675.
- Yang X, Du H, Bian W, et al. FOXD3-AS1/miR-128-3p/LIMK1 axis regulates cervical cancer progression. Oncol Rep. 2021 May;45(5):62.
- Chumduri C, Gurumurthy RK, Berger H, et al. Opposing Wnt signals regulate cervical squamocolumnar homeostasis and emergence of metaplasia. Nat Cell Biol. 2021 Feb;23(2):184-197.
- Haraguchi R, Yamada G, Murashima A, et al. New Insights into Development of Female Reproductive Tract-Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development. Int J Mol Sci. 2021 Jan 26;22(3):1211.
- Tantengco OAG, Menon R. Contractile function of the cervix plays a role in normal and pathological pregnancy and parturition. Med Hypotheses. 2020 Dec;145:110336.
- Wrobel MH, Mlynarczuk J. Chloroorganic (DDT) and organophosphate (malathion) insecticides impair the motor function of the bovine cervix. Toxicol Appl Pharmacol. 2021 Sep 15;427:115667.
- Tantengco OAG, Richardson LS, Medina PMB, et al. Organ-on-chip of the cervical epithelial layer: A platform to study normal and pathological cellular remodeling of the cervix. FASEB J. 2021 Apr;35(4):e21463.
- Pennarossa G, Ghiringhelli M, Gandolfi F, Brevini TAL. Creation of a Bioengineered Ovary: Isolation of Female Germline Stem Cells for the Repopulation of a Decellularized Ovarian Bioscaffold. Methods Mol Biol. 2021;2273:139-149.
- Du H, Taylor HS. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility. Cold Spring Harb Perspect Med. 2015 Nov 9;6(1):a023002.
- Taylor HS. The role of HOX genes in the development and function of the female reproductive tract. Semin Reprod Med. 2000;18(1):81-9.
- Leppert PC. Tissue remodeling in the female reproductive tract--a complex process becomes more complex: the role of Hox genes. Biol Reprod. 2012 Apr 5;86(4):98.
- Esfandiari F, Favaedi R, Heidari-Khoei H, et al. Insight into epigenetics of human endometriosis organoids: DNA methylation analysis of HOX genes and their cofactors. Fertil Steril. 2021 Jan;115(1):125-137.
- Kitajewski J, Sassoon D. The emergence of molecular gynecology: homeobox and Wnt genes in the female reproductive tract. Bioessays. 2000 Oct;22(10):902-10.
- Sassoon D. Wnt genes and endocrine disruption of the female reproductive tract: a genetic approach. Mol Cell Endocrinol. 1999 Dec 20;158(1-2):1-5.
- Miller C, Sassoon DA. Wnt-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract. Development. 1998 Aug;125(16):3201-11.
- Major AT, Estermann MA, Roly ZY, Smith CA. An evo-devo perspective of the female reproductive tract. Biol Reprod. 2021 Sep 7;ioab166.
- Li-Hsin Cheng L-H, Hsu T-C, Lin C. Integrating ensemble systems biology feature selection and bimodal deep neural network for breast cancer prognosis prediction. Sci Rep. 2021 Jul 21;11(1):14914.
- Wrenn ED, Moore BM, Greenwood E, McBirney M, Cheung KJ. Optimal, Large-Scale Propagation of Mouse Mammary Tumor Organoids. J Mammary Gland Biol Neoplasia. 2020 Dec;25(4):337-350.
- Cunha GR, Robboy SJ, Kurita T, Isaacson D, Shen J, Cao M, Baskin LS. Development of the human female reproductive tract. Differentiation. 2018 Sep-Oct; 103:46-65.

- Hyuga T, Suzuki K, Acebedo AR, Hashimoto D, Kajimoto M, Miyagawa S, Enmi JI, Yoshioka Y, Yamada G. Regulatory roles of epithelial-mesenchymal interaction (EMI) during early and androgen dependent external genitalia development. Differentiation. 2019 Nov-Dec;110:29-35.
- Hsu HJ, Bahader M, Lai CM. Molecular control of the female germline stem cell niche size in Drosophila. Cell Mol Life Sci. 2019 Nov;76(21):4309-4317.
- Van Winkle LJ, Ryznar R. Can uterine secretion of modified histones alter blastocyst implantation, embryo nutrition, and transgenerational phenotype? Biomol Concepts. 2018 Dec 26;9(1):176-183.
- Liu YX, Zhang Y, Li YY, Liu XM, Wang XX, Zhang CL, Hao CF, Deng SL. Regulation of follicular development and differentiation by intra-ovarian factors and endocrine hormones. Front Biosci (Landmark Ed). 2019 Mar 1;24:983-993.
- Ge W, Li L, Dyce PW, De Felici M, Shen W. Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cell Mol Life Sci. 2019 May;76(9):1729-1746.
- Dosouto C, Haahr T, Humaidan P. Advances in ovulation trigger strategies. Panminerva Med. 2019 Mar;61(1):42-51.
- Cunha GR, Baskin L. Development of human male and female urogenital tracts. Differentiation. 2018 Sep Oct;103:1-4.
- Cunha GR, Robboy SJ, Kurita T, Isaacson D, Shen J, Cao M, Baskin LS. Development of the human female reproductive tract. Differentiation. 2018 Sep Oct;103:46-65.
- Cunha GR, Sinclair A, Ricke WA, Robboy SJ, Cao M, Baskin LS. Reproductive tract biology: Of mice and men. Differentiation. 2019 Nov - Dec;110:49-63.
- Garcia-Moreno SA, Futtner CR, Salamone IM, Gonen N, Lovell-Badge R, Maatouk DM. Gonadal supporting cells acquire sex-specific chromatin landscapes during mammalian sex determination. Dev Biol. 2019 Feb 15;446(2):168-179.
- Nicol B, Grimm SA, Gruzdev A, Scott GJ, Ray MK, Yao HH. Genome-wide identification of FOXL2 binding and characterization of FOXL2 feminizing action in the fetal gonads. Hum Mol Genet. 2018 Dec 15;27(24):4273-4287.
- Ożegowska K, Dyszkiewicz-Konwińska M, Celichowski P, et al. Expression pattern of new genes regulating female sex differentiation and in vitro maturational status of oocytes in pigs. Theriogenology. 2018 Nov;121:122-133.
- Tadotsu D, Kawate N, Tamada H. Rescue of the fetal damage associated with high intrauterine pressure by 17β-estradiol injection in ovariectomized progesterone-treated pregnant mice. Endocr J. 2018 Dec 28;65(12):1219-1224.
- Hyuga T, Suzuki K, Acebedo AR, Hashimoto D, et al. Regulatory roles of epithelialmesenchymal interaction (EMI) during early and androgen dependent external genitalia development. Differentiation. 2019 Nov - Dec;110:29-35.
- Cunha GR, Kurita T, Cao M, Shen J, Cooke PS, Robboy SJ, Baskin LS. Tissue interactions and estrogenic response during human female fetal reproductive tract development. Differentiation. 2018 May Jun;101:39-45.
- Wautier A, Tournaire M, Devouche E, Epelboin S, Pouly JL, Levadou A. Genital tract and reproductive characteristics in daughters of women and men prenatally exposed to diethylstilbestrol (DES). Therapie. 2019 Nov 1. pii: S0040-5957(19)30155-6.
- Lee E, Piranlioglu R, Wicha MS, Korkaya H. Plasticity and Potency of Mammary Stem Cell Subsets During Mammary Gland Development. Int J Mol Sci. 2019 May 13;20(9).

- Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Dev Biol. 2019 Jan 15;445(2):145-155.
- Villanueva H, Grimm S, Dhamne S, et al. The Emerging Roles of Steroid Hormone Receptors in Ductal Carcinoma in Situ (DCIS) of the Breast. J Mammary Gland Biol Neoplasia. 2018 Dec;23(4):237-248.
- Young AN, Moyle-Heyrman G, Kim JJ, Burdette JE. (2017) Microphysiologic systems in female reproductive biology. Exp Biol Med (Maywood). 242(17):1690-1700.
- Noroozzadeh M, Behboudi-Gandevani S, Zadeh-Vakili A, Ramezani Tehrani F. (2017) Hormone-induced rat model of polycystic ovary syndrome: A systematic review. Life Sci. 15;191:259-272.
- Elkouby YM, Mullins MC. (2017) Coordination of cellular differentiation, polarity, mitosis and meiosis New findings from early vertebrate oogenesis. Dev Biol. 430(2):275-287.
- Granados A, Alaniz VI, Mohnach L, Barseghyan H, Vilain E, Ostrer H, Quint EH, Chen M, Keegan CE. (2017) MAP3K1-related gonadal dysgenesis: Six new cases and review of the literature. Am J Med Genet C Semin Med Genet. 175(2):253-259.
- Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J. (2017) Environmental influences on ovarian dysgenesis - developmental windows sensitive to chemical exposures. Nat Rev Endocrinol. 13(7):400-414.
- Choussein S, Nasioudis D, Schizas D, Economopoulos KP. (2017) Mullerian dysgenesis: a critical review of the literature. Arch Gynecol Obstet. 295(6):1369-1381.
- Bagnell CA, Ho TY, George AF, Wiley AA, Miller DJ, Bartol FF. (2017) Maternal lactocrine programming of porcine reproductive tract development. Mol Reprod Dev. 84(9):957-968.
- Mao Y, Chen S, Wang R, Wang X, Qin D, Tang Y. (2017) Evaluation and treatment for ovotesticular disorder of sex development (OT-DSD) experience based on a Chinese series. BMC Urol. 17(1):21.
- Wang C, Zhou B, Xia G. (2017) Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci. 74(14):2547-2566.
- Monsivais D, Matzuk MM, Pangas SA. (2017) The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol. 3;9(10). pii: a022251.
- Alhomaidah D, McGowan R, Ahmed SF. (2017) The current state of diagnostic genetics for conditions affecting sex development. Clin Genet. 91(2):157-162.
- Pannetier M, Chassot AA, Chaboissier MC, Pailhoux E. (2016) Involvement of FOXL2 and RSPO1 in Ovarian Determination, Development, and Maintenance in Mammals. Sex Dev. 10(4):167-184.
- Macejova D, Toporova L, Brtko J. (2016) The role of retinoic acid receptors and their cognate ligands in reproduction in a context of triorganotin based endocrine disrupting chemicals. Endocr Regul. 50(3):154-64.
- Atwood CS, Vadakkadath Meethal S. (2016) The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol Cell Endocrinol. 15;430:33-48.
- Li S, Winuthayanon W. (2017) Oviduct: roles in fertilization and early embryo development. J Endocrinol. 2017 Jan;232(1):R1-R26.
- Maillo V, Sánchez-Calabuig MJ, Lopera-Vasquez R, Hamdi M1, Gutierrez-Adan A, Lonergan P, Rizos D. (2016) Oviductal response to gametes and early embryos in mammals. Reproduction. 152(4):R127-41.

- Nallasamy S, Mahendroo M. (2017) Distinct Roles of Cervical Epithelia and Stroma in Pregnancy and Parturition. Semin Reprod Med. 35(2):190-200
- Adefuye AO, Adeola HA, Sales KJ, Katz AA. (2016) Seminal Fluid-Mediated Inflammation in Physiology and Pathology of the Female Reproductive Tract. J Immunol Res. 2016:9707252.
- Nunn KL, Forney LJ. (2016) Unraveling the Dynamics of the Human Vaginal Microbiome. Yale J Biol Med. 30;89(3):331-337.
- Smith SB, Ravel J. (2017) The vaginal microbiota, host defence and reproductive physiology. J Physiol. 15;595(2):451-463.
- Reid G. (2016) Cervicovaginal Microbiomes-Threats and Possibilities. Trends Endocrinol Metab. 27(7):446-54.
- Monniaux D, Michel P, Postel M, Clément F. (2016) Multi-scale modelling of ovarian follicular development: From follicular morphogenesis to selection for ovulation. Biol Cell. 108(6):149-60.
- Thatcher WW. (2017) A 100-Year Review: Historical development of female reproductive physiology in dairy cattle. J Dairy Sci. 100(12):10272-10291.
- Rooney N, Riggio AI, Mendoza-Villanueva D, Shore P, Cameron ER, Blyth K. (2017) Runx Genes in Breast Cancer and the Mammary Lineage. Adv Exp Med Biol. 962:353-368.
- Denholm R, De Stavola B, Hipwell JH, Doran SJ, Busana MC, Eng A, Jeffreys M, Leach MO, Hawkes D, Dos Santos Silva I. (2016) Pre-natal exposures and breast tissue composition: findings from a British pre-birth cohort of young women and a systematic review. Breast Cancer Res. 2016 Oct 12;18(1):102.
- Wikswo JP. (2014) The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med (Maywood). 239(9):1061-72
- Green KA, Zarek SM, Catherino WH. Gynecologic health and disease in relation to the microbiome of the female reproductive tract. Fertil Steril. 104(6):1351-7.
- Schjenken JE, Robertson SA. (2015) Seminal Fluid Signalling in the Female Reproductive Tract: Implications for Reproductive Success and Offspring Health. Adv Exp Med Biol. 2015;868:127-58.
- Robertson SA, Chin PY, Schjenken JE, Thompson JG. (2015) Female tract cytokines and developmental programming in embryos. Adv Exp Med Biol. 843:173-213.
- Diep CH, Daniel AR, Mauro LJ, Knutson TP, Lange CA. (2015) Progesterone action in breast, uterine, and ovarian cancers. J Mol Endocrinol54(2):R31-53.
- Grinspon RP, Rey RA. (2014) When hormone defects cannot explain it: malformative disorders of sex development. Birth Defects Res C Embryo Today. 102(4):359-73.
- Du H, Taylor HS. (2015) The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility. Cold Spring Harb Perspect Med. 9;6(1).
- Mahawong P, et al. (2014) Prenatal diethylstilbestrol induces malformation of the external genitalia of male and female mice and persistent second-generation developmental abnormalities of the external genitalia in two mouse strains. Differentiation. 88(2-3):51-69.
- Gredler ML, et al. (2014) Evolution of external genitalia: insights from reptilian development. Sex Dev. 2014;8(5):311-26.
- Scotti M, Kherdjemil Y, Roux M1, Kmita M. (2015) A Hoxa13:Cre mouse strain for conditional gene manipulation in developing limb, hindgut, and urogenital system. Genesis. 53(6):366-76.

- Suzuki K, Numata T, Suzuki H, et al. (2014) Sexually dimorphic expression of Mafb regulates masculinization of the embryonic urethral formation. Proc Natl Acad Sci U S A. 18;111(46):16407-12.
- Nishita M, Qiao S, Miyamoto M, et al. (2014) Role of Wnt5a-Ror2 signaling in morphogenesis of the metanephric mesenchyme during ureteric budding. Mol Cell Biol. 34(16):3096-105.
- Pinho CF, Ribeiro MA, Rinaldi JC, et al. (2014) Gestational protein restriction delays prostate morphogenesis in male rats. Reprod Fertil Dev. 26(7):967-73
- Silva LS, Goncalves LG, Silva F, et al. (2015) STAT3:FOXM1 and MCT1 drive uterine cervix carcinoma fitness to a lactate-rich microenvironment. Tumour Biol. 2015 Nov 12. [Epub ahead of print]
- Ribeiro J, Marinho-Dias J, Monteiro P, et al. (2015) miR-34a and miR-125b Expression in HPV Infection and Cervical Cancer Development. Biomed Res Int. 2015;2015:304584.
- Silveira FA, Almeida G, Furtado Y, et al. (2015) HPV DNA genotyping and methylation of gene p16 INK4A in cervical LSIL. Exp Mol Pathol. 98(2):308-11.
- Nikoshkov A, Broliden K, Attarha S, et al. (2015) Expression pattern of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 genes in normal and cancer cervical tissues. Int J Oncol. 46(1):107-12.
- Arendt LM, Kuperwasser C. (2015) Form and function: how estrogen and progesterone regulate the mammary epithelial hierarchy. J Mammary Gland Biol Neoplasia. 20(1-2):9-25.
- Ochieng J, Nangami GN, Ogunkua O, et al. (2015) The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis. 36 Suppl 1:S128-59.
- Graveel CR, Calderone HM, Westerhuis JJ, Winn ME, Sempere LF. (2015) Critical analysis of the potential for microRNA biomarkers in breast cancer management. Breast Cancer (Dove Med Press). 23;7:59-79.
- Shore AN, Rosen JM. (2014) Regulation of mammary epithelial cell homeostasis by lncRNAs. Int J Biochem Cell Biol. 54:318-30. doi: 10.1016/j.biocel.2014.03.012.
- Luo M, Brooks M, Wicha MS. (2015) Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. Curr Pharm Des. 21(10):1301-10.
- Besson AA, Guerreiro R, Bellenger J, (2014) Parental experience of a risky environment leads to improved offspring growth rate. J Exp Biol. 1;217(Pt 15):2734-9.
- Bartol FF, Wiley AA, Miller DJ, et al. (2013) Lactation Biology Symposium: lactocrine signaling and developmental programming. J Anim Sci. 91(2):696-705.
- Burkitt M, Walker D, Romano DM, Fazeli A. (2012) Using computational modeling to investigate sperm navigation and behavior in the female reproductive tract. Theriogenology. 1;77(4):703-16.
- Christian M, Lam EW, Wilson MS, Brosens JJ. (2011) FOXO transcription factors and their role in disorders of the female reproductive tract. Curr Drug Targets. 12(9):1291-302.
- Mondéjar I, Acuña OS, Izquierdo-Rico MJ, Coy P, Avilés M. (2012) The oviduct: functional genomic and proteomic approach. Reprod Domest Anim. 47 Suppl 3:22-9.
- Pru JK, Clark NC. (2013) PGRMC1 and PGRMC2 in uterine physiology and disease. Front Neurosci. 19;7:168.
- Ma L. (2009) Endocrine disruptors in female reproductive tract development and carcinogenesis. Trends Endocrinol Metab. 20(7):357-63.

- Talevi R, Gualtieri R. (2010) Molecules involved in sperm-oviduct adhesion and release. Theriogenology. 1;73(6):796-801.
- Carletti MZ, Christenson LK. (2009) MicroRNA in the ovary and female reproductive tract. J Anim Sci. 87(14 Suppl):E29-38
- Lam SW, Jimenez CR, Boven E. (2014) Breast cancer classification by proteomic technologies: current state of knowledge. Cancer Treat Rev. 40(1):129-38.
- Donahue HJ, Genetos DC. (2013) Genomic approaches in breast cancer research. Brief Funct Genomics. 12(5):391-6.
- Chowdhury S, Dent T, Pashayan N, et al. (2013) Incorporating genomics into breast and prostate cancer screening: assessing the implications. Genet Med. 15(6):423-32.
- Dey N, Smith BR, Leyland-Jones B. (2012) Targeting basal-like breast cancers. Curr Drug Targets. 13(12):1510-24.
- Griffith OL, Gray JW. (2011) 'Omic approaches to preventing or managing metastatic breast cancer. Breast Cancer Res. 13(6):230.
- Bièche I. (2010) Search for new genes involved in breast tumorigenesis by "Omics" analysis. [Article in French]. Bull Cancer. 97(11):1365-80.
- Perou CM, Børresen-Dale AL. (2011) Systems biology and genomics of breast cancer. Cold Spring Harb Perspect Biol. 1;3(2).
- Brisken C, O'Malley B. (2010) Hormone action in the mammary gland. Cold Spring Harb Perspect Biol. 2(12):a003178.
- Korkola J, Gray JW. (2010) Breast cancer genomes--form and function. Curr Opin Genet Dev. 20(1):4-14.
- Johannsen E, Lambert PF. (2013) Epigenetics of human papillomaviruses. Virology. 445(1-2):205-12.
- Fukushima C, Murakami A, Yoshitomi K, et al. (2011) Comparative proteomic profiling in squamous cell carcinoma of the uterine cervix. Proteomics Clin Appl. 5(3-4):133-40.
- Liliac L, Amalinei C, Balan R, Grigoras A, Caruntu ID. (2012) Ovarian cancer: insights into genetics and pathogeny. Histol Histopathol. 27(6):707-19.
- Carletti MZ, Christenson LK. J Anim Sci. (2008) MicroRNA in the ovary and female reproductive tract. Sep 12. [Epub ahead of print]
- Wilson VS, Blystone CR, Hotchkiss AK, Rider CV, Gray LE Jr. (2008) Diverse mechanisms of anti-androgen action: impact on male rat reproductive tract development. Int J Androl. 31(2):178-87.
- Thomson AA. (2008) Mesenchymal mechanisms in prostate organogenesis. Differentiation 76(6):587-98.
- Leong KG, Gao WQ. (2008) The Notch pathway in prostate development and cancer. Differentiation 76(6):699-716.
- Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK. (2008) Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 149(12):6207-12.
- Hannema SE and Hughes IA (2007) Regulation of Wolffian Duct Development. Hormone Research 64:142-151.
- Hauser MD (2006) The Environment and Male Fertility: Recent Research on Emergin Chemicals and Semen Quality. Semin Reprod Med 24:156-167.
- He-Feng H, et Al. (2006) Function of aquaporins in female and male reproductive systems. Hum Reprod Update 12(6):785-795

- Maffini MV, et Al. (2006) Endocrine disruptors and reproductive health: The case of bisphenol-A. Mol Cell Endocrinol. 254-255:179-186.
- David RA (2006) Proposed Mode of Action for In Utero Effects of some Phthalate Esters on the Developing Male Reproductive Tract. Toxicol Pathol 34(3):209-219.
- Martin-DeLeon PA (2006) Epididymal SPAM1 and its impact on sperm function. Mol Cell Endocrinol. 250:114-121.
- Thomson AA and PC Marker (2006) Branching morphogenesis in the prostate gland and seminal vesicles. Differentiation 74(7):382-392.
- Takada S, et Al. (2006) Evidence for activation of the *Amh* gene expression by steoidogenic factor 1. Mech Dev. 123(6):472-480.
- Suarez SS and AA Pacey (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12(1):1-2.
- Giudice LC (2005) Infertility and the Environment: The Medical Context. Semin Reprod Med. 24:129-133.
- Kavlock R and A Cummings (2005) Proposed Mode of Action for In Utero Effects of some Phthalate Esters on the Developing Male Reproductive Tract. Toxilcol Pathol. 34(3);209-219.
- Akingbemi BT (2005) Estrogen regulation of testicular function. Reproid Biol Endocrinol. 3:51.
- Troedsson MHT, et Al (2005) Components in seminal plasma regulating sperm transport and elimination. Anim Reprod Sci 89(1-4):171-86.
- Yin Y and L Ma (2005) Development of the Mammalian Female Reproductive Tract. J. Biochem. 137:677-683.
- Sullivan R, et AL. (2005) Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis. 35(1):1-10.
- Padula AM (2005) The freemartin syndrome: an update. Anim Reprod Sci. 87:93-109.
- Pocar P, et Al. (2005) Molecular interactions of the aryl hydrocarbon receptor and its biological and toxicological relevance for reproduction. Reproduction 129(4):379-389.
- Daston GP and JM Naciff (2005) Gene expression changes related to growth and differentiation in the fetal and juvenile reproductive system of the female rat: evaluation of microarray results. Reprod Toxicology. 19:381-394.
- Takada S, et Al. (2005) Regulation of *Amh* during sex determination in chickens: *Sox* gene expression in male and female gonads. Cell Mol Life Sci. 62(18):2140-2146.

FEMALE REPRODUCTIVE TRACT

Fetal and Postnatal Female Tract Development

Zer Vue, Rachel D Mullen, Shuo-Ting Yen, Alejandra E Ontiveros, Allison C Stewart, and Richard R Behringer, University of Texas MD Anderson Cancer Center, Houston, TX, United States

© 2018 Elsevier Inc. All rights reserved.

Nomenclature

AKT	Protein kinase B
AMH	Anti-Müllerian hormone
AR	Androgen receptor
BMP	Bone morphogenetic protein
DES	Diethylstilbestrol
FGF	Fibroblast growth factor
GE	Glandular epithelium
GW	Gestational week
LE	Luminal epithelium
MD	Müllerian duct
MODY5	Maturity-onset diabetes of the young type 5
MRKH	Mayer-Rokitansky-Küster-Hauser
PI3K	Phosphatidylinositol-4,5-bisphosphate 3-kinase
WD	Wolffian duct

Introduction

The female reproductive tract organs form and differentiate during fetal and postnatal stages of development (Kobayashi and Behringer, 2003) (Fig. 1). The oviducts, uterus, cervix and upper portion of the vagina are derived from the paramesonephric ducts or

Fig. 1 Schematic illustration of the female reproductive tract in human and mouse. The female reproductive tracts of human (A) and mouse (B) consist of the ovary, Fallopian tube (oviduct in mouse), uterus, cervix and vagina. A bursal membrane surrounds the ovary in the mouse by not in human.

Fig. 2 Reproductive tract sexual differentiation. The reproductive tract progenitor tissues prior to sexual differentiation are equivalent and contain a fully formed Wolffian duct (*blue*) and Müllerian duct (*red*) within the mesenophros (*gray*). Hormones produced by the fetal testis, anti-Müllerian hormone (AMH), testosterone, and insulin-like 3 (INSL3), activate regression of the MD, differentiation of the WD into the male genital tract (vas deferentia, epididymides, and seminal vesicles), and testicular descent, respectively. In females, at this developmental time point the ovary lacks AMH, testosterone, and INSL3. This permits differentiation of the MD into the female reproductive tract (oviducts, uterus and upper vagina), regression of the WD by allowing COUP-TFII signaling and MSX2 expression, and maintenance of the ovaries in an abdominal position, respectively. Modified from Mullen, R.D. and Behringer, R.R. (2014). Molecular Genetics of Mullerian Duct Formation, Regression and Differentiation. *Sex Dev.* **8**, 281–296.

Müllerian ducts (MD) and adjacent mesenchyme that form within the fetal kidneys, the mesonephroi (Fig. 2). The MD is an epithelial tube with adjacent mesenchyme cells. The MDs are located adjacent and lateral to the mesonephric ducts or Wolffian ducts (WD) that also reside within the mesonephroi (Fig. 2). The WDs can give rise to male reproductive tract organs, including the seminal vesicles, vasa deferentia and epididymides. In male fetuses, the MDs are eliminated by the action of anti-Müllerian hormone (AMH), whereas the WDs differentiate in response to androgens. However, during female fetal development, the ovaries do not secrete AMH or androgens. Thus, in females the MDs differentiate, whereas the WDs regress (Fig. 2).

Once the MDs, have formed, they will become regionalized into the oviduct, uterus, cervix and vagina. Depending on the species, the posterior region of the MDs will fuse to various extents, leading to different uterine morphologies (Kobayashi and Behringer, 2003). At birth, the uterus is composed of a lumen lined by a single layer of epithelial cells with a surrounding undifferentiated mesenchyme. Subsequently, the mesenchyme differentiates into an inner stromal compartment surrounded by inner circular and outer longitudinal smooth muscle layers, the myometrium. The adult uterus contains endometrial glands that produce factors required for uterine receptivity, embryo implantation, embryo survival and development (Gray et al., 2001). Endometrial glands from the luminal epithelium will invade into the uterine stroma in a process called adenogenesis (Spencer et al., 2005). Thus, the development of the fetal and postnatal female reproductive tract organs is complex and essential for the fertility of an individual female.

Formation of the Müllerian Duct

MDs form in amniotes, i.e., birds, reptiles and mammals. Current understandings of MD formation are mostly based on studies in the chicken and mammals. The corresponding developmental stages when MDs form are embryonic day (E) 11.5–13.5 in the mouse, E13.5–16.5 in the rat, Hamburger Hamilton stages 20–30 in the chicken, day 25 of gestation to 2–7 days postpartum in the wallaby and gestational week (GW) 6 to 9.5 (Carnegie Collection stages 16–18) in human (Renfree et al., 1996). Although the timing of MD formation varies between species, the process of how the MD forms is likely similar for each organism.

The formation of the MD can be separated into three phases: initiation, invagination, and elongation (Mullen and Behringer, 2014) (Fig. 3). The initiation phase occurs when a thickened placode-like structure forms on the anterior mesonephric epithelium near the WD. These cells are LHX1 positive and specified by an FGF/LHX1 axis, which, in turn, is regulated by a BMP/PAX2 axis (Atsuta and Takahashi, 2016) (Fig. 3).

The invagination phase occurs when the cells in the placode-like structure become elongated and form apical tight junctions, resulting in a depression of the mesonephric epithelium. Some cells appear to detach from the mesonephric epithelium and move into the space between the mesonephric epithelium and the WD. As the depression becomes deeper, it transforms into

Fig. 3 Müllerian duct formation. (A) MD (*red*) formation occurs in three phases: initiation, invagination, and elongation. Initiation phase: MD progenitor cells in the mesonephric epithelium (*yellow*) are specified and begin to express LHX1. Invagination phase: in response to WNT4 signaling from the mesonephric mesenchyme, LHX1 positive (LHX1⁺) MD progenitor cells invaginate posteriorly into the mesonephros towards the WD (*blue*). Elongation phase: the tip of the MD contacts the WD and elongates caudally in close proximity to the WD requiring WNT9B signaling from the WD. The formation of the MD begins at around E11.5 in the mouse (B) The MD invaginates from the anterior mesonephric epithelium and extends posteriorly guided by the WD. During elongation, mesenchymal cells separate the WD and MD anterior to growing tip. However, at the MD tip, the MD and WD are in physical contact. At around E13.0 the MD crosses over the WD to become located medially. Elongation is complete by E13.5 with the MD reaching the urogenital sinus. E, embryonic day in mouse; D, dorsal; MD: Müllerian duct; P, posterior (caudal); V, ventral; WD, Wolffian duct. Adapted from Kobayashi, A., and Behringer, R.R. (2003). Developmental Genetics of the Female Reproductive Tract in Mammals. *Nature Reviews Genetics* **4**, 969–980.

a funnel-like structure. The invagination process is possibly driven by *Wnt4* expressing cells in the mesonephric mesenchyme because *Wnt4* mutant mice have *Lhx1*-specified cells but do not form the MD (Fig. 3).

As the specified MD cells move posteriorly, MD formation enters the elongation phase. The posterior tip cells of the MD, which have shown to be *Wnt4* positive, will invade through the common basal lamina between the mesonephric epithelium and the lateral side of the WD (Prunskaite-Hyyrylainen et al., 2016). Following the tip cells, the rest of the MD cells will move along the WD in an anterior to posterior manner. When the MD elongates past the middle of the WD (posterior to the gonad), the MD will elongate dorsomedially across the WD, but will remain in close contact with it. After reaching the medial side of the WD, the MD resumes its anterior-posterior elongation along the medial side of the WD. At the end of the elongation phase, the MD tip reaches the urogenital sinus and fuses (Fig. 3).

Although the cellular mechanisms of MD formation are not fully understood, recent studies have shown that both cell proliferation and migration are involved in MD elongation. Studies in both chicken and mouse have shown that the MD cells are proliferative along the entire anterior to posterior length. In addition, cell migration may play an important role during the elongation process. The tip cells extend prominent processes, suggesting that the tips cells are actively investigating their environment for MD elongation (Huang et al., 2014). PI3K/AKT activity has been shown to be required for MD cell migration and elongation in rat embryos (Mullen and Behringer, 2014). It is also possible that cell shape changes may also contribute to MD elongation.

The relatively rapid elongation of the MD during mouse development has led to speculation that cells may be contributed from neighboring tissues, such as the adjacent WD, the mesonephric mesenchyme or the mesonephric epithelium. However, recent studies show that cell contributions from neighboring tissues are not found in both chicken and mouse (Mullen and Behringer, 2014). Therefore, cell recruitment is not a major cellular mechanism that contributes to the elongation of the MD.

The MD elongates in a unique manner, i.e., tube-dependent tubulogenesis. In 1937, Grünwald found that the MD elongation is dependent on the presence of the WD (Grünwald, 1937). It was found that the *Wnt9b* mutant mouse lacked MD formation. *Wnt9b*

is expressed in the WD. Thus, WNT9B secreted from the WD is required for MD elongation, providing a molecular explanation why MD elongation is dependent upon the WD (Mullen and Behringer, 2014).

Interestingly, MD cell differentiation switches between mesenchymal and epithelial states during MD formation. In the initiation phase, the specified MD cells are considered "mesoepithelial" and invade into the mesonephric mesenchyme. The MD cells are histologically epithelial but express mesenchymal molecular markers (Mullen and Behringer, 2014). After MD elongation is completed, the MD cells in female fetuses down-regulate mesenchyme markers and up-regulate epithelial molecular markers.

Wolffian Duct Regression

In amniotes, the initial formation of the reproductive tracts of genetic male and female embryos is identical with two pairs of simple epithelial tubes, the WD and MD, surrounded by mesenchymal cells. However for proper sexual differentiation, only one of these pairs of tubes will differentiate while the other is eliminated. As discussed above, this is regulated by the presence or absence of fetal gonadal hormones. The fetal male gonad secretes androgens, causing the WD to differentiate into the mature male reproductive tract organs. In females, it is necessary to eliminate or regress the WD. The absence of androgens in female fetuses leads to the elimination or regression of the WD. In female rodents, without androgens, degeneration of the WD is observed beginning midway between the gonads and point of contact with the urogenital sinus and proceeds cranial (head) to caudal (tail). Lower, caudal segments of the WD remain and fuse with the MD and urogenital sinus to form the lower portion of the vagina (**Fig. 2**). The ability of androgens (from the testis) to block WD regression in females has been shown in tammar wallaby. Grafting of a testis in female tammar pouch young resulted in a block of WD regression and differentiation of the WD. Similarly, mutations in the *androgen receptor (AR)* gene in humans and rodents result in intersex phenotypes and genetically male (XY) individuals lack WD-derived tissues. Further, observations in rodent models indicate androgen signaling in the mesenchyme results in cell death, thus facilitating WD regression (Shaw and Renfree, 2014).

Early studies of female reproductive tract differentiation during WD regression were limited to two-dimensional analyses in animal models. Recently, light-sheet microscopy has made it possible to quickly generate high-resolution three-dimensional images of fluorescently-labeled fetal organs. Light-sheet microscopy was used to visualize the developing human female reproductive tract at GW 10.5, 11.5 and 13 weeks. The human embryos were immuno-fluorescently stained with PAX2 antibody (which binds WD and MD epithelial cells) and imaged. At GW 10.5 fusion of the MD to form the uterovaginal canal was observed in female embryos. The WD was still intact however there was initial regression of the mesonephric tubules. At GW 11.5 WD regression was apparent and the MDs had grown in length. By GW 13, the WD was fragmented and completely regressed distally (Belle et al., 2017).

WD regression has long been considered a passive process, where lack of androgens in female fetuses fails to support the differentiation of the WD. However, several recent studies suggest that WD regression requires active signaling to promote cell death of the epithelium. MSX2, a transcription factor expressed in the WD epithelium, and orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) found in the WD mesenchyme have both been identified as potential mediators of WD regression in female reproductive tract differentiation. Down-regulation of *Msx2* expression in the WD epithelium either in response to diethylstilbestrol (DES) exposure or in a *Msx2* mutant mouse model in females results in persistent WD remnants dorsal to the vagina and reduced apoptosis (programmed cell death) in the WD epithelium (Yin et al., 2006). COUP-TFII, a mesenchyme specific transcriptional regulator, is required for WD regression during differentiation of the female reproductive tract in the mouse. Loss of the *Coup*-tfII gene in the WD mesenchyme results in retention of the WD independent of androgen signaling. In fetal males, androgens secreted from the testis presumable antagonize COUP-TFII function and prevent WD regression (Zhao et al., 2017).

Oviduct Development

The oviduct, or Fallopian tube in women, is a paired organ that is essential for fertility. In mature animals, the oviduct is the conduit for oocyte and embryo transfer to the uterus and is the site of fertilization. The ovulated oocyte enters the oviduct through the infundibulum, which is the most anterior region of the oviduct, and travels through the ampulla, which contains numerous longitudinal epithelial folds and abundant cilia to aid in oocyte transport. Upon fertilization, the zygote will travel through the isthmus region of the oviduct. The isthmus has fewer epithelial folds and cilia than the ampulla, but thicker smooth muscle layers. To leave the oviduct, the zygote must travel through the uterotubal junction to enter into the uterine horn/body. This junction is an ovarian hormone-controlled valve that controls the movement of spermatozoa/zygotes between the oviduct and uterus.

Defects in oviduct formation or the formation of occlusions can cause infertility. This may be overcome via by superovulation, in vitro fertilization and embryo transfer into the uterus, but these are costly methods with demanding hormonal regimens and relatively low success rates. Tubal occlusions are caused most frequently by infections, but structural abnormalities arising during peri-natal development can have the same result. Very little is known of how and what regulates oviduct development.

The study of Fallopian tube development in women is limited, requiring the use of other animal models including both mammals and birds. However, there are some striking differences in the gross morphology and histology of various species. Oviduct coiling is observed in some species (e.g., mice), but not others (e.g., women, sheep, chickens). A bursa surrounds the oviduct and

ovary (e.g., mice) in certain species, which is absent in others (e.g., women). Oviduct epithelial folding, particularly in the ampulla region can be minimal (e.g., mice) or very extensive (e.g., women, sheep). Despite these differences, the oviducts function in a very similar manner.

Mammalian female reproductive organs, including the oviduct, uterus, cervix, and anterior vagina, are all derived along the anterior-posterior axis of the MD during embryonic development. The most anterior aspect of the MD gives rise to the oviduct. The developing MD forms a shepherd's crook shape around the ovary. The end of the curved portion of the "crook," posterior to the ovary, is referred to as the *flexura medialis* and is proposed to define the border between the region of the MD that will become the oviduct and that of the uterus (Agduhr, 1927).

The TGF β , WNT and mTOR signaling pathways have been identified as potential regulators of oviduct development. TGF β may play a key role in controlling cell proliferation, differentiation and apoptosis during oviduct development (Conery et al., 2004; Elliott and Blobe, 2005; Li et al., 2011; Rodriguez et al., 2016). Regulation of TGF β signaling during oviduct development likely involves extracellular matrix proteins, including matrix metalloproteinases and tissue inhibitors of metalloproteinases (ex. MMP-2, – 9, TIMP-2) which act via enzymatic cleavage and activation or repression of signal transducers (Hu et al., 2004; Imai et al., 1997; Lesniak-Walentyn and Hrabia, 2016).

In addition to TGF β signaling, the WNT pathway appears to play a direct role in oviduct development. Oviduct development and formation is regulated tightly by correct expression of canonical WNT signaling pathway members in both the epithelia (*Wnt7a*) and mesenchyme (*Wnt4*, *Wnt5a*, *Ctnnb1*). WNT signaling during oviduct development is associated with the appearance of coiling and initial formation of the anterior region of the MD, suggesting that this pathway plays a key role in anterior-posterior oviduct extension and differentiation.

mTOR signaling appears to play a key role in smooth muscle differentiation and function in the oviduct. mTOR signaling is downstream of PI3K/AKT signaling and regulates cell growth and proliferation in response to growth factors and nutrients and is negatively regulated by a heterodimeric complex of TSC1 and TSC2. In the mouse, conditional deletion of *Tsc1* in both the MD mesenchyme and in all MD cell types results in infertility related to oviduct hyperplasia and formation of occlusions and hydro-salpinx in the ampulla (Daikoku et al., 2013; Tanaka et al., 2012). Conditional deletion of *Tsc2* in the MD mesenchyme resulted in infertility that may be related to the formation of oviductal blockages, but oviductal histology was not reported. The uterine phenotype was characterized by the presence of myometrial hyperplasia (Kaneko-Tarui et al., 2014). It is possible that this also occurred in the oviductal smooth muscle layers, which would adversely affect oocyte/zygote transport, resulting in a phenotype similar to oviduct blockage.

Uterine Development

In eutherian mammals, the majority of the development and differentiation of the female reproductive tract is completed by birth. However, the uterus is not fully developed or differentiated by birth and the histoarchitecture of this organ is established postnatally. Postnatal radial patterning morphogenesis establishes two functional compartments, the endometrium and the myometrium, surrounded by the perimetrium. The endometrium consists of two epithelial cell types, luminal epithelium (LE) and glandular epithelium (GE), and two stratified stromal compartments including a densely organized stromal zone, blood vessels and immune cells. The myometrium includes the smooth muscle layers of the uterine wall, an inner circular layer and an outer longitudinal layer (Gray et al., 2001). Morphogenic events common to morphogenesis of the uterus include: (1) organization and stratification of the endometrial stroma, (2) differentiation and growth of the myometrium and (3) coordinated development of the endometrial glands. The LE will invaginate into the stroma to generate the GE (endometrial or uterine glands), resulting in an extensive network of glands that extends towards the myometrium (Gray et al., 2001; Spencer et al., 2005).

Humans have a simplex uterus that consists of a single uterine body. The endometrium is lined by a LE that contains glands that radiate from the surface to the endometrial-myometrial interface. The endometrium is divided into two functional layers, the upper *stratum functionalis* (containing glands and is surrounded by loose stroma) and the lower *stratum basalis* (containing branched glands and dense stroma). During menses, the endometrial *stratum functionalis* is shed. The *stratum basalis* includes a zone that contains loose stroma and endometrial glands and another zone where endometrial glands terminate and endometrial progenitor and stem cells are thought to reside (Spencer et al., 2005).

During pregnancy, uterine glands secrete histotroph that is essential for endometrial receptivity of the embryo, conceptus survival, implantation, development and growth in sheep, cattle, pigs, horses and rodents (Gray et al., 2001). Histotroph is present in the uterine luminal fluid and is a complex, undefined mixture of ions, amino acids, carbohydrates, proteins, lipids, and other substances that are selectively transported into the uterine lumen by the epithelium, as well as specific secretory products encoded by genes and expressed in the LE and GE. Evidence shown in mouse and sheep suggests that uterine glands are required for female fertility, with defects resulting in abnormal implantation and early pregnancy loss (Filant and Spencer, 2014; Spencer et al., 2005).

Knowledge of prenatal uterine development is most complete in rodents. However, the basic biology of this process is assumed to be similar across mammalian species and the morphogenesis of the postnatal uterus is dependent on the maturity of the uterus at birth (e.g., gestational length) and perhaps the interval between birth and puberty (Gray et al., 2001). For example, in rodents, at birth, the uterus has not yet differentiated into endometrial stroma and myometrium, whereas in certain domestic animals and humans, the endometrial stroma and myometrium are present at birth (Spencer et al., 2005).

Fig. 4 Schematic illustration of endometrial adenogenesis in the mouse uterus. The uterus consists of two epithelial cell types (*purple*), the luminal epithelium (LE) and glandular epithelium (GE). The myometrium is composed of two smooth muscle layers: the inner circular layer (*pink*) and outer longitudinal layer (*dark red*). Stages of adenogenesis are indicated. *GE*, glandular epithelium; *LE*, luminal epithelium.

Uterine adenogenesis is the process of endometrial gland formation from the LE. It includes epithelial budding, extension and penetration into the stroma with coiling and branching. In humans, rodents and livestock, this process is completed postnatally (Gray et al., 2001). In mice, at birth, the uterus is comprised of a simple epithelium surrounded by undifferentiated mesenchyme with no endometrial glands. At Postnatal Day (P) 5, three mesenchymal layers are radially oriented and segregated into the endometrial stroma and inner circular and prospective outer longitudinal myometrial layers and the formation of epithelial buds by epithelial invaginations. Between P9 to P15, simple tubular glands develop that are not tightly coiled or branched (Fig. 4). By P10, the outer longitudinal layer of the myometrium becomes organized into bundles. At P15, the adult configuration of the mouse uterus is already established and as females mature, the glands lengthen as the uterus grows (Gray et al., 2001). P21 marks the end of the postnatal stage of gland formation. Many of these studies were performed using two-dimensional histological analyses. Recently, the three-dimensional morphology and organization of adult uterine glands has been examined (Arora et al., 2016).

Knowledge of prenatal and postnatal female reproductive tract development in humans is limited. By GW 12, the uterine corpus and cervix is has formed and the LE invaginates to give rise to epithelial buds. By GW 20–22, the myometrium is well defined but endometrial gland development has not progressed beyond epithelial buds. At birth, the uterine histoarchitecture is similar to that of an adult, but less developed. From birth to the onset of puberty, the glands develop slowly. A female at 6 years of age will have endometrial glands that will extend from one-third to one-half of the distance of the stroma to the myometrium. The mature uterine histoarchitecture is observed at puberty with glands extending to the inner circular layer of the myometrium. Endometrial gland formation in humans (fetus and neonate) involves differentiation of the GE from the LE, followed by radial development of the tubular glands through the endometrial stroma extending to the myometrium.

Multiple studies have established that prenatal urogenital tract development in female mammals is an ovary (hormonal) independent process (Gray et al., 2001). These studies have shown that uterine development and endometrial adenogenesis can proceed in the absence of the ovary for varying periods of time during early postnatal development. In rats, circulating estrogens increase between P9 and P11 in association with gland remodeling, but early postnatal uterine development and adenogenesis are both ovary- and adrenal-independent (Gray et al., 2001; Spencer et al., 2005). In mice, the introduction of hormones during a critical postnatal window causes a delay in gland formation or the loss of glands (Filant and Spencer, 2014).

Gland morphogenesis is highly complex and mediated by diverse mechanisms (hormonal, cellular and molecular). Despite being studied for decades, very little details are available, compared with other epitheliomesechymal organs. The communication between the epithelium and stroma appears to be mediated by *Wnt* and *Hox* genes, intrinsic growth factors systems and the extracellular matrix (Spencer et al., 2005). In recent years, knockout (*Hoxa10*, *Hoxa11*, *Lef1*, *Wnt4*, *Wnt5a*) and conditional knockout (*Ctnnb1*, *Foxa2*, *Wnt7a*) mutants mouse models have been used to identify genes involved in uterine gland development (Filant and Spencer, 2014). Although some cellular events and molecular pathways have been identified through gene expression and mouse models, there is still a significant gap in knowledge of how glands develop and their morphogenesis.

Malformations of the Uterus

Uterine malformations can be classified into three main groups, (1) formation defects, (2) fusion defects, and (3) septal absorption defects (Jacquinet et al., 2016). The actual prevalence of uterine malformations has been difficult to evaluate because some defects may be considered normal variants of uterine anatomy, for example, arcuate uterus. Chan et al. (2011) reported a 5.5% prevalence of uterine malformations in an unselected population, 8.0% in infertile women, 13.3% in women with a history of miscarriage, and 24.5% in patients with a history of miscarriage and infertility. This lead to the conclusion that women who are infertile and/or have had spontaneous abortions are more likely to have a uterine malformation (Chan et al., 2011).

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome or Müllerian agenesis is characterized by the absence of the uterus, cervix and upper portion of the vagina in a 46,XX female; it is the second most common cause of primary amenorrhea (Fontana et al., 2017). It is divided into two main subtypes: (1) MRKH type 1 in which only the female reproductive tract is affected and (2) MRKH type 2 which can manifest with malformations of other organs systems such as: renal, skeletal (spine and limb) and less frequently auditory and heart defects. Even though MRKH is most severe in the spectrum of uterine defects, its incidence is relatively low, with only 1 in every 4500–5000 newborn females being affected. However, the association of MRKH type 2 with other organ system defects suggests that abnormal MD development involves the disruption of developmental pathways important for structures derived from the intermediate mesoderm of the embryo (Fontana et al., 2017).

The cause of uterine malformations is thought to be multifactorial and in the case of MRKH, the mode of transmission is thought to be autosomal dominant with incomplete penetrance and variable expressivity. First-degree relatives of patients presenting with a uterine anomaly are said to have a 1%–5% recurrence risk. There are reports of familial cases suggesting a predisposing genetic background. Conversely, there have been studies of monozygotic twins that show discordant phenotypes: MRKH vs. normal uterine anatomy, suggesting nongenetic mechanisms that point towards epigenetic and/or environmental factors (Jacquinet et al., 2016).

Relatively little is known about the genetic pathways that regulate the development of the female reproductive tract and lead to uterine malformations in humans. However mutation or deletion of certain genes have been found to be associated with reproductive tract defects in humans including: EMX2, HNF1 β , LHX1, PBX1, WNT4, WNT7A, and WNT9B. In patients with MRKH syndrome, a rare pathogenic deletion in region 17q12 containing LHX1, as well as $HNF1\beta$, has been found to be statistically significant compared to a control population (Jacquinet et al., 2016). Mutations in $HNF1\beta$ are the cause of a form of maturity-onset diabetes of the young type 5 (MODY5). MODY5 clinically manifests with diabetes, renal disease and genital malformations (MRKH syndrome). Mutations in $HNF1\beta$ have only been found in patients with both renal and uterine malformations, and are rare in cases of isolated uterine defects (Fontana et al., 2017). Recently, in a case control study of 517 Chinese women with incomplete Müllerian fusion, a novel nonsense mutation in the EMX2 gene (p.E142X) was detected in one patient (0.19%). The authors report functional studies in cultured cells, suggesting a dominant negative effect of the mutation (Jacquinet et al., 2016). Even though this mutation is uncommon in the studied population, EMX2 is the first gene to be identified suggestive of a cause for an isolated uterine malformation (Jacquinet et al., 2016). An association study performed in a Chinese Han female population with MRKH found two susceptibility SNPs (single nucleotide polymorphism) in WNT9B and PBX1 associated with MRKH syndrome risk (Ma et al., 2015). In humans, WNT4 was the first gene to be associated with uterine defects accompanied by hyperandrogenism (Fontana et al., 2017). WNT4 mutations are more commonly associated to an MRKH-like syndrome because of the concomitant virilization. WNT7A mutations have been linked to Al-Awadi/Raas-Rothschild and Fuhrmann syndromes which are characterized by skeletal dysplasia, hypoplastic pelvis and females may present with an absent uterus (Jacquinet et al., 2016).

Prenatal exposure of fetuses to endocrine disruptors can affect the development of the uterus in mice and humans. Diethylstilbestrol (DES) is a synthetic estrogen that was used from 1938 to 1971 to prevent miscarriages in millions of pregnant women. However, it was later discovered that prenatal and perinatal exposure to DES disturbs the development of the reproductive tract in both humans (males and females) and mice (Spencer et al., 2005). Prenatal exposure of human fetuses to DES alters the organizational program of the female reproductive tract tissues and disrupts the normal expression or function of genes in an epigenetic manner. These induced abnormalities have set the stage for infertility, cervicovaginal cancer and other complications in exposed females and their offspring in a transgenerational manner.

References

Agduhr, E. (1927). Studies on the structure and development of the bursa ovarica and the tuba uterina in the mouse. Acta Zoologica, 8, 1–133.

Arora, R., Fries, A., Oelerich, K., Marchuk, K., Sabeur, K., Giudice, L. C., & Laird, D. J. (2016). Insights from imaging the implanting embryo and the uterine environment in three dimensions. *Development*, 143, 4749–4754.

Atsuta, Y., & Takahashi, Y. (2016). Early formation of the Mullerian duct is regulated by sequential actions of BMP/Pax2 and FGF/Lim1 signaling. *Development*, 143, 3549–3559. Belle, M., Godefroy, D., Couly, G., Malone, S. A., Collier, F., Giacobini, P., & Chedotal, A. (2017). Tridimensional visualization and analysis of early human development. *Cell*, 169, 161–173 e112.

Chan, Y. Y., Jayaprakasan, K., Zamora, J., Thornton, J. G., Raine-Fenning, N., & Coomarasamy, A. (2011). The prevalence of congenital uterine anomalies in unselected and highrisk populations: a systematic review. Human Reproduction Update, 17, 761–771.

Conery, A. R., Cao, Y., Thompson, E. A., Townsend, C. M., Jr., Ko, T. C., & Luo, K. (2004). Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. *Nature Cell Biology*, *6*, 366–372.

Daikoku, T., Yoshie, M., Xie, H., Sun, X., Cha, J., Ellenson, L. H., & Dey, S. K. (2013). Conditional deletion of Tsc1 in the female reproductive tract impedes normal oviductal and uterine function by enhancing mTORC1 signaling in mice. *Molecular Human Reproduction*, 19, 463–472.

Elliott, R. L., & Blobe, G. C. (2005). Role of transforming growth factor Beta in human cancer. Journal of Clinical Oncology, 23, 2078–2093.

Filant, J., & Spencer, T. E. (2014). Uterine glands: Biological roles in conceptus implantation, uterine receptivity and decidualization. The International Journal of Developmental Biology, 58, 107–116.

Fontana, L., Gentilin, B., Fedele, L., Gervasini, C., & Miozzo, M. (2017). Genetics of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. Clinical Genetics, 91, 233–246.

Gray, C. A., Bartol, F. F., Tarleton, B. J., Wiley, A. A., Johnson, G. A., Bazer, F. W., & Spencer, T. E. (2001). Developmental biology of uterine glands. *Biology of Reproduction, 65*, 1311–1323.

Grünwald, P. (1937). Zur Entwicklungsmechanik des Urogenitalsystems beim Huhn. Wilhelm Roux Archiv für Entwicklungsmechanik der Organismen, 136, 786-813.

Hu, J., Zhang, X., Nothnick, W. B., & Spencer, T. E. (2004). Matrix metalloproteinases and their tissue inhibitors in the developing neonatal mouse uterus. *Biology of Reproduction*, 71, 1598–1604.

Huang, C. C., Orvis, G. D., Kwan, K. M., & Behringer, R. R. (2014). Lhx1 is required in Müllerian duct epithelium for uterine development. *Developmental Biology, 389*, 124–136. Imai, K., Hiramatsu, A., Fukushima, D., Pierschbacher, M. D., & Okada, Y. (1997). Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. *The Biochemical Journal, 322*(Pt. 3), 809–814.

Jacquinet, A., Millar, D., & Lehman, A. (2016). Etiologies of uterine malformations. American Journal of Medical Genetics. Part A, 170, 2141–2172.

Kaneko-Tarui, T., Commandeur, A. E., Patterson, A. L., DeKuiper, J. L., Petillo, D., Styer, A. K., & Teixeira, J. M. (2014). Hyperplasia and fibrosis in mice with conditional loss of the TSC2 tumor suppressor in Mullerian duct mesenchyme-derived myometria. *Molecular Human Reproduction, 20*, 1126–1134.

Kobayashi, A., & Behringer, R. R. (2003). Developmental genetics of the female reproductive tract in mammals. Nature Reviews. Genetics, 4, 969–980.

Lesniak-Walentyn, A., & Hrabia, A. (2016). Expression and localization of matrix metalloproteinases (MMP-2, -7, -9) and their tissue inhibitors (TIMP-2, -3) in the chicken oviduct during maturation. *Cell and Tissue Research, 364*, 185–197.

Li, Q., Agno, J. E., Edson, M. A., Nagaraja, A. K., Nagashima, T., & Matzuk, M. M. (2011). Transforming growth factor beta receptor type 1 is essential for female reproductive tract integrity and function. *PLoS Genetics*, *7*, e1002320.

Ma, W., Li, Y., Wang, M., Li, H., Su, T., Li, Y., & Wang, S. (2015). Associations of polymorphisms in WNT9B and PBX1 with Mayer-Rokitansky-Kuster-Hauser syndrome in Chinese Han. PLoS One, 10, e0130202.

Mullen, R. D., & Behringer, R. R. (2014). Molecular genetics of Mullerian duct formation, regression and differentiation. Sexual Development, 8, 281-296.

Prunskaite-Hyyrylainen, R., Skovorodkin, I., Xu, Q., Miinalainen, I., Shan, J., & Vainio, S. J. (2016). Wht4 coordinates directional cell migration and extension of the Mullerian duct essential for ontogenesis of the female reproductive tract. *Human Molecular Genetics*, 25, 1059–1073.

Renfree, M. B., O, W. S., Short, R. V., & Shaw, G. (1996). Sexual differentiation of the urogenital system of the fetal and neonatal tammar wallaby, Macropus eugenii. Anatomy and embryology, 194, 111–134.

Rodriguez, A., Tripurani, S. K., Burton, J. C., Clementi, C., Larina, I., & Pangas, S. A. (2016). SMAD signaling is required for structural integrity of the female reproductive tract and uterine function during early pregnancy in mice. *Biology of Reproduction*, 95, 44.

Shaw, G., & Renfree, M. B. (2014). Wolffian duct development. Sexual Development, 8, 273-280.

Spencer, T. E., Hayashi, K., Hu, J., & Carpenter, K. D. (2005). Comparative developmental biology of the mammalian uterus. *Current Topics in Developmental Biology, 68*, 85–122. Tanaka, Y., Park, J. H., Tanwar, P. S., Kaneko-Tarui, T., Mittal, S., Lee, H. J., & Teixeira, J. M. (2012). Deletion of tuberous sclerosis 1 in somatic cells of the murine reproductive tract causes female infertility. *Endocrinology, 153*, 404–416.

Yin, Y., Lin, C., & Ma, L. (2006). MSX2 promotes vaginal epithelial differentiation and wolffian duct regression and dampens the vaginal response to diethylstilbestrol. *Molecular Endocrinology*, 20, 1535–1546.

Zhao, F., Franco, H. L., Rodriguez, K. F., Brown, P. R., Tsai, M. J., Tsai, S. Y., & Yao, H. H. (2017). Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. *Science*, 357, 717–720.

Spring 2024 – Systems Biology of Reproduction Lecture Outline – Female Reproductive Tract Development & Function Michael K. Skinner – Biol 475/875 CUE 418, 10:35-11:50 am, Tuesdays & Thursdays February 6, 2024 Week 5

Female Reproductive Tract Development & Function

- Female Urogential Tract Organogenesis
- Development of Vagina/Cervix
- Mesenchymal-Epithelial Interactions
- Role of Hormones
- a. Organ Culture
- b. Fetal Castration
- c. Estrogen Receptor Knockout
- Molecular Control Wnt and HOX Genes
- DES Story
- Mammary Biology and Disease
- a. Cell Types
- b. Structure
- c. Gland Development
- d. Disease

Required Reading

Vue, et al. (2018) Fetal and Postnatal Female Tract Development, in: Encyclopedia of Reproduction (Second Edition), Volume 2, 2018, Pages 261-268 Spring 2024 – Systems Biology of Reproduction Discussion Outline – Female Reproductive Tract Development & Function Michael K. Skinner – Biol d75/75 CUE 418, 10:35-11:50 am, Tuesdays & Thursdays February 8, 2024 Week 5

Female Reproductive Tract Development & Function

Primary Papers:

Martin, et al. (2022) J Dairy Sci, 105(10):8189-8198.
 Du & Taylor (2015) CSH Persp Medicine, 6:a023002.
 Major, et al. (2021) Biol Reprod, 1-15, ioab166.

Discussion

Student 10: Contemporary Paper-Ref #1 above

- What are the organs of the female reproductive tract examined?
- What methods and computational approach was used?
- What aspects of the tract were important and why?

Student 11: Contemporary Paper-Ref #2 above

- What are HOX genes and role in development?
 What are endocrine disruptors and mechanism?
 - What are endocrine disruptors and mechanism
 How do they alter female reproductive tract?

Student 12: Contemporary Paper-Ref #3 above

- What evo-devo approach for female reproductive tract was used?
- What transcription genes involved were discussed?
- What conserved processes are observed in female reproductive tract development?

MALE FEMALE Mesenophros Wolffian Duct Mullerian Duct Testis Ovary Tentostere INSL3 AMH 6 COUP-TFII MSX2 ŧ Regression Regression Wolffian Ducts Testosterone INSI 3 Mullerian Ducts Oviduct -Uterus Epididymis Vas deferens Cervix dı - Seminal vesicle Vagina

Figure 3. Scawing electron micrograph showing human sperm attached to a ciliated area of Fallopian tube epithelium *in vitro*. Arrows indicate sperm heads associated with cilia. Scale bar, 4 µm. Reproduced from Pacey *et al.* (1995b).

Gene name	Genetic map position	Molecule encoded	Tissue of expression	Female reproductive-tract phenotype abnormality (mode of inheritance)	References
Formation					
And	Ch19(43.0 cM)	Homeodomain transcription factor	ME,WE	Absence of FRIT (FI)	8
Lint (Linci)	Ch11 (48.0 cM)	Homeodomain transcription factor	ME,WE	Absence of FRT (FI)	-11
Emx2	Ch19(53.5 cM)	Homeodomain transcription factor	ME,WE	Absence of FRT (R)	12
White	Ch4	Whit family secreted protein	MM	Absence of FRT (Fi)	17
Ltap	Ch1 (93.4 cM)	Transmembrane protein with PDZ domain	ND	Imperforate vagina (D)	22,23
Hoxa13	Ch6 (26.33 dM)	Homeodomain transcription factor	MM.WM	Delay or arrested formation (P)	51
Regression					
Mis (Annh)	Ch10 (43.0 cM)	TGPI-supertamity secreted protein	Sertol cells	Ectopic FRT in males (R)	27,28
Mar2 (Amhr2)	Ch15 (57.4 oM)	TGFB supertamity type 2 Sec/Thr transmembrane receptor	MM	Ectopic FRT in males (R)	35
Wht7a	Ch6 (39.5 cM	Whit family secreted protein	ME	Ectopic FRT in males (R)	42
Differentiatio	M3				
Weil7a	Qh6 (39.5 cM)	Whit family secreted protein	ME	Homeotic transformation of oxidu to uterus and uterus to vagina, no uterine glands, abnormal mesenchyme differentiation (SD)	d. 53
Haxa10	Ch6 (26.33 cM)	Homeodomain transcription factor	MACAM	Homeotic transformation of anterior uterus to oviduct (R)	49,52
HakatT	Ch6 (26.33 cM)	Homeodomain transcription factor	MM.WM	Partial homeotic transformation of uterus to oviduct (SD)	40.90
Hd (Hoxa 13)*	Ch6(26.33 cM)	Homeodomain transcription factor	MM,WM	Homeotic transformation of cervic to uterus (SD)	100
Ovot (Ovolt)	Ch19	C2H2-type zinc-finger protein	ND	Sublectility with dilated uterus and cervis, constricted or imperforate upgina (R)	101
is table lists all the Hippodachy drv2, and Mull m. emptly spin m. emptly spin tallance type I moreasive, SD st. whygets no	of the mouse genes t eran hormone type 2 ades hormone type 2 ades hormologue. Ho op-tal-associated pe 2 mologram, MM, Abla semidominant, TGF dated MMTV integrat	protein that are known to be involved and alike, but is thought to trooptor. G2H2: two cystel as, formedote A: Lim1, lim7 team ME, Mikesan duct ago min duct mesenshyme, ND, tanatoming growth factor; on teb.	in female reprodu- be a dominant in te two histidine; C J, fall and mec-3 helium; Me, Molk not determined. WE; Wolflan duct	and convis, constituted or importanta usginal, RP (include the last RPI) development in deramatiken ^{16,18} Ann, and Makan ha h, chromosome, dM, centimorgan, D, d harvandpilon lactor homologue, (Lar), Li manifelitien austance, (Mar2, Maker (Mar2, Ochemanigue Her, Rus, paied D explimitum, WM, Wolfam duct mercent	n73 mutation more, omnant, M homeobox orneobox orneobox orgene, syme,

100 µg/kg/day E9.5–E16.5	1 mg/kg/da PND 1–5
E9.5-E16.5*	PND 1-5
Yes	No
Less common	Yes
Yes	Yes
Yes	Yes
Yes	No
Yes	Yes
Less common	Yes
Yes	Yes
Yes	Yes
Yes	Yes
A bit early	Mimic
	Less common Yes Yes Yes Yes Less common Yes Yes A bit early

The vaginal microbiota, host defence and reproductive physiology J Physiol. 2017 Jan 15;595(2):451-463. Smith SB, Ravel J

Abstract The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture-independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive-aged women is largely made up of a leasit five different community state types. Four of these community state types are dominated by lactic-acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lacks acid has been associated direct and indirect effects on pathogens and host defence. Some species associated with non-Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribut to negative reproductive outcomes such as infertility and pretern birth. Further studies are needed to better understand the vaginal microbiota. Understanding this fine-tuned interaction is key to miniationing women's reproductive health.

New Therap Geraldine Bri Int J Mol Sci.	DEUTICS IN ENDOMETRI chant, Ines Laraki, Lau 2021 Sep 28;22(19):10	IOSIS: A KEVIEV rie Henry, Carin 498.	v of Hormonal, No e Munaut, Michelle f	n-Hormonal, and lisolle	Non-Cooling KNA Treat	ments	
Genes	Transcription mRW-1.1 mRW-1.2		Protein-1 Protein-2	MALAT1 H19 CHL1-A52 AC002454.1 UCA1 VEGFA HF-1 VEGFA HF-1		mtt.141.5p mtt.370.3p	sic_0020093 sic_103470 sic_101102 sic_000380 sic_0061140 miR-2006 miR-145
2	AGA	TT		FIGEP4 MAPK IG571R MMP4 ER10 MMP4 ER10 MMP4 ZE812 MRT1 L-168-8 SF1 TMF4 BCL2 ANGPT NF4B	2 Anglogenesis Apoptosis Proliferation/Invasion/ EM Inflammation	miR-125-5p miR-142-5p miR-17-5p miR-124-3p miR-140-3p miR-194-3p miR-194a miR-194a miR-200a	miR-20c miR-100 miR-143 miR-20a miR-205p miR-205p miR-205p miR-205p
3	diffek				Endometriosis	Generion	

Species	Some Anatomic Characteristics	Number of Mammary Glands
Chinchilla	Mesosalpinx tends to enclose ovary, accessory corpora lutea during preg- nancy, vaginal closure membrane	6 (2 inguinal and 4 lateral thoracic)
Dog	Ovary is flattened and completely enclosed in a roomy peritoneal pouch. Slender uterine horns are long and straight. Cervix is a short, thick-walled segment. Vagina is wider above (cranially) than below.	10 (arranged in two ventro- lateral series)
Guinea pig	Two internal cervical openings, but only one common external os. Intestinal and urinary tracts open into a groove (the "fossa annvaginourethralis"). Lower end of the vagina is closed by an epithelial membrane, but opens periodically at estrus and during parturition.	2 (inguinal)
Hamster	Ovary is compact and encapsulated, oviduets and uterus similar to those of the mouse. Two cervical canals remain separate for about two-thirds of the length of the cervis, but then fuse. Vagina has a mucified type of epithelium; its wall contains urethral glands similar to those in the male prostate.	12 or 14 (thoracic and abdominal
Mink	Ovary has abundant interstitial tissue; fimbriae only slightly developed. Uterine glands are sparse. External os of the cervis is a transverse uterine slit. Vagina is long and has a transverse fold across its dorsal wall.	6 or 8 (30% nonfunctional)
Mouse	Ovaries lie ventrally just below the kidneys within transparent ovarian cap- sules. A narrow, tunnel-like passage connects the periovarial space with the peritoneal cavity.	10 (6 thoracic and 4 alsdom ino-inguinal)
Rabbit	Complete duplication of the uterine segments; two long uterine horms and two entirely segmente cervical canals, each of which has an internal and external or. Exhometrium arranged in numeron transverse and longitudinal folds, which are particularly prominent along the mesoarchical burders. Cervical canals there a narrower human and a none extensively folded uncous membrane than the uterine horms. Vaginal portions of the cervical segments are surrounded by a complete ring of fornizes:	8 (arranged in ventrolatera series)
Rat	Ovary lies within ovarian bursa. Periovarial space opens into the peritoneal cavity through a slit on the antimesometrial side of the bursa at the tip of each sterine bors.	12 (two ventrolateral series along thoracic and in- guinal regions)

Induction of Mammary Gland Development in Estrogen Receptor- Knockout Mice

Wayne P. Bocchinfuso, Jonathan K. Lindzey, Sylvia Curtis Hewitt, James A. Clark, Page H. Myers, Ralph Cooper and Kenneth S. Korach

Mammary glands from the estrogen receptor- knockout (ERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted ER signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute to the ERKO mammary phenotype. We report that circulating PRL is reduced in the female ERKO mouse. Implantation of an age-matched, heterozygous ER pituitary isograft under the renal capsule of 25-day-old or 12-week-old ERKO mice increased circulating PRL and progesterone levels, and induced mammary gland development. Grafted ERKO mice also possesed hypertrophied corpora lutea demonstrating that PRL is luteotropic in the ERKO mice development, or average the teroset of teroset of the teroset of the teroset of the teroset of the teroset of teroset of teroset of the teroset of the teroset of teroset of teroset of teroset of teroset of teroset of the teroset of te

	Estrogen	Tamoxifen	Toremifene	Raloxifen
Hot flashes	$\downarrow \downarrow \downarrow$	Ťγ	Ťţ	Ŷţ
Uterine bleeding	$\uparrow\uparrow\uparrow$	Ť	î	\leftrightarrow
Risk of endometrial cancer	† † ‡	Ť	?	\leftrightarrow
Prevention of postmenopausal bone loss	† ††	Ť	\leftrightarrow	$\uparrow\uparrow$
Risk of breast cancer	<u></u>	$\downarrow\downarrow$	↓↓ş	τt
Favorable pattern of serum lipids	↑↑↑¶	Ť	$\uparrow\uparrow$	Ť
Venous thrombosis	11	$\uparrow\uparrow$?	îŤ.

Insulin-like growth factor-1 (IGF-0) signalling networks in the mammary gland. Growth hormone (GH) acting on the growth hormone receptor (GHR) on stromal cells induces [GF1 release, which subsequently acts at the type I insulin-like growth factor receptor (IGFR) on optitolial cells to mediate survival and proliferation. Overstopen can also induce (GF1 expression, which may then act on adjuscent mammary optitelial cells. The basement membrane provides an interface between stroma and epithelial cells, and it can contribute to the signals required for mammary development via interprint receptors. Epidemal growth factor (EGF) can synergize with IGF4, and IGF4 can transactivate the EGF receptor (EGFR). ER, cestrogen receptor.

Component	Human Colostrum	Human Milk	Cows' Milk
Water, g		88	88
Lactose, g	5.3	6.8	5.0
Protein, g	2.7	1.2	3.3
Casein:lactalbumin ratio		1:2	3:1
Fat, g	2.9	3.8	3.7
Linoleic acid		8.3%	1.6%
		of fat	of fat
Sodium, mg	92	15	58
Potassium, mg	55	55	138
Chloride, mg	117	43	103
Calcium, mg	31	33	125
Magnesium, mg	4	4	12
Phosphorus, mg	14	15	100
Iron, mg	0.09 ²	0.15 ²	0.10 ²
Vit A, µg	89	53	34
Vit D, µg		0.03 ²	0.06 ²
Thiamine, µg	15	16	42
Riboflavin, µg	30	43	157
Nicotinic acid, µg	75	172	85
Ascorbic acid, mg	4.42	4.3 ²	1.6 ²

metastasis discovered inrough analysis of metastatic oreast cancers are used to develop sensitive assays for disease. Inits involves a multi-step process in which low-cost blood-based assays of molecular signatures associated with metastasis-prone disease are applied routinely to identify high-risk individuals who are then screened using more expensive but sensitive and specific anatomic assays followed by histopathological and omic assays to identify and characterize even the smallest lesions. The molecular information in individual tumors detected in this way can then be used to develop sensitive blood or imaging based individualized assays for recurrent disease that might be used to guide early detection and treatment. ⁴Image from [80] reprinted with permission from AAAS. All other images were obtained from Wikimedia Commons and are available under public domain, Creative Commons Attribution 3.0 Unported license [92], or Creative Commons Attribution-Share Alike 3.0 Unported license [93].

ICRNAs associa	ted with mammary development and breast cancer.	č	
LncRNA	Expression	Function	Mechanism
Mammary dev	/elopment		
mPINC	Highly expressed in alveolar cells of pregnant and involuting gland	Inhibits lactogenic differentiation, alternative splice forms regulate cell cycle and survival	Interacts with PRC2
Zfas1	Highly expressed in alveolar and ductal cells of pregnant and involuting gland	Inhibits proliferation and lactogenic differentiation	Unknown
Breast cancer			
BC200	Increased in invasive breast cancer and HG-DCIS	Oncogenic	Translational repression*
GASS	Decreased in breast tumors and breast cancer cell lines	Tumor suppressive-induces growth arrest and apoptosis	Binds and inhibits GR from activating target genes ^a
HOTAIR	Increased in metastatic breast tumors, strong predictor of metastasis and death	Oncogenic-promotes invasion and metastasis	Silences genes in trans epigenetically
H19	Increased in stromal cells of breast tumors	Oncogenic-promotes proliferation and tumor growthTumor suppressive-restricts growth ^a	Unknown
LINCRINA-JADE	Increased in breast tumors	Oncogenic-promotes proliferation and survival	Binds BRCA1 and enhances transcription of Jode1 in DDR
LSINCTS	Increased in breast tumors and breast cancer cell lines	Oncogenic-promotes proliferation	Unknown
MALATI	Increased in breast tumors, mutations in MALATT associated with Luminal B subtype and poor clinical outcome	Oncogenic-promotes metastasis ^a	RNA splicing, regulation of gene expression ²
MEG3	Expressed in mammary gland, not detected in breast cancer cell lines	Tumor suppressive-inhibits growth, induces apoptosis ^a	Unknown
PTENPI	Focally deleted in breast cancer, undergoes somatic hypermethylation in breast cancer cell lines	Tumor suppressive-represses proliferation ²	Binds and inhibits miRNAs from targeting and repressing PTEN
SRA	Increased in breast tumors, associated with PR+ breast tumors	Oncogenic-promotes proliferation, metastasis Tumor suppressive-induces apoptosis	Co-activator of hormone receptors, scaffold fo many transcription factors ^a
tr eRNA	Increased in paired breast cancer primary and lymph-node metastasis samples	Oncogenic-promotes EMT, invasion and metastasis	Enhances transcription of EMT regulators, represses translation of epithelial markers
UCAI	Increased in breast tumors, negatively correlates with p27 protein levels	Oncogenic-promotes proliferation	Binds hnRNP I, thereby preventing binding an translation of p27
ZFASI	Decreased in invasive ductal carcinoma	Tumor suppressive-inhibits proliferation	Unknown

£2		C C	S
Spring	2024 (Even Ye	ars) - Course Syl	labus
Biol 4/	5/5/5 Undergr	aduate/Graduate	(5 Credit)
SLN: (4	1/5) - 06/63, (5/5) - 00764	11.50
Time -	Lestures in h	nursday 10:35 an	n-11:50 am d on Conver/Penente and Discussion Services live in person a
course	Lectures in p	erson and recorde	d on Canvas ranopto and Discussion Sessions live in person an
Doom.	CUE 418	campuses (nyori	u Course)
Course	Director - Mi	chael Skinner Ab	elson Hall 507 335-1524 skinner@wsn.edu
Co-Inst	ructor - Fric	Nilsson Abelson I	Jall 507, 225-1835, pilcon@wcu.edu
Learni	ng Objective -	Aberson , Aberson I	in our, 220-1000, missone noticut
Current	literature base	course on the Sys	tems Biology of Reproduction Learning Systems approaches to th
biology	of reproductio	from a molecular	to physiological level of understanding
Schedu	lo/Lecture Ou	d nom a molecular	to physiological level of understallding.
Iannary	9.8.11	Week 1	Systems Biology Introduction
16 & 18		Week 2	Molecular/ Cellular/ Reproduction Systems
	23 & 25	Week 3	Sex Determination Systems
	30 & 1	Week 4	Male Reproductive Tract Development & Function
Jan /Fel			
Jan /Fel	v 6 & 8	Week 5	Female Reproductive Tract Development & Function
Jan /Fel Februar	y 6 & 8 13 & 15	Week 5 Week 6	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology
Jan /Fel Februar	y 6 & 8 13 & 15 20 & 22	Week 5 Week 6 Week 7	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology
Jan /Februar	y 6 & 8 13 & 15 20 & 22 27 & 29	Week 5 Week 6 Week 7 Week 8	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology
Jan /Februar Februar March	y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7	Week 5 Week 6 Week 7 Week 8 Week 9	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease
Jan /Februar Februar March	y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15	Week 5 Week 6 Week 7 Week 8 Week 9 Week 10	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break
Jan /Februar Februar March	y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21	Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning
Jan /Februar Februar March	y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28	Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Ovary Systems Biology Drary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/Stem Cells/ Cloning Hypothalamus-Pituitary Development & Function
March April	y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28 2 & 4	Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Ovary Systems Biology Display the state of the system of the systems Spring Break Gametogenesis/Stem Cells/Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems
March April	y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28 2 & 4 9 & 11	Week 5 Week 6 Week 7 Week 8 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Ovary Systems Biology Display Content of Content of Content of Content of Content Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems
Jan /Februar Februar March April	y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28 2 & 4 9 & 11 16 & 18	Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Ovary Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems Fertilization & Implantation Systems
Jan /Februar Februar March April	$\begin{array}{c} y \ 6 \ \& \ 8 \\ 13 \ \& \ 15 \\ 20 \ \& \ 22 \\ 27 \ \& \ 29 \\ \hline 5 \ \& \ 7 \\ 11 \ - \ 15 \\ 19 \ \& \ 21 \\ 26 \ \& \ 28 \\ 2 \ \& \ 4 \\ 9 \ \& \ 11 \\ 16 \ \& \ 18 \\ 23 \ \& \ 25 \end{array}$	Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 12 Week 14 Week 15 Week 16	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/Stem Cells/Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems Fertilization & Implantation Systems Fettilization & Birth Systems Assisted Reproduction/Contraception