
Spring	2024	–	Systems	Biology	of	Reproduction	
Discussion	Outline		(Systems	Biology)	
Michael	K.	Skinner	–	Biol	475/575	
Weeks	1	and	2	(January	18,	2024)	
	
	

Systems	Biology	

Primary	Papers	
	

1. Westerhoff	&	Palsson	(2004)	Nat	Biotech	22:1249-1252	
2. Joyner	(2011)	J	Appl	Physiol	111:335-342	
3. Stanoev,	et	al.	(2021)	Development	148:dev197608	
4. Zhang,	et	al.	(2023)	Human	Reproduction	Update	00(0),	1-17	

	
	
	

Discussion	
	

	
Student	1	-	 Ref	#1	above	
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HISTORICAL  PERSPECTIVE

Systems analysis has historically been performed in many
areas of biology, including ecology, developmental biology 
and immunology. More recently, the genomics revolution 
has catapulted molecular biology into the realm of systems
biology. In unicellular organisms and well-defined cell lines 
of higher organisms, systems approaches are making definitive
strides toward scientific understanding and biotechnological
applications. We argue here that two distinct lines of inquiry 
in molecular biology have converged to form contemporary
systems biology.

Whereas the foundations of systems biology-at-large are generally rec-
ognized as being as far apart as 19th century whole-organism embryo-
logy and network mathematics, there is a school of thought that
systems biology of the living cell has its origin in the expansion of
molecular biology to genome-wide analyses. From this perspective, the
emergence of this ‘new’ field constitutes a ‘paradigm shift’ for molecu-
lar biology, which ironically has often focused on reductionist think-
ing. Systems thinking in molecular biology will likely be dominated by
formal integrative analysis going forward rather than solely being
driven by high-throughput technologies.

It is, however, incorrect to state that integrative thinking is new to
molecular biology. The first molecular regulatory circuits were
mapped out over 40 years ago. The feedback inhibition of amino acid
biosynthetic pathways was discovered in 1957 (refs. 1,2), and the tran-
scriptional regulation associated with the glucose-lactose diauxic shift
led to the definition of the lac operon and the elucidation of its regula-
tion3. With the study of these regulatory mechanisms, admittedly on a
small scale, molecular biologists began to apply systems approaches to
unravel the molecular components and logic that underlie cellular
processes, often in parallel with the characterization of individual
macromolecules. High-throughput technologies have made the scale
of such inquiries much larger, enabling us to view the genome as the
‘system’ to study. Thus, the popular contemporary view of systems
biology may be synonymous with ‘genomic’ biology.

This article discusses two historical roots of systems biology in
molecular biology (Fig. 1). Although we briefly outline the more
familiar first root—which stemmed from fundamental discoveries
about the nature of genetic material, structural characterization 
of macromolecules and later developments in recombinant and 

high-throughput technologies—more emphasis is placed on the sec-
ond root, which sprung from nonequilibrium thermodynamics theory
in the 1940s, the elucidation of biochemical pathways and feedback
controls in unicellular organisms and the emerging recognition of net-
works in biology. We conclude by discussing how these two lines of
work are now merging in contemporary systems biology.

Scaling-up molecular biology
In the decades following its foundational discoveries of the structure
and information coding of DNA and protein, molecular biology blos-
somed as a field, with a series of breathtaking discoveries (Fig. 1). The
description of restriction enzymes and cloning were major break-
throughs in the 1970s, ushering in the era of genetic engineering and
biotechnology. In the 1980s, we began to see the scale-up of some of
the fundamental experimental approaches of molecular biology.
Automated DNA sequencers began to appear and reached genome-
scale sequencing in the mid-1990s4,5. Automation, miniaturization
and multiplexing of various assays led to the generation of additional
‘omics’ data types6,7.

The large volumes of data generated by these approaches led to
rapid growth in the field of bioinformatics, again largely emanating
from the reductionist perspective. Although this effort was mostly
focused on statistical models and object classification approaches in
the late 1990s, it was recognized that a more formal and mechanistic
framework was needed to analyze multiple high-throughput data
types systematically8,9. This need led to efforts toward genome-scale
model building to analyze the systems properties of cellular function.

Molecular self-organization
Even before the first key events in the history of molecular biology,
several lines of reasoning revealed that integration of multiple molecu-
lar processes is fundamental to the living cell. Biochemical processes
necessitate the production of entropy (chaos in the thermodynamic
sense) as driving force. The paradox felt by many, but expressed by
Schrödinger in his war-time lectures10, was how one could explain 
the progressive ordering that occurs in developmental biology (that is,
the ‘self-organization,’ decrease in chaos) when entropy (‘chaos’) must
be increased.

The answer was that one process could produce order (negative
entropy or negentropy) provided it was coupled to a second process
that produced more chaos (entropy): coupling, another word for inte-
gration of processes, is therefore essential for life. Onsager11 provided
the basis for this concept by stressing the significance of the coupling
of dissimilar processes. He is also relevant because he discovered a law
for such systems of coupled processes: close to equilibrium the
dependence of the one process rate on the driving force of the other
process should equal the dependence of the other process rate on the
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former driving force. Caplan, Essig and Rottenberg12 later defined a
coupling coefficient, which quantifies the extent to which two
processes are coupled in a system and showed that this coefficient
must range between 0 and 1.

These approaches were called nonequilibrium thermodynamics and
constituted a prelude to systems biology at the cell and molecular lev-
els in that they (i) dealt with integration quantitatively and (ii) aimed
to discover general principles rather than just being descriptive. An
improved procedure for describing ion movement and energy trans-
duction in biological membranes, termed mosaic nonequilibrium
thermodynamics, further progressed towards systems thinking in 
that it (iii) established a connection to molecular mechanisms and 
(iv) enabled the determination of the stoichiometry of membrane
energy transduction from system data13. Peter Mitchell’s14 chemi-
osmotic coupling principle was another early case of systems analysis
in cell and molecular biology. It stated that ATP synthesis was coupled
in quite an indirect way to respiration, involving an entire intracellular
system, including a volume surrounded by an ion-impermeable 
membrane and proton movement across it. Indeed, for eukaryotes,
this provided much of the rationale for the organization of the mito-
chondrion. In his calculations verifying that that the proposed
chemiosmotic mechanisms transferred sufficient free energy to
empower ATP synthesis, Mitchell demonstrated the sort of quanti-
tative thinking that would eventually prove crucial to the study of
biochemical systems14.

The problem of biological self-organization was to understand how
structures, oscillations or waves arise in a steady and homogenous

environment, a phenomenon called symmetry breaking. Turing16 led
the way, but the Prigogine school17 and others developed the topic
from the perspective of nonequilibrium thermodynamics in molecu-
lar contexts such as biochemical reactions involved in sugar meta-
bolism (glycolysis). They demonstrated how having a sufficient number
of nonlinearly interacting chemical processes in a single system such as
the Zhabotinski reaction, a developing tissue, or glycolysis, could lead
to symmetry-breaking as a result of self-amplification of random 
fluctuations. Of course, more recent molecular developmental biology
studies have shown that reality is even more complicated; pre-
specification by external (maternally specified) gradients of mor-
phogens may substitute for the random fluctuations, increasing the
robustness of development18. Perhaps more importantly, Prigogine
searched for and found a law (on minimum entropy production).
Although it is strictly valid only in Onsager’s near-equilibrium
domain, it testified to the systems scientists’ quest for the principles
underlying systems, rather than just for their appearances.

Early on, oscillations in yeast glycolysis were the experimental 
systems of choice. Although intact cells were studied19, more often
measurements were made using cell extracts20. Reductionist biochem-
ical thinking proclaimed that a single pacemaker enzyme should be
responsible for the oscillations. Only relatively recently has systems-
based analysis in one of our laboratories (H.V.W.) been used to reveal
that the oscillations are simultaneously controlled by many steps in the
intracellular network21 and how the oscillations in the individual cells
synchronize actively22. Of course, with the more recent experimental
capability to inspect single cells dynamically, more and more cells are
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Figure 1  Two lines of inquiry led from the approximate onset of molecular biological thinking to present-day systems biology. The top timeline represents the
root of systems biology in mainstream molecular biology, with its emphasis on individual macromolecules. Scaled-up versions of this effort then induced
systems biology as a way to look at all those molecules simultaneously, and consider their interactions. The lower timeline represents the lesser-known effort
that constantly focused on the formal analysis of new functional states that arise when multiple molecules interact simultaneously.
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seen to exhibit asynchronous oscillations of all sorts and some of these
cases are up for systems biology analysis. Slime mold aggregation was
another early case where a network of reactions was shown to be
essential for systems biology reaching one step beyond cell biology,
again by combining mathematical modeling with experimental
molecular information23.

Building large-scale models
Following the events of the late 1950s and early 1960s, researchers
undertook efforts that were not well publicized and formulated math-
ematical models to simulate the functions of newly discovered regula-
tory circuits in cells. Even before digital computers became available,
simulations of integrated molecular functions were performed on
analog computers24. These efforts grew in scale to dynamic simulation
of large metabolic networks in the 1970s25–27. Following the pathway-
centered kinetic models in the seventies28, cell-scale flux models of the
human red cell were published by the late 1980s (ref. 29), and by the
early 1990s genome-scale models of viruses and large-scale models of
mitosis were formulated30. With the advent of genome-scale sequenc-
ing, the first genome-scale, constraint-based metabolic models for
bacteria were constructed31. These models describe reconstructed net-
works and their possible functional states (phenotypes) and are now
available at the genome-scale for a growing number of organisms.
They treat the ‘genome’ as the ‘system.’

Progress toward the development of detailed kinetic models at a
large scale has proven to be slower. Some of these models approach
computer replicas of pathways of metabolism, signal transduction and
gene expression, and are active on the web, ready for experimentation
and integration (compare http://www.siliconcell.net/). Obtaining 
in vivo numerical values for kinetic constants remains a key challenge.

Metabolic control analysis
We have agreed that contemporary systems biology has an histori-
cal root outside mainstream molecular biology, ranging from basic
principles of self-organization in nonequilibrium thermodyna-
mics, through large-scale flux and kinetic models to ‘genetic circuit’
thinking in molecular biology. ‘Systems thinking’ differs from ‘compo-
nent thinking’ and requires the development of new conceptual
frameworks.

Metabolic control analysis (MCA), developed in the early seven-
ties28,32, presented a key example of approaches to characterize prop-
erties of networks of interacting chemical reactions. At this time,
thinking in biochemistry was dominated by the concept that there had
to be a single ‘rate-limiting’ step at the beginning of all metabolic 
pathways. Criteria used to establish whether a given enzyme was 
rate-limiting referred to it as being far from equilibrium, strongly reg-
ulated by various metabolic factors or causing pathway flux to decrease
when inhibited.

However, the application of these criteria to some metabolic path-
ways suggested that they contained more than a single rate-limiting
step. Network thinking through MCA helped to resolve this paradox.
First, mathematical models of metabolic pathways were developed
both for inspiration and discovery, and subsequently used to check
numerically the principles they conjectured28,32. Second, quantitative
definitions were developed to describe the extent to which a step lim-
ited the flux through a pathway. This ‘flux-control coefficient’ of a par-
ticular step corresponded to the sensitivity coefficient of the pathway
flux with respect to the activity of the particular enzyme. Third, these
investigators looked for proof of the concept that there should be a sin-
gle rate-limiting enzyme in a pathway that should have a flux-control
coefficient of unity, with all others having flux control coefficients of

zero. Instead, they found a theorem stating that all the flux-control
coefficients must sum to unity28,32. This result then suggested that
there need not be a single rate-limiting step to a pathway and that
instead many enzymes can contribute simultaneously to the control of
the network. Thus, control was not a component property but a net-
work property. The network nature of regulation was shown experi-
mentally to be the case for mitochondrial ATP generation, where
control was indeed distributed over more than three steps, and quite
notably not particularly strong, neither for the first nor for the irre-
versible step of the pathway33.

An important aspect of systems biology is to relate the system prop-
erties to the molecular properties of components that comprise a net-
work. The kinetics-based sensitivity analysis by MCA, and its close
relative, biochemical systems theory proposed by H.V.W and Chen34,
showed that by focusing on the properties of an individual compo-
nent, one cannot properly decipher its role in the context of a whole
network. The connectivity laws proven by MCA28,34 (see other refer-
ences in ref. 35) pinpointed how that distribution of control relates to
network structure and the kinetic properties of all network compo-
nents simultaneously. Similarly, the topological analyses of network
structure by our groups31,36 have revealed the existence of network-
based definitions of pathways that can be used mathematically to rep-
resent all possible functional states of reconstructed networks37. Thus,
a growing number of methods now exist to analyze the properties
mathematically of the large-scale networks that we are now able to
reconstruct based on high-throughput data.

Convergence
Figure 1 presents our interpretation of the history of systems analysis
in cell and molecular biology. Events in the upper timeline have been
much more to the fore of scientific thinking than those in the lower
timeline. In one sense, the dazzling stream of discoveries and exciting
technologies (most recently with genome-wide data) provides the
‘biology’ root to contemporary systems biology. In contrast, scientific
progress in the lower timeline has never gained much notoriety,
although work in this area was much more prominent in European
science throughout this period. This latter branch might be thought of
as the ‘systems’ root of systems biology.

Systems modeling and simulation in molecular biology was once
seen as purely theoretical and not particularly relevant to understand-
ing ‘real’ biology. However, now that molecular biology has become
such a data-rich field, the need for theory, model building and simula-
tion has emerged. The systems-directed root always had the ambition
of discovering fundamental principles and laws, such as those of non-
equilibrium thermodynamics and MCA. This ambition should now
extend to systems biology.

All too often, the field has been perceived as just pattern recognition
and phenomenological modeling. Systems biology is a thorough sci-
ence with its own quest for scientific principles at the interface of
physics, chemistry and biology, with its remarkable mixture of func-
tionality, hysteresis, optimization and physical chemical limitations.
In silico analysis of complex cellular processes (whether for data
description, genetic engineering or scientific discovery), with its focus
on elucidating system mechanisms, has in fact become critical for
progress in biology.

The historical dichotomy in approaches to molecular biology must
now be reconciled with the need to corral resources and expertise in
systems approaches. Although the reductionist molecular biological
root has been the focus of a plethora of investigations, literature
sources and curricula, the same is not true for the systems molecular
biology root. There is now a need for development of theoretical and
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analytical approaches, curricula and educational materials to advance
understanding of the systems in cell and molecular biology. Unknown
to many, the ‘pre-online PDF’ era contains answers to many of the cur-
rent challenges and pitfalls facing the field. So although systems bio-
logy has an intellectually exciting future ahead of it, the leaders in the
field should try to minimize rediscovery and focus on the newer chal-
lenges facing us, particularly those that come with the application of
existing concepts to genome-scale problems and identification of the
new issues that arise from the study of cellular functions on this scale.

Where has this history brought us? We now have the growing and
general recognition that systems analysis is important to the future
evolution of cell and molecular biology. Some reeducation of workers
in the field may be in order (http://www.systembiology.net/). Over the
near term, it is likely that successes with practical applications of sys-
tems biology will be confined to unicellular systems. We are now see-
ing successful applications of systems biology to microbes, including
pathway engineering (e.g., see our recent publications37,38), network-
based drug design (e.g., H.V.W. and colleagues39), and prediction of
the outcome of complex biological processes, such as adaptive evolu-
tion (B.O.P and colleagues40). Although the mathematical modeling of
whole-body human systems cannot yet be linked to genome-wide data
and models, data analysis and modeling are likely to contribute to 
the success of realizing the goal of individualized medicine. Even if
we have to rely on less precise models than the currently available
genome-scale models of microorganisms, systems biology may soon
lead to better diagnosis and dynamic therapies of human disease than
the qualitative methodology presently in use.
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Joyner MJ. Giant sucking sound: can physiology fill the intellectual void left by
the reductionists?. J Appl Physiol 111: 335–342, 2011. First published June 2,
2011; doi:10.1152/japplphysiol.00565.2011.—Molecular reductionism has so far
failed to deliver the broad-based therapeutic insights that were initially hoped for.
This form of reductionism is now being replaced by so-called “systems biology.”
This is a nebulously defined approach and/or discipline, with some versions of it
relying excessively on hypothesis-neutral approaches and only minimally informed
by key physiological concepts such as homeostasis and regulation. In this context,
physiology is uniquely positioned to continue to provide impressive levels of both
biological and therapeutic insight by using hypothesis-driven “classical” ap-
proaches and concepts to help frame what might be described as the “pieces of the
puzzle” that emerge from molecular reductionism. The strength of physiology as a
“bridge” between reductionism and epidemiology, along with its unparalleled
ability to generate therapeutic insights and opportunities justifies increased atten-
tion and emphasis on our discipline into the future. Arguments relevant to this set
of assertions are advanced and this paper, which was based on the 2011 Adolph
Lecture, represents an effort to fill the intellectual void left by reductionism and
improve scientific progress.

homeostasis; regulation; integrative

THIS PAPER REFLECTS IDEAS that were presented as part of the
2011 Adolph Lecture at the Experimental Biology meeting that
was held in Washington, DC. The goal of the talk was to share
a physiologist’s perspective on what reductionism in general
and the “omic” revolution in particular has or has not done for
biomedical research and associated therapeutic insights or
advances. The main ideas highlighted in the lecture were the
following.

1) Reductionism via various flavors of molecular biology
and “omics” has so far failed to deliver its self-promoted
revolution in clinical medicine.

2) Systems biology has a cell-centric focus that is marked by
a limited understanding of and application to biology beyond
the cell.

3) The failure of systems biology to recognize and use key
concepts from physiology about homeostasis, regulation, re-
dundancy, feedback control, and acclimation/adaptation are
major limitations to this poorly defined approach.

4) While all the attention has been focused on reductionism
and more recently systems biology, physiology continues to
provide important biomedical insights that lead to therapeutic
advances.

As the title demonstrates, my goal in the Adolph Lecture and
in this paper was and is to be intentionally provocative and
hopefully generate a dialogue with the reductionists. In this
context, and because I am “taking sides”, I have adopted what
might be called a conversational approach to this paper.

BIOLOGICAL ORTHOPEDIC SURGERY

A key idea or theme that seems to underpin the impetus for
reductionism and various flavors of “omics” as applied to
biomedical problems might be described as biological ortho-
pedic surgery: “the gene is broken ¡ fix the broken gene ¡
cure the patient.” This thinking clearly seems to explain the
enthusiasm about gene therapy that emerged after the discov-
ery of the genetic defect responsible for the most common form
of cystic fibrosis and more recently ideas about a limited
number of common gene variants explaining the risk for
common conditions like atherosclerosis and diabetes (10–12,
43, 51). The line of thinking described above flows from what
Denis Noble has critically termed “Neo-Darwinian” thinking
about the relationship between genes and phenotype (45, 46).
It is exemplified by two quotes, the first from 1989 and second
from Francis Collins (the current director of NIH), one of the
people involved in the cystic fibrosis gene discovery.

The implications of this research are profound; there will be
large spin offs in basic biology, especially cell physiology, but
the largest impact will be biomedical (51).
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Here we are in 1997, eight years later, and the management
of her disease has not changed. . . . .But I will predict that in
the course of the next 10 years management of CF will
change. . . . .The healthy form of the gene itself may even be
used in so-called gene therapy (12).

What is interesting to note is that while gene therapy for
cystic fibrosis has failed to materialize in the 20� years since
the gene defect was identified, there are traditional ion channel-
based drugs that target the CFTR protein in clinical trials that
show promise in cystic fibrosis (18, 66). At one level, the
development of these drugs was likely facilitated by the genetic
discoveries because they permitted the development of models
that advanced the understanding of the biophysics and ulti-
mately pharmacology of the defective channel. However, one
is tempted to speculate, for cystic fibrosis and perhaps other
diseases, that much faster therapeutic progress might have been
made if traditional physiological and pharmacological ap-
proaches had been a bigger area of focus. Perhaps the optimism
and drive for gene therapy was an example of what might be
termed “silver bullet” thinking that I will discuss below.

REDUCTIONISM IS SEDUCTIVE

The type of reductionism that I have termed “biological
orthopedic surgery” has a number of attractive features and is
at some level very seductive. It is easy to understand, and when
it delivers it is associated with a heroic narrative by a lone
scientist or team of scientists making a fundamental discovery
that solves a problem. This is the sort of silver bullet thinking
mentioned above. However, it has been known for some time
that both the easy to understand elements and heroic narratives
associated with reductionism are mirages. In this context, when
the factors that contribute to biomedical breakthroughs were
subjected to analysis by Comroe and Drips (13) in the late
1960s and early 1970s via the “retrospectoscope,” biomedical
breakthroughs are in fact more nuanced, incremental, and
associated with a more serendipitous view of progress vs. the
heroic narrative of reductionism.

HEMOGLOBIN IS A SHIFTY MOLECULE

Homeostasis—the ability to regulate key bodily functions
within a narrow range in response to either internal (e.g.,
exercise) or external (e.g., harsh environmental conditions)—is
one of the fundamental (perhaps the fundamental) concept in
physiology (7). Homeostasis is also subserved by ideas about
regulated systems, feedback control, redundant control mech-
anisms, and adaptation and acclimation over time. These phys-
iological concepts and mechanisms contribute to what might
be described as emergent properties, so that the behavior of
the system is far more complex and (and likely more robust)
than might be predicted on the basis of a single reductionist
property (35).

A good, and early, example of this concept comes from the
textbook description about the right shift in the oxygen-hemo-
globin dissociation curve that occurs at high altitude or during
other forms of hypoxia. The standard teaching is that under
these conditions there is a rise in 2–3 DPG that allosterically
modifies oxygen-hemoglobin dissociation curve and creates a
right shift that facilitates the unloading of oxygen at the tissues.
However, when measurements of the oxygen-hemoglobin dis-
sociation curve are made in humans who have traveled to high

altitude (Fig. 1), under many circumstances there is in fact a net
left shift in the oxygen hemoglobin dissociation curve. This left
shift is facilitated by the rise in pH and fall in CO2 caused by
the hyperventilation driven by systemic hypoxia. Additionally,
under some circumstances, it is driven further leftward by a fall
in body temperature (68). Furthermore, it is of interest to note
that all genetically adapted high altitude animals and the
human fetus in the hypoxic intrauterine environment also have
left shifted oxygen-hemoglobin dissociation curves, some with
P50 values in the teens.

These observations make it seem likely that the main adap-
tive strategy is to shift the oxygen-hemoglobin dissociation
curve to the left to facilitate the “loading” of oxygen at the lung
in conditions (altitude) where oxygen availability is limited.
This strategy also takes advantage of the fact that the mito-
chondria in the tissues can work efficiently at very low PO2

values (and that under specific needs such as muscular exercise
in hypoxia local increases in [H�] and temperature will reduce
the leftward shift in muscle capillaries so that “unloading” of
oxygen and tissue O2 levels can be facilitated). It is also of note
that the left shift in the oxygen-hemoglobin dissociation curve
has been “known” since at least the 1920s. Along these lines,
the sequencing of hemoglobin and the understanding of its
biophysical properties was one of the earliest triumphs of what
has come to be described as molecular biology (55). However,
when the interpretation of such discoveries is too narrow, key
physiological insights can be missed. The 2–3 DPG story is
also an excellent and early example of how physiology trumps
reductionist molecular biology as multiple systems and regu-
latory strategies interact to regulate homeostasis for the whole
organism.

Fig. 1. Oxygen-hemoglobin dissociation curve demonstrating a left shift
among sojourners (Œ) to high altitude and natives. The left shift in the
oxygen-hemoglobin dissociation curve under these circumstances demon-
strates that the combined effects of hypocapnia, increased pH, and cold
override the simple effects of 2–3 DPG on the oxygen-hemoglobin dissociation
curve. These data are an outstanding example of the limits of single mechanism
reductionism. They are also consistent with the left shift seen in many
genetically adapted animals that are native to high altitude. [Reprinted from
Ref. 68, with permission from Elsevier.]

Review

336 PHYSIOLOGY AS AN ANTIDOTE TO REDUCTIONISM

J Appl Physiol • VOL 111 • AUGUST 2011 • www.jap.org



PREDICTIVE POWERS OF GENES?

In addition to gene therapy and other molecular treatments
for rare diseases, reductionism also made promises about its
ability to provide insight about who gets what complex disease
like atherosclerosis, diabetes, hypertension, etc. As the quote
below demonstrates, this idea became extremely popular after
the sequencing of the human genome, and scientific funding
agencies like the National Institutes of Health have invested
huge sums of money in so-called “genome wide association
studies” (GWAS) and other efforts to determine if a few
genetic variants are harbingers of future disease in the popu-
lation as a whole (10, 12, 43).

. . . because it been known all along that virtually every
disease tends to track in families. What has changed is
that. . . . .we are now beginning to see possible therapeutic
approaches based on gene discoveries that will change the way
medicine is practiced (12).

One attractive element of this paradigm was that if a few
common variants explained much of the risk for disease like
diabetes, then it should be possible to identify those at risk and
target them for early intervention. So far, the data from many,
if not most or even all of these studies, have been underwhelm-
ing (43). First, a large number of variants seem to cause a
significant increase in risk, but this increase is small compared
with behavioral and environmental factors. An increased risk
of several percent seems also likely to fall below what might be
described as a phenotypic signal-to-noise ratio. Second, when
the gene variants (single nucleotide polymorphisms, SNPs)
that have been identified via GWAS or other experimental
approaches are tested in large populations, the distribution of
risk SNPs is typically strikingly similar in populations with and
without disease (50, 63; Fig. 2). Third, when so-called genetic
risk scores for disease are compared with predictive algorithms
based on traditional risk factors (family history, lifestyle, age,
etc.), the genetic risk scores are far less predictive than tradi-
tional phenotype-based risk scores. Furthermore, addition of
genetic risk elements to phenotypically based scores adds little
or no additional predictive power (50, 63). Finally, the idea that
identifying prospective genetic risks for complex diseases that
include a number of lifestyle and environmental factors (and
increasingly even prenatal factors) is fundamentally wishful
thinking, because behavioral health issues and culture play
such a dominant role in determining who gets what disease
when, and it is unclear if people will change their behavior in
a positive way if they know prospectively they are at increased

risk (24). Paradoxically, perhaps those at reduced genetic risk
would pay less attention to behavioral risks.

SUCCESS IN PHARMACOGENOMICS AND ANTHROPOLOGY

So far, this paper has offered a sharp critique of the reduc-
tionists and taken the position that they over-sold what their
technology had to offer on both the individual (gene therapy)
basis and also in terms of population risk and intervention.
However, there have been some notable successes stemming
from application of this technology and two that seem espe-
cially worthy of comment. For example, there has been success
in so-called pharmacogenomics. It has been well-known for
some time that there are “responders” and “non-responders” to
many forms of drug therapy. In many cases, this is related to
how rapidly drugs are metabolized. In the case of tamoxifen,
which had a dramatic effect on the recurrence of breast cancer,
individuals with decreased drug metabolism appear to be at
increased risk for recurrence. This is especially important for
drugs like tamoxifen, which are ingested as pro-drugs with one
or more metabolites that are active (56).

Another field where “omic” approaches have yielded divi-
dends is anthropology. Two good examples include discoveries
related to the independent development of lactase persistence
into adulthood in areas of the world that were early adopters of
herding (23, 34). In this context, one can imagine that the
ability to digest lactose into adulthood provided the affected
individuals a significant survival advantage and thus became
the dominant genotype in only a few generations. Another
good example that is perhaps counterintuitive relates to the
individuals who migrated to the Tibetan plateau. These indi-
viduals do not develop chronic mountain sickness even with
lifelong living at 3–4,000 m of elevation. These responses
contrast to the high altitude natives in the Andes Mountains,
who do develop chronic mountain sickness (58, 61, 70). Along
these lines, those who migrated to the Tibetan plateau appear to
have had selection pressure that favored a less functional
variant of the hypoxia-inducible factor that, among other
things, prevents them from developing excessive polycythe-
mia, which plays a critical role in chronic mountain sickness.

INTERIM SUMMARY

So far, I have provided a general critique of what might
broadly be termed “molecular reductionism”. I have presented
evidence that its failure to live up to its self-generated hype is
in reality a failure to recognize larger ideas about homeostasis

Fig. 2. Distribution of so-called high risk
genes for cardiovascular disease in women
with and without known coronary artery dis-
ease. The distribution of risk genes is similar,
and construction of a genetic risk score for
cardiovascular disease is thus problematic.
This is just one example of the limited pre-
dictive power of “genomics” as it relates to
the ability of relatively common gene variants
to predict common diseases. [Borrowed with
permission from Ref. 50. Copyright © 2010
American Medical Association. All rights re-
served.]
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and regulation that are central to physiology. This includes the
specific example of the idea of gene therapy for relatively
common genetic disorders like cystic fibrosis and also the
limited predictive power of gene variants for common diseases.
The question now is whether there is some way out of this
problem and a better way to use potentially powerful technol-
ogies championed by the reductionists in a biomedical context.

IS SYSTEMS BIOLOGY THE ANSWER?

One idea to address the “failure” of molecular reductionism
described above is to use a new approach called systems
biology. The idea is that if powerful modeling tools and other
data analysis techniques could be applied to the data generated
via high throughput molecular reductionism, then somehow
more meaningful insights would be generated and ultimately
exploited for predictive or therapeutic purposes. The rationale
for systems biology comes from a sampling of the comments
on www.systemsbiology.org web site (34a).

Systems biology is the study of an organism, viewed as an
integrated and interacting network of genes, proteins and
biochemical reactions which give rise to life. Instead of ana-
lyzing individual components or aspects of the organism, such
as sugar metabolism or a cell nucleus, systems biologists focus
on all the components and the interactions among them, all as
part of one system. These interactions are ultimately responsi-
ble for an organism’s form and functions.

Traditional biology—the kind most of us studied in high
school and college, and that many generations of scientists
before us have pursued—has focused on identifying individual
genes, proteins and cells, and studying their specific functions.
But that kind of biology can yield relatively limited insights
about the human body.

Biologists, geneticists, and doctors have had limited success
in curing complex diseases such as . . . . diabetes because
traditional biology generally looks at only a few aspects of an
organism at a time.

To a physiologist, there are obvious problems with systems
biology. The problems start with the fact that physiology has
been attempting for hundreds of years to understand the inte-
grated function of organs and whole organisms that culminated
in unifying big ideas about homeostasis and regulation dis-
cussed earlier. It is also clear that the type of biology that
physiologists have been interested in starting with Harvey and
the circulation has been about systems and has used modeling
and computational techniques (1, 32, 57). Additionally, at this
time the concept of systems biology and how it is defined
remains very nebulous (52). Is systems biology a new disci-
pline, an approach, a collection of tools, or merely a new name
for integrative physiology generated by individuals who are
generally unaware that our field exists (2, 28, 34a, 36, 40, 41,
45, 57)? Clearly physiology has provided and continues to
provide insight about human disease, including insight that has
led to vast therapeutic advances in recent years (37). Perhaps,
the obvious question for the advocates of the cell-centric view
of systems biology is did they skip physiology as part of their
course work as students?

The concerns about systems biology outlined above at some
level are about definitions and perhaps intellectual ownership.
However, it also seems fair to ask what the long-term outlook
for cell-centric systems biology is as an approach to making
sense out of the vast amounts of data that can be generated

using modern “omic” technology. In this context, there are key
intellectual issues related to how data elements are generated,
their spatial and temporal relationships, and how many ways
they might interact (Fig. 3) that question the very fundamental
assumptions about systems biology and its reliance on “bottom
up” or “hypothesis neutral” modeling (2, 6, 15, 27, 35, 36, 38,
48, 67). It seems to me that without a narrative approach that
includes hypothesis testing and key concepts like homeostasis,
systems biology runs the risk of becoming scientific “Abstract
Expressionism”. Given the issues discussed earlier with gene
therapy and GWAS approaches and the hype that surrounds
systems biology, these concerns raise questions about what
kind of science and scientific approaches deserve our future
attention and funding (2, 24, 35).

REDUCTIONISM STALLS PHYSIOLOGY PROGRESSES

This is not the place for a comprehensive review of the
contributions of physiology to biomedical research and thera-
peutic progress over the last 20–30 years. However, a few
highlights that were initially seen as counterintuitive seem
warranted. An obvious one is the discovery of EDRF and nitric
oxide (25). This observation, which challenged the idea of the
endothelium as merely a barrier, led to the discovery of
gas-based signaling mechanisms and new therapeutic targets
for conditions as diverse as erectile dysfunction and pulmonary
hypertension. Would gas-based signaling mechanisms have
been discovered by sequencing genes? Physiology has also
helped redefine the optimal strategy used during mechanical
ventilation in patients with adult respiratory distress syndrome
(ARDS; 26). This has led to abandonment of strategies asso-
ciated with high airway pressures and maintenance of arterial
blood gases toward so-called permissive hypercapnia, alternate
forms of mechanical ventilation and pressure support. Impor-
tantly, these new strategies that emphasize the avoidance of
barotrauma have been associated with significant reductions in
morbidity and mortality for ARDS. While part of the conven-
tional wisdom now, this strategy was initially seen as counter-
intuitive.

Fig. 3. Simulation of a number of possible combinations of genes gene
interactions depending on the number of genes per biological function (x-axis)
and the total number of genes in the organism. For biological functions with
roughly 50 genes, �10150 possible combinations exist for most mammals. This
figure shows the immense challenge associated with hypothesis-neutral sys-
tems biology and “bottom up” modeling. [Borrowed with permission from
Ref. 46.]
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Another example of a counterintuitive physiologically based
clinical strategy was the use of beta-blockers in congestive
heart failure. For many years these drugs were contraindicated
in congestive heart failure (CHF) because it was felt that high
sympathetic drive to the heart was required to maintain an
adequate cardiac output in CHF. In reality, high sympathetic
activity to the heart over time contributed to the progression of
the disease and promoted a downward spiral of cardiac remod-
eling and reduced function (20). Thus the use of beta-blockers
along with vasodilator therapy has been revolutionary and can
interrupt or slow the downward spiral noted above in patients
with congestive heart failure (Fig. 4). Again, the conventional
wisdom was turned on its head and provided new insights that
ultimately led to improved therapy. In the case of ARDS and
congestive heart failure there has also been a two-way street
between observations from clinical research conducted “at the
bedside” to more fundamental observations in the laboratory.

Three other examples of more straight forward physiologi-
cally based therapeutic successes in recent years include the
long story of improved outcomes for premature infants cared
for in the neonatal ICU including altered ventilatory strategies,
avoidance of oxygen toxicity, and surfactant therapy (9, 60).
These improved outcomes, in the littlest ICU survivors, con-
tinue to seem miraculous to individuals who care for these
patients and practiced medicine or nursing prior to their use. A
second example has been oral rehydration solutions that are life
saving in infants and children with diarrheal disease, especially
in developing countries where it is a primary and frequent
cause of death (8). Finally, in the developed world, where
obesity and physical inactivity are leading to a pandemic of
type 2 diabetes, physical activity (especially walking training
in middle-aged people) has been proven to be highly effective
in preventing, limiting, and in some cases reversing type 2
diabetes (16, 29). Each of these therapeutic successes is based
on a foundation of physiologically based experimental evi-
dence and insights.

REDUNDANCY, FEEDBACK, AND ACCLIMATION/ADAPTATION

Why has physiology continued to contribute in the era of
reductionism? Physiologists are well versed in the overall

concept of homeostasis, regulation, feedback, redundancy, and
acclimation/adaptation. A classic example of redundancy
comes from coronary circulation where coronary vasodilation
is tightly linked to myocardial oxygen demand. In this context,
a number of vasodilator systems likely contribute to this
response. However, pharmacological blockade of one system,
or in fact multiple systems, fails to alter this fundamental
relationship between coronary vasodilation and myocardial
oxygen demand in most species (19, 64; Fig. 5) This suggests
that multiple redundant pathways contribute to this critical
physiological response so that when one is blocked or absent,
oxygen supply to the heart is not threatened when demand
rises.

The fundamental relationship between coronary vasodilation
and myocardial oxygen demand is also an observation that has
had vast therapeutic implications and explains in large part
why age specific death rates for cardiovascular disease have
fallen dramatically over the last 30–40 years. There are drugs
the reduce myocardial oxygen demand, mechanical therapy
like stents, bypass surgery that improves myocardial oxygen
delivery, and other drugs and lifestyle interventions that can
affect both elements of the equation over time (30, 44). This
physiological narrative and the progress that has flowed from it
is in stark contrast to the relative lack of progress against
cancer where there does not seem to be a unifying physiolog-
ically based story or model that can be exploited to address the
general problem of cancer.

One of the classic feedback control mechanisms in physiol-
ogy is the arterial baroreflex. While barodenervated animals
have relatively normal blood pressure over a given 24 h period,
their blood pressure becomes much more variable (14). The
relative stability of blood pressure in the long run shows the
power of redundant control via renal regulation of arterial
pressure. However, for short-term adaptations, essential for
things like exercise or changes in posture, feedback control

Fig. 5. Myocardial oxygen demand on the x-axis and coronary blood flow on
the y-axis. Note that coronary blood flow rises in proportion to myocardial
oxygen demand and that this rise is unaffected by triple inhibition of kATP�
channels, nitric oxide synthase, and adenosine receptor s This is a classic
example of the concept of physiological redundancy. This well-known phe-
nomenon may also explain why the absence of many so-called critical genes or
proteins has limited impact on overall organ or organism function. This is
because so-called redundant systems are able to alter their function and
“upregulate” when one or more systems is blocked. [Borrowed with permis-
sion from Ref. 64.]

Fig. 4. Demonstration that beta-blockade can improve ventricular function
(%EF) in humans with congestive heart failure over time. Standard therapy
was associated with stable ventricular ejection fraction over 3 mo. By contrast,
metoprolol (�-blockade) increased ventricular ejection fraction by �50% over
3 mo (*�0.05 vs. baseline). This finding, while initially counterintuitive, was
based on sound physiological reasoning and along with other therapies has
improved outcomes for patients with congestive heart failure. [Adapted from
Ref. 20, with permission from Wolters Kluwer Health.]
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from arterial baroreflexes is essential for normal physiological
responses.

An outstanding example of how humans acclimatize and
adapt to physiological stress comes from studies that demon-
strate that the ability of individuals to exercise in the heat can
be remarkably improved by a few weeks of training in the heat
(54). This improved exercise tolerance in the heat is associated
with expanded plasma volume, increased sweating, and altered
thermoregulatory skin blood flow. Another outstanding exam-
ple is what might be called the adaptability of insulin sensi-
tivity and glucose uptake in skeletal muscle. These variables
are extremely sensitive to exercise and changes in daily activity
and seem especially relevant in the era of the physical inactiv-
ity/obesity pandemic (29, 49, 53, 65).

Ideas about redundancy, feedback control, and acclimation/
adaptation are also why physiologists are not that surprised by
the ability of various gene knockout animals to survive and
thrive (33). At some level this approach is conceptually similar
to the classic denervation or high dose pharmacological block-
ade studies used by physiologists for generations and primarily
show the power of the regulatory mechanisms highlighted
above to preserve both long term phenotype and homeostasis
despite the loss of one or more critical pathways or mecha-
nisms (17). In this context, it is not surprising the yeast can
survive without 80% of their genes and the function of these
genes only becomes apparent when the organism is stressed
(33). Is it too cynical to point out that knockout animals are
essentially a “can’t lose” experimental approach? If the knock-
out is lethal or leads to significant phenotypic dysfunction it is
essential. If it survives then genetic or other compensatory
mechanisms were upregulated to overcome the absence of the
essential gene.

Physiology or physiologically based tests can also provide
insight into the risk of future disease and/or predictive out-
comes. For example, the blood pressure responses to common
sympathoexcitatory stress can be used to define those at risk for
future hypertension in a way that is potentially much more
predictive than any current genetic test. Additionally, tests of
autonomic function are strong predictors of outcomes in large
populations of humans, and cardiorespiratory fitness is an
especially good predictor of all-cause mortality.

TOOLS VS. BIG IDEAS

At some level molecular reductionism and systems biology
are at existential cross roads. Are they in fact real disciplines
informed by big ideas like homeostasis and regulation, or are
they essentially tools and approaches that will facilitate the
work of disciplines informed by bigger ideas and more impor-
tantly bigger questions and more comprehensive strategies?
Based on the concepts and examples highlighted in this paper
I would argue that until the vast amounts of data generated by
modern “omic” techniques are put in a physiological context it
will be an exercise in what Sydney Brenner has deemed “low
input, high throughput, no output biology” (6). Along these
lines, I want to end on an optimistic note with examples of how
physiology is making a difference by applying reductionist
tools as part of a more comprehensive approach to important
questions. Because the Adolph lecture is sponsored by the
Exercise and Environmental Physiology section of the Amer-
ican Physiological Society, relevant examples from related

areas will be used. In each case there seems to be an overall
hypothesis and a strategy that exploits what might be called
responders and non-responders to an intervention.

Britton and Koch and colleagues (39, 69) have used selec-
tive breeding strategies to develop rats with vastly different
inherent aerobic endurance capacities (Fig. 6). These animals
have been used in a variety of studies to better understand the
gene environment interactions. In many instances the animals
selected for low intrinsic aerobic capacity seem to be at
increased risk for complex diseases like diabetes, obesity, and
heart disease. Additionally, studies using these animals have
begun to identify genetic and transcriptional factors and net-
works that explain in part this increased risk (39).

Another example of how physiologists are using tools from
the “new biology” is the HERITAGE study, which broadly
seeks to understand the genetic basis for the differing physio-
logical responses to exercise training in a large number of
humans exposed to a standard protocol (3–5). This is an
excellent example of how what might be called “high resolu-
tion” physiologically based phenotyping in conjunction with
genetics. This hypothesis-driven approach also includes uses

Fig. 6. Selective breeding of rats with divergent aerobic capacities. These data
show that animals selected for their running capacity diverge dramatically after
a few generations and is sustained for many generations. Importantly, at the
same time body weight also began to diverge as did a number of risk factors
for cardiometabolic disease. Phenotypic studies conducted on these animals in
conjunction with more targeted forms of “omic” approaches and other types of
molecular reductionism are providing new insights about gene environment
interactions. These findings may also have applicability to physically active
and inactive humans. The approach of Britton and Koch is a classic example
of using reductionist tools in a physiological context to gain new insights with
direct applicability to human health and disease. [Reprinted from Ref. 39 with
permission from Macmillan Publishers Ltd. Obesity Suppl. copyright 2008.]
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various “omic” and systems biology approaches and was ini-
tiated by physiologists before the terms genomics or systems
biology existed. Additionally, like the examples from pharma-
cogenomics and anthropology discussed earlier, it takes advan-
tage of the fact that there are responders and non-responders in
response to a given intervention or environmental stressor.

Finally, my collaborator John Eisenach and I along with our
colleagues have performed carefully controlled studies on how
common genetic variants in the �2-adrenergic receptor influ-
ence a number of physiological responses and how any geno-
type-based differences might be influenced by dietary sodium
(21, 22, 31, 59). These studies were initiated because epide-
miological evidence suggested that genetic variation in the
�2-adrenergic receptor influenced blood pressure in large pop-
ulations. In our studies only homozygotes for the genetic
variant of interest were recruited in an effort to see the
maximum potential physiological effect of the variants. Using
this approach, it appears that there are genotype-specific pat-
terns associated with increased cardiac output responses to
exercise that may interact with NO-mediated �2-adrenergic
receptor peripheral vasodilation. These responses clearly link
and mechanistically define how a common gene variant in a
key regulatory system can influence a physiological response
in humans. They may also provide physiological explanations
relevant to the original epidemiological observations on blood
pressure and other outcomes, including those in patients with
the acute coronary syndrome (42).

SUMMARY

In this paper and in the Adolph Lecture I have highlighted
some of the claims associated with molecular reductionism and
more recently systems biology. In both cases I have argued that
the apparent inability and/or unwillingness of the advocates of
these approaches to use key concepts from physiology and
ultimately use their tools in a physiological context has limited
the contribution of the approaches they advocate. By contrast
physiology has continued to use new tools in the service of its
big ideas and also continued to provide biomedical insight and
therapeutic advances. As the final examples show, it is possible
to incorporate reductionist tools in a physiological context to
gain broader biomedical insights. Hopefully these insights will
fuel the next wave of physiologically inspired therapeutic
advances.
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Robustness and timing of cellular differentiation through
population-based symmetry breaking
Angel Stanoev*, Christian Schröter and Aneta Koseska‡,§

ABSTRACT
Duringmammalian development and homeostasis, cells often transition
fromamultilineageprimed state to oneof several differentiated cell types
that aremarkedby the expression ofmutuallyexclusive geneticmarkers.
These observations have been classically explained by single-cell
multistability as the dynamical basis of differentiation, where robust cell-
type proportioning relies on pre-existing cell-to-cell differences. We
propose a conceptually different dynamical mechanism in which cell
types emerge and aremaintained collectively by cell-cell communication
as a novel inhomogeneous state of the coupled system. Differentiation
can be triggered by cell number increase as the population grows in size,
through organisation of the initial homogeneous population before the
symmetry-breaking bifurcation point. Robust proportioning and reliable
recovery of the differentiated cell types following a perturbation is
an inherent feature of the inhomogeneous state that is collectively
maintained. This dynamical mechanism is valid for systemswith steady-
state or oscillatory single-cell dynamics. Therefore, our results suggest
that timing and subsequent differentiation in robust cell-type proportions
can emerge from the cooperative behaviour of growing cell populations
during development.

KEY WORDS: Symmetry breaking, Differentiation, Cell-cell
communication, Inhomogeneous steady state

INTRODUCTION
Functional diversification of cell types during mammalian
development is characterised by the transition from an initially
homogeneous group of multilineage primed cells towards a
heterogeneous population of differentiated cell types (Zhang and
Hiiragi, 2018; Simon et al., 2018). To ensure robust development, the
onset of the differentiation event must be accurately timed, and the
number distribution of each cell type must be correctly established.
The experimental observation that the expression of mutually

exclusive genetic markers distinguishes the differentiated cell types
from each other, and from the multilineage primed state, has
promoted the hypothesis that cell types correspond to one of
multiple stable gene expression states that arise from intracellular
gene regulatory networks. Switching between these distinct states
that dynamically represent stable attractors, specifically from the

attractor encoding the multilineage primed state to the differentiated
states, has been assumed as the dynamical basis of differentiation
(Kauffman, 1969; Andrecut et al., 2011; Wang et al., 2011; Enver
et al., 2009). The most common motif that accounts for bistability,
i.e. the co-existence of two stable gene expression patterns on a
single-cell level, is a two-component toggle-switch gene network
(Thomas, 1981; Cherry and Adler, 2000; Snoussi, 1998). The
addition of self-activating loops to each of the toggle-switch genes
gives rise to a third stable state through which the multilineage
primed co-expression state has been typically explained (Huang
et al., 2007; Bessonnard et al., 2014; Jia et al., 2017). Such single-
cell multistable circuits have been used to describe, for example, the
Cdx2-Oct4 (also known as Pou5f1) switch in the differentiation of
totipotent cells of the early embryo (Niwa et al., 2005), as well as the
Gata6-Nanog switch in the differentiation of cells in the inner cell
mass (Bessonnard et al., 2014; Chickarmane and Peterson, 2008;
Schröter et al., 2015). The differentiation outcomes have thereby
been typically analysed from a single-cell perspective, assuming
that the intrinsic transitions towards one of the co-existing stable
states are either driven stochastically (Gupta et al., 2011), modulated
by an external signalling input, or stemming from cell-to-cell
heterogeneity (De Mot et al., 2016; De Caluwé et al., 2019).
However, the respective cell-type proportions strongly depend not
only on the parameters of the system but also the initial conditions,
indicating that the underlying mechanism of reliable proportioning
cannot be directly inferred from this view.

On the other hand, experimental evidence suggests that paracrine
signals have a crucial role for reliable cell-type establishment
(Monk, 1997; Nichols et al., 2009; Yamanaka et al., 2010; Youk
and Lim, 2014; Hart et al., 2014; Saiz et al., 2020). This has been
particularly recognised in lateral inhibition models, such as the
Delta-Notch system (Sprinzak et al., 2010; Collier et al., 1996), in
which the intercellular communication realised through toggle
switches distributed between the cells enables differentiation into
distinct cell types with specific proportions and spatial organisation
(Collier et al., 1996; Formosa-Jordan and Ibañes, 2014; Teomy
et al., 2019 preprint; O’Dea and King, 2012). A similar model
relying on cell-cell communication via fibroblast growth factors has
been recently proposed for the cell-type specification in the mouse
blastocyst (Saiz et al., 2020).

The emergence of specific gene expression profiles due to cell-
cell communication is also well exemplified by the quorum-sensing
mechanism in bacteria, in which the timing of emergence is
regulated through the concentration of secreted signallingmolecules
(Taga and Bassler, 2003; You et al., 2004; Danino et al., 2010).
Thus, these examples indicate that novel attractors can emerge in
populations of communicating cells that are not present for isolated
cells. This principle of attractor emergence in coupled systems has
been extensively investigated in both natural and synthetic genetic
networks (McMillen et al., 2002; Taga and Bassler, 2003;
Kuznetsov et al., 2004; Garcia-Ojalvo et al., 2004; Ullner et al.,
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2007). For example, emergent oscillatory solutions (Ullner et al.,
2007, 2008; Koseska et al., 2010) have been proposed as dynamical
mechanisms of stem cell differentiation with self-renewal (Suzuki
et al., 2011). These theoretical and experimental findings suggest
that cooperative dynamics could underlie the emergence of
differentiated cell types in cell populations. However, the
principles that govern self-organised differentiation timing, while
at the same time leading to specific cell-type proportions that can
reliably adapt upon perturbations, remain unresolved.
We propose a dynamical mechanism that underlies the

differentiation of cell populations into cell types with stable
proportions driven by the growth of the communicating population
itself. Within this model, the expression profiles of both the
multilineage primed and the differentiated cell types can be
captured without any change in the parameters, and the transition
between them can be established at a specific size of the population.
The same mechanism also enables robust recovery of the acquired
proportions upon perturbation of the system, accounting for
autonomous scaling. We show that these properties of a
communication-based cellular system arise from a collective
symmetry breaking through a subcritical pitchfork bifurcation (PB).
Dynamically, this novel collective state of mutually exclusive gene
expression states in the population is represented as a single
inhomogeneous steady state (IHSS). This renders the individual
differentiated cell types dependent on each other, and the respective
gene expression profiles different from those that can be attained in
isolated cells. We show that the differentiation timing occurs through
the growth of the population beyond a critical size, when the

parameters of the undifferentiated cell population correspond to
organisation before the PB. These findings indicate that the proposed
collective inhomogeneous solution is a generic dynamical
mechanism that describes how heterogeneous cellular types emerge
from a homogeneous population of precursor cells and are maintained
via cell-cell communication.

RESULTS
Timing and stable proportions of differentiated cell types
are generated in growing populations
Cell differentiation during early mammalian embryogenesis often
occurs from a multilineage primed state (mlp), which is maintained
for several cell division cycles before differentiation into distinct
cell types occurs (Fig. 1A) (Saiz et al., 2016; Hatakeyama et al.,
2004; Soldatov et al., 2019). This implies that gene expression states
transit from an initial homogeneous pattern across the precursor
cells towards a heterogeneous expression state representing the
differentiated cell types.

To investigate under which conditions such transition occurs, we
considered a generic cell-cell communication system, in which the
gene regulatory circuits in single cells are coupled to each other by
paracrine signalling molecules s (Fig. 1B). The intracellular circuit
consists of two genes u and v that inhibit the transcription of each
other, and u additionally positively regulates the secretion of s. In
turn, the extracellular concentration of the signalling molecules, sext,
regulates the circuit dynamics (inhibiting u production; Fig. 1B). As
the communicating signals are secreted by the cells themselves,
their concentration is a variable in the system. This effectively

Fig. 1. Emergence of stable proportions of differentiated cell
types in growing cell populations. (A) Schematic of the
transition from multilineage primed cell types towards
differentiated cell types during early embryogenesis.
(B) Network topology of the cell-cell communication system
(Eqn 1). (C) Different communication scenarios on a grid: short-
range, global, local and distance-based probabilistic coupling.
(D) Lineage tree depicting the transition from a multilineage
primed state (mlp) to the u+/v+ states in a growing population
with short-range communication, determined from a stochastic
simulation. Green/red/blue: mlp/u+/v+ cells, respectively. Top:
respective cell-type proportions. Parameters: αu=2.3, αv=3.5,
αs=2, αu,s=1, β=γ=δ=η=2 and λ=50.
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establishes a single joint dynamical system that is described by the
following dimensionless equations:

1

l

dui
dt
¼au

1

1þ vbi
þ au;s

1

1þ shi;ext
� ui

1

l

dvi
dt
¼av

1

1þ ugi
� vi

1

l

dsi
dt
¼as

udi
1þ udi

� si;

ð1Þ

where i ¼ 1;N is the single cell index and N is the number of cells.
The vector (ui, vi, si) represents the state of each cell within the 3N-
dimensional state of the coupled system (u1, v1, s1, …, uN, vN, sN).
The external amount of signal perceived by cell i from its
communicating neighbourhood N(i) (including itself ) is defined
as si;ext ¼ ð1=ðjNðiÞj þ 1ÞÞP j[ðNðiÞ<iÞ sj, i.e. the average amount
of secreted signalling molecule at the given time. The parameters αu,
αv, αu,s and αs represent the respective promoter strengths, whereas
β, γ, η and δ are the Hill coefficients. Aiming to conceptualise the
problem rather than to provide a quantitative description, the system
was scaled to yield a minimal number of parameters: rate constants
proportional to the promoter strengths were on the same order of
magnitude, and the Hill coefficients were set to 2 (Materials and
Methods).
Employing this model, we generated a numerical lineage tree

starting from one cell, using stochastic simulations. The population
growth was implemented in a simplified manner: after a given time
period that mimics cell cycle length, all cells divide and the number
of cells is doubled. The initial gene expression states of the daughter
cells are inherited from the final state of the mother cell. The cells
are placed on a grid with no flux boundary conditions, and the
communication between them is short-ranged (within distance 2),
i.e. between adjacent and second-adjacent cells on the grid (depicted
for N=8 cells in Fig. 1C, left). Although we mainly focus on this
communication type, the effect of other coupling types is also
explored further below: global all-to-all, local (only between
adjacent cell) and distance-based probabilistic coupling, in which
interaction links between cells are established with decreasing
probability as the distance between them increases (Fig. 1C). Cell
divisions occur along the horizontal and vertical axes of the grid
alternately, such that the grid doubles in size after each division
event, yielding lattices of 1×1, 1×2, 2×2, 2×4, etc. (Fig. S1). The
collective system state constituted of u+, v + or mlp cell types was
characterised in every time instance by categorising the cell states,
and was used to plot the temporal evolution of the lineage tree
(Fig. 1D). Furthermore, cellular proportions in the system were
estimated from the collective state at each time point, and their
temporal evolution is shown in the panel above the lineage tree.
The simulations demonstrated that even in the presence of gene

expression noise (σ=0.1, Materials and Methods), for a population
size of up to N=4 cells, the dynamical state of the system was
homogeneous such that individual cells had equivalent u/v co-
expression patterns resembling an mlp state (Fig. 1D). However,
when the population reached a threshold size of N=8 cells, the
expression patterns in single cells collectively transitioned to u- or v-
dominated expression (u+ or v+ cells), indicating that the initial
symmetry of the system had been broken and cells differentiated.
Interestingly, defined proportions of u+ and v + cells emerged upon
differentiation, which were stably maintained over many rounds of
cell division (Fig. 1D, top).

That the mlp state could be maintained for smaller population
sizes, despite the presence of gene expression noise, indicates that
stochastic events do not trigger the transition from a homogeneous
to a heterogeneous cell population. As the model parameters also do
not change, these results rather suggest that the timing of the
transition event emerges from the growth of the population, upon
which distinct proportions of the generated heterogeneous cell types
are established.

Collective statewith heterogeneous cell types emergeswith
precise timing due to subcritical organisation
To uncover the dynamical mechanism that underlies the transition
between the mlp and the u+/v+ cell types, we performed a
bifurcation analysis. The results in Fig. 1D indicated that
differentiated cell types emerge with growing population size.
However, a direct identification of the transition type using the
number of cells as a bifurcation parameter cannot be performed, as it
is not an explicit parameter in the model (Eqn 1). As a first step, we
therefore chose αu as a representative bifurcation parameter to
identify and characterise the solutions of the system, whereas the
impact of population size will be explored further below.

The bifurcation analysis showed that for N=2 coupled cells, the
system exhibits qualitatively different dynamics for different αu values.
For lower αu values, the system exhibits monostable behaviour
(Fig. 2A, top, green circle for αu=2.3). Here, both cells populate the
same state (u1=u2) as evident from the projection that falls on the
diagonal in the u1−u2 state space (Fig. 2A, bottom left). This
homogeneous steady state (HSS) captures the mlp state with a
characteristic precursor u/v co-expression pattern. On the level of a
single-cell system, this is the only stable regime over the full αu domain
(Fig. S2A), meaning that isolated cells will maintain the mlp state.

However, at a critical αu value, the symmetry of the mlp HSS is
broken via a subcritical PB. From the point of view of dynamical
systems, the HSS (Fig. 2A, black line) loses its stability at this
parameter value and a pair of fixed points is generated, giving rise to
IHSSs stabilised via saddle-node bifurcations (SN) (Fig. 2A, purple
lines). There is a co-existence between the HSS and the IHSS before
the PB, rendering it subcritical. The IHSS is a single attractor, here a
six-dimensional point (u1, v1, s1, u2, v2, s2), that describes a
heterogeneous state. This state consists of a high u-expression level
(u+) in one cell (u2) and a low u-expression level (v+) in the other
cell (u1), as shown by the two-dimensional (u1, u2) projection
(Fig. 2A, bottom right). This means that the IHSS is a symmetry-
broken collective state (Koseska et al., 2013), as it describes
simultaneously both cell types with mutually exclusive gene
expression patterns (Fig. S2B,C). As there is no preference which
cell will acquire the u+ or v + cell type, both possibilities (u1<u2 and
u1>u2) are present as branches (upper and lower branch in Fig. 2A,
top, respectively). Therefore, the same fixed point will be
manifested as an upper branch for the u+ cell, but as a lower
branch within the equivalent bifurcation diagram for the v + cell.
The u1−u2 state space projection also demonstrates that the IHSS
solutions are reflections of one another over the diagonal (Fig. 2A,
bottom right). This demonstrates that PB provides a unique
mechanism for a dynamical transition from a homogeneous (mlp,
HSS) to a single but heterogeneous (u+/v+, IHSS) state of the
population, in which the differentiated cell types always jointly
emerge. The described IHSS solution of a coupled system is
fundamentally distinct from a bistable system on a single-cell level.
There, the u+ and v + cell types are described by two different steady
states. Thus, in the absence of cell-cell communication, each cell
in a population can independently transition to one of them.
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In principle, all cells within a population could acquire u+ cell type,
without the v + cell type ever occurring.
We next investigated which type of network topology could give

rise to stable heterogeneous population states.We found that the IHSS
emerges for a number of different network topologies that are
characterised by inhibitory coupling, i.e. topologies with an effective
negative feedback on u via the signalling molecule s (Fig. S3A to C;
Eqn 2). Moreover, IHSS could be also obtained for oscillatory gene
expression dynamics in isolated cells (Fig. S3D, Eqn 3). The
bifurcation analysis additionally implies that heterogeneous cell types
will be reached even when starting from identical initial conditions,
representing a true symmetry breaking event.
Interestingly, the value forαu=2.3 used in Fig. 1D lies before the PB,

what we will term herein as a subcritical organisation of the system.
The bifurcation diagram for N=2 cells (Fig. 2A) can therefore explain
why in the lineage tree in Fig. 1D the cells maintained themlp state and
did not switch to the u+/v+ cell type, but it does not explain how the
transition can occur for increasing population size N. We therefore
generated a bifurcation-like diagram by varyingN as in the lineage tree,
while keeping all parameters fixed (with αu=2.3) and using short-range
communication (Fig. 2B). We identified the distinct collective states
for each N via their u+/v+ cell-type proportions. The existence
of steady states was estimated with an exhaustive stochastic search,
with different initial conditions and noise intensities (Materials and
Methods). The identified IHSSs with equivalent proportions were
grouped, and the average u-values were depicted separately for the u+
and v + cell types within each distribution group. This yields paired

upper and lower branches, analogously to the bifurcation diagram in
Fig. 2A. Whereas for N=2 coupled cells only the mlp HSS was
detected (Fig. 2B green; corresponding to the green circle in Fig. 2A),
for N=4 coupled cells stable inhomogeneous solutions with a distinct
proportion could be additionally identified (red/blue u+/v+ horizontal
stack bar markers). This resembled the subcritical PB observed in
Fig. 2A. The identified inhomogeneous solution corresponds to one
cell having high- (u+) and three cells having low-expressing u state
(v+), or 1u+/3v + distribution. However, for larger population sizes, the
homogeneous mlp state lost its stability and only IHSSs reflecting the
two cell types with specific proportioning were identified. In other
words, the growth of the population to N=8 triggered a transition from
the precursor to the differentiated cell state. This demonstrates that
when αu assumes a sufficiently low value to set the system before the
bifurcation point, the growth of the population can trigger a dynamical
transition, resembling the one that occurs when αu is increased
(Fig. 2A).

To explore how the population size NSB at which there is an
occurrence of symmetry breaking depends on αu, we performed an
equivalent of a two-parameter bifurcation analysis. The diagram
shows that the symmetry-breaking transition could be triggered over a
distinct αu parameter region for short-range coupling (Fig. 2C, solid
line). Depending on the αu value before the PB, the symmetry-
breaking point will be realised at a distinct size of the population
(NSB). Thus, for subcritical organisation, differentiation timings can
emerge in a self-organised manner. Similar results were also obtained
for local coupling and the probabilistic distance-based coupling

Fig. 2. Subcritical organisationbefore thePBenables timingof cellular differentiation. (A) Top: bifurcation diagram forN=2 coupled identical cells (inset), using
u2 as a representative variable. Solid lines indicate HSS (black) and IHSS (purple). Dashed lines indicate unstable steady states. Dotted lines indicate
organisations in parameter space, with corresponding stable mlp HSS (solid green circle, αu=2.3), u+/v+ IHSS (solid red/blue circles, αu=2.52) and unstable
HSS (green cross, αu=2.52). Bottom: corresponding u1−u2 state spaceorganisation. Left: stablemlpHSS (u1=u2) forαu=2.3. Right: stable IHSS (u1>u2 and u2>u1) for
αu=2.52. (B) Bifurcation-like diagram depicting the emergence of IHSS distributions with increasing number of cells N. Green boxes indicate mlp HSS. Red
and blue stack bar markers represent distinct u+/v+ IHSS proportions. Lines connect distributions with the same proportions. (C) The symmetry-breaking
population size threshold (NSB) at which the HSS becomes unstable in relation to αu. For probabilistic distance-based coupling, the median (n=200) is shown.
Green-to-red/blue arrow denotes the symmetry-breaking mlp-to-u+/v+ transition at N=8 cells (orange star) for αu=2.3. In all panels, remaining
parameters are the same as used in Fig. 1D.
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(Fig. 2C). On the other hand, for global all-to-all coupling, the
symmetry-breaking transition could only be triggered stochastically
with an increase inN. Therefore, these results suggest that under local
and short-range coupling, as the population grows in size, the PB
shifts its position towards lower αu values. This is likely caused by the
relative change in the effective communication range of the cells from
global to a more local onewith the size increase. The PB shift thereby
enables transition of the system state from an HSS to an IHSS.
Altogether, the analysis renders the number of cells as an effective
bifurcation parameter that in conjunction with subcritical
organisation drives the timing of cellular differentiation.

Reliable proportioning of differentiated cell types is a
dynamical consequence of the sequential ordering of IHSS
solutions
To investigate how the u+/v+ cell-type proportions emerge and are
stabilised as the size of the population increases, we analysed the
IHSS manifestation for N>2 cells in terms of bifurcation structure.
For N=4 cells, the short-range and global coupling are equivalent,

due to the small system size. The bifurcation analysis showed that at
αu=2.3, although forN=2 only themlpHSSwas stable (Fig. 2A), for
N=4 coupled cells there was co-existence of the HSS and IHSS
(Fig. 3A, equivalent to the result in Fig. 2B). The observed IHSS
distribution was 1u+/3v +, with one cell having high- (u+) and three
cells having low-expressing u state (v+), which for increasing αu
values was followed by 2u+/2v +, with two cells in each state, and
3u+/1v +, with three cells with high- and one with low-expressing u
state (blue, purple and red branches in Fig. 3A, respectively). All of
these distributions are associated with stable attractors that emerge
from the same PB. In general, for N globally coupled cells, N−1
different distributions of cells between the u+ and v + cell types are
stable ([k]u+/[N−k]v +, for k ¼ 1;N � 1) (Koseska et al., 2010).
These distributions are always sequentially ordered towards an
increasing proportion of u+ cells for increasing αu values. IHSS
branches with adjacent distributions ([k]u+/[N−k]v + and [k+1]u+/
[N−k−1]v +) overlap, whereas the more dissimilar u+/v+
distributions are separated along the bifurcation parameter domain
(Fig. 3A). Thus, for a given αu, either a single IHSS distribution with

Fig. 3. Reliable cell-type proportions are established through stable IHSS distributions. (A) Bifurcation analysis for N=4 globally/short-range-coupled cells
(inset). Solid lines indicate stable HSS (black) and IHSS (blue, purple and red) branches. Three stable IHSS distributions with increasing u+/v + cell-type
ratios appear sequentially (key). Dashed lines indicate unstable steady states. Dotted lines indicate organisations in parameter space. The grey shaded area
indicates the parameter range of HSS/IHSS co-existence for subcritical organisation. Top: probabilities for visiting IHSS distributions (y-axis) at the respective αu
values, estimated from 200 independent realisations. The initial conditions were randomly drawn from a normal distribution N ðmics; s

2
icsÞ around the

corresponding αu-specificmlp state (μics, σics=0.2μics). (B) u+/v+/mlp cell-type proportions for increasing αu values, when a short-range coupled population ofN=4
(top), N=8 (middle) and N=32 cells (bottom) on a 2×2, 2×4 and 4×8 grid is considered, respectively. The width of each sub-bar within a bar reflects the fraction of
occurrence of the respective u+/v+/mlp proportion in ten independent realisations. Initial conditions were the same as in A (top). Red arrows indicate the
progression of the distribution of stable cell-type proportions with increase of system size (N=4,8,32 cells) for αu=2.3. (C) Temporal evolution of the fraction of u+
cells at each step of a lineage tree under short-range coupling and αu=2.3. Results from 100 independent numerical simulations are shown. Other parameters
are the same as in Fig. 1D.
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distinct cell-type proportions, or adjacent branches with similar
ratios, will be predominantly visited (Fig. 3A, top).
Intrinsic cell-to-cell variability in terms of circuit parameters does

not affect the ordering of IHSS distributions and thereby cell-type
proportioning. This was demonstrated by a bifurcation analysis on a
coupled system of four cells with non-identical αv values (Fig.
S4A). Although in this scenario there are already slightly different
mlp values in each cell, the parameter range over which the IHSS
branches are stable is expanded (Koseska et al., 2009), and the
overlapping intervals between adjacent distribution branches are
reduced (compare Fig. S4Awith Fig. 3A). Thus, the role of cell-to-
cell variability is fundamentally different in coupled multicellular
systems compared with multistable single-cell systems: it does not
cause the symmetry-breaking event, but rather enhances its
manifestation. Overall, these results indicate that the reliable cell-
type proportions that emerge as the system transits to the
differentiated state at a critical population size, are an inherent
property of the distribution of IHSS solutions.
To investigate whether for larger population sizes the u+/v+ cell

type proportions are indeed related to the sequential ordering of
IHSS distributions, we compared the proportions for increasing αu
values at N=4, 8 and 32 short-range coupled cells. Multiple
realisations of the numerical simulations were performed when
starting from initial conditions randomly drawn from a normal
distributionN ðmics; s

2
icsÞwith a mean equal to the αu-specificmlp

state and s.d. σics=0.2μics (Fig. 3B). For N=4, the results were
identical as those obtained from the bifurcation analysis: at αu=2.3,
1u+/3v + proportion was detected, transiting to 2u+/2v + and 3u+/
1v + as αu was increased (Fig. 3B, top), corresponding to the
sequential ordering of the branches and the probabilities for
visiting them (Fig. 3A).
For N=8 short-range coupled cells, only the IHSS solutions

were stable at αu=2.3 (Fig. 3B, middle), showing again that the
differentiation occurs at the critical transition from N=4 to N=8
cells (red arrow in Fig. 3B; as in Fig. 2B). The PB was shifted to a
lower αu value (αu=2.281), thus enabling the differentiation timing
to be realised in a self-organised manner. Furthermore, the u+/v+
cell type proportions were stabilised as the population increased
(Fig. 3B, bottom, for N=32 cells). This shows that for a given
parameter organisation, defined proportions can be reliably
established and reproduced through multiple simulation
realisations. We also corroborated the reliability of the timing
mechanism by estimating the temporal evolution of the fraction of
u+ cells across the different stages of the lineage tree (Fig. 3C).
This showed that differentiation timing at N=8 cells, following the
third cell cycle, was achieved in 94% of the cases, but also, the u+/
v+ cell type proportions were reliably and stably maintained
thereafter. The reliable cell-type proportioning was also
manifested for the three additional coupling scenarios (Fig. 1C).
In these cases, the increase in the proportion of u+ cells with an
increase in αu for N=32 cells is analogous to the progression of
branches in the generic bifurcation analysis (N=4, Fig. 3A),
although the HSS was destabilised at different αu values for each of
them (Fig. S4B-D). The variability between the cell-type
proportions for a fixed αu value is nevertheless with a ≤5% s.d.
For local coupling, specifically, a 50%−50% ratio was maintained
in a large αu interval, indicating that the probability of visiting a
different IHSS manifestation increases only for higher αu values
(Fig. S4C).
Therefore, this analysis showed that although different initial

conditions can lead to different IHSS distributions, in most cases
these are distributions with similar cell-type proportions. Thus, (1)

reliable cell-type proportioning is a result of the sequential ordering
of IHSS solutions in parameter space and (2) cell-cell variability
enhances the manifestation of the identified symmetry breaking
solution.

The IHSS distributions confer robust cell-type proportioning
and mediate its recovery from perturbations
Our demonstration that the proposed symmetry-breaking mechanism
is population-based suggests that robust cell-type proportions would
be generated despite differences in initial conditions, and that they can
be dynamically recovered upon perturbation. To probe the robustness
property, we investigated the influence of different initial conditions
distributions (changing the variance or shifting the mean value) that
determine the initial gene expression states in single cells, as well as
the effect of gene expression noise intensity. The results were
obtained for a population of fixed size, N=32 cells, under the four
distinct coupling types (Fig. 1C), and a fixed αu value before the PB
as before (αu=2.3). Sampling the single-cell initial conditions from a
normal distribution with increasing s.d. around the mlp value
(Fig. 4A, top) produced distributions with reliably conserved u+/v+
cell-type proportions under short-range coupling (Fig. 4A, ratios with
≤8% s.d.). This demonstrates that variance in initial gene expression
at the single-cell level does not majorly affect the differentiation
outcome. Rather, cell types are established in characteristic
proportions within a coupled system, even when starting from
broad distributions of initial conditions. However, between the
different coupling types, different stable u+/v+/mlp proportions were
generated for this fixed αu, in agreement with previously estimated
values (Fig. 3B; Fig. S4B-D): 0:45 for short-range (Fig. 4A), 0.5 for
local (Fig. S5A) and 0:4 for probabilistic distance-based coupling
(Fig. S5G), whereas the HSS remained stable against moderate
perturbations for global coupling (Fig. S5D). Furthermore, stochastic
realisations with a stepwise shift in the initial mean value from high
v-expression to high u-expression state (Fig. 4B, top) also resulted
in reliable cell-type proportions (Fig. 4B; Fig. S5B,E,H). The
proportions were also reliable for simulations when multiplicative
white noise intensity was increased (Fig. 4C; Fig. S5C,F,I, Materials
and Methods). We also observed a manifestation in which, besides
populating u+/v+ states within the IHSS solution, few cells also
populated the mlp state, resembling a chimera-like state (Kuramoto
and Battogtokh, 2002; Abrams and Strogatz, 2004). This was
observed mainly for the probabilistic distance-based coupling (Fig.
S5G-I), and for the short-range coupling in rare instances (Fig. 4A).
As chimera states have been predominantly characterised for systems
of coupled oscillators, an additional study would be required to
dynamically classify these solutions.

We next explored whether this population-based symmetry-
breaking mechanism could also underlie the ability of the early
embryo to re-establish exact cell-type proportions following
perturbations (Martinez Arias et al., 2013). To investigate this, we
performed a numerical experiment in which cells were separated
according to their type after the fourth cycle of the lineage tree (N=8
cells, Fig. 1D), forming two single-type subpopulations of different
sizes that could further continue to grow and divide (Fig. 4D, left
and right). The initial conditions of the two new lineage trees were
therefore not positioned in the vicinity of the stable steady states.
The subpopulation of two coupled cells with high u-expression
reverted to the only stable attractor for this system size: themlpHSS.
However, after two cell cycles (reaching N=8 cells), both
differentiated cell types re-emerged (Fig. 4D, left). The other
subpopulation of N=6 cells with low u-expression initially
transiently revisited the mlp state (attracted and then repelled by
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the unstable saddle-type HSS) before both cell types stably re-
emerged and the population settled in an IHSS during the first cell
cycle (Fig. 4D, right).
The difference in timing between the two cases again points to a

cell-number dependence in the triggering of the symmetry breaking
(Fig. 2B). The cell-type ratios for both subpopulations were
stabilised to a steady value similar to that of the full system before
separation, and differed among the two subpopulations by ∼6%.
This autonomous scaling and regenerating capability of the coupled
system is a direct consequence of the properties of the IHSS
solution: dynamically, it is not possible to stably populate the u+
without populating the v + cell type. Thus, even when cells are
separated such that only the cells of one type remain, the cell

division and the cell-cell communication through which IHSS is
established in the first place, will enable the system to recover both
cell types with reliable ratios.

To confirm that both cell types and their proportions are indeed
generated in a communication-dependent manner, we next
investigated how inhibiting the cell-cell communication would
affect the proportioning. We considered two different simulation
scenarios, by implementing an increasing: (1) inhibition of αs
strength to mimic decreased production of the signalling molecules,
and (2) inhibition of αu,s strength, which effectively uncouples the
dynamics of the intracellular circuit from the extracellular
signalling. For this, αs or αu,s were effectively decreased by given
multiplicative factors (1−sinh,out) and (1−sinh,in), respectively.

Fig. 4. Robustness in cell-type proportioning and plasticity in its re-establishment upon perturbations. (A-C) Cell-type proportions upon increase in the
s.d. around the mlp initial conditions (as a fraction from the mean) (A); a shift in the mean of the distribution (μics) value from high v-expression (μv+) to high

u-expression cell state (μu+), with μics=kμu++(1−k)μv+ for k [ 0;
1
3
;
2
3
; 1

� �
and σics=0.1μics (B); and an increase in the noise intensity (Materials and Methods) (C).

Top: respective perturbations; 1-sigma ellipses of the distributions are depicted. Bottom: proportions from ten independent numerical realisations per
condition are shown, estimated for N=32 short-range coupled cells on a 4×8 grid and organisation before the PB, αu=2.3. (D) Lineage trees generated from
homogeneous sub-populations of differentiated cells, separated at the fourth step of the lineage tree in Fig. 1D (N=8 cells). Left: lineage tree seeded from
N=2 cells that previously had adopted a high u-expression state (u+). Right: lineage tree from the N=6 cells (2×3 grid) that before separation adopted the high
v-expression state (v+). Upper panels show the respective cell-type proportions. Parameters are the same as in Fig. 1D.
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The simulations showed that in the first scenario, decreasing
the production of the signalling molecule results in an increase of
the u+ cells proportions, abruptly transiting to a homogeneous
population of high u-expressing cells at 25%−30% of sinh,out
(Fig. S6A). Decreasing αu,s on the other hand, which decreases the
overall transcription rate of u, reduces u+ cells proportions to
abruptly transit to a homogeneous population of low u-expressing
cells at � 9% of sinh,in (Fig. S6B). The single cells are now weakly
coupled and, for the given parameters, the system is organised in the
monostable low u-expressing state. The lack of robustness in cell-
type proportioning observed under these conditions thus underlines
the importance of population-level coordination in the system.
In summary, the presented results demonstrate that a subcritical

organisation in conjunction with cell division within a
communicating population ensures not only the robustness of the
proportions of differentiated cell types with respect to initial
conditions and noise, but can also enable re-establishment of this
distribution upon perturbation.

IHSS leads to reproducible spatial patterns in growing cell
populations
As the differentiation mechanism described here relies on cell-to-cell
communication, we investigated whether the differentiated cells were
randomly distributed or organised into spatial patterns.We performed
stochastic lineage-tree simulations, with 13 cell cycles as in Fig. 3C,
reaching a grid size of 64×64 cells. The u+/v+/mlp proportions were
estimated from the stable steady states at the end of each cell cycle.
To characterise the spatial distribution of cells, we quantified the
extent of spatial clustering as the cluster radius of the u+ cells.
Thus, for all u+ cells, the fraction of u+ cells in their surroundings
with increasing distance was estimated (Fig. S7). The cluster
radius was thereby the distance at which the fraction of u+ cells
dropped to halfway between the fraction at zero distance (equal to
1), and the global fraction of u+ cells (dashed line in Fig. S7).
To systematically assess how the coupling range, i.e. the extent of

signalling communication, contributes to the formation of patterns
with distinct spatial frequencies, we used deterministic and
probabilistic coupling with different ranges (1-, 2-, 3-, 5-, and 10-
range, Materials and Methods). For the deterministic coupling
schemes, distinct regular spatial patterns were formed, the features of
which were strongly linked with the respective coupling range: local
coupling generated checkerboard-like patterns, short-range coupling
generated regular patterns of small u+ cell clusters (see also Fig. S8A,
Movie 1), whereas stripe-like patterns were observed for increasing
coupling (10-) range (see also Fig. S8B, Movie 2). Example patterns
from the last stage of the lineage tree are shown in Fig. 5A. The
clustering radius in these cases increased with the increase of the
coupling range (Fig. 5B, left). In all the deterministic coupling
scenarios, the patterns and their proportions were reliably reproduced
for independent realisations of the lineage-tree simulations
(Fig. 5C, left).
Interestingly, the spatial frequency of the formed stable patterns

was preserved as the size of the population grew. This can be
particularly exemplified for the case with 10-range coupling, in
which doubling in the number of stripes followed the horizontal cell
division events (Movie 2). This effectively rendered the width of the
stripes, i.e. the u+ cluster radius and the distance between them,
stable across the cycles (Fig. S8B). However, initially, at around the
third cycle, a lower stable fraction of u+ cells was established and
maintained by simple state propagation through cell division, which
resulted in growth of the u+ cluster radius, until the critical system
size was reached (eighth cycle) and a stable stripe-like pattern was

formed (Fig. S8B). The pattern-directed u+ cluster size and cell-type
proportions were further stably maintained. The simulations also
showed that the cell population size at which the transition to the
differentiated state was triggered was also preserved (Fig. S8A-D,
lower left). Even more, the formed patterns and their characteristics
were also preserved for a fixed population size as in the final grid, in
which cells were randomly initialised (Fig. S9A-C).

On the other hand, when probabilistic distance-based coupling of
different ranges was used, the lineage-tree simulations showed
arrangement formation with less regular patterns (Movie 3 for 10-
range coupling). Nevertheless, larger cluster size was again
characteristic for larger communication ranges (Fig. 5B, middle;
Fig. 5D). The proportioning was also reliably achieved over the
different realisations (Fig. 5C, middle), in which the u+ fraction was
maintained mainly by propagating the cell type from mother to
daughter cells during division. Therefore, the u+ cluster radius is
directed by the population growth, but is ultimately constrained by
the communication range (Fig. S8C). That population growth
highly regulated the formed patterns is also reflected through the
formation of random spatial arrangements when populations of
fixed size were randomly initialised (Fig. S9B-D).

Fig. 5. Robust cell-type proportions are correlated with reproducible
spatial patterns. (A) Exemplary spatial patterns for different coupling ranges:
local, short-range, 3-range and 10-range coupling. (B) u+ cluster radius
estimated at the final stable state of the lineage tree (64×64 size) for
deterministic (left), probabilistic (middle) and global all-to-all coupling (right).
Results from 100 independent stochastic realisations per coupling type are
plotted in ascending order. (C) Corresponding u+/v+/mlp cell-type proportions.
Bars are analogous to those in Fig. 3B. (D) Exemplary spatial patterns for
range 1, 3 and 10 probabilistic coupling and global all-to-all coupling.
Parameters are the same as in Fig. 1D.
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The limiting case of these observations is the global all-to-all
coupling scenario, which in most of the cases resulted in the
formation of a single u+ cell-type cluster when population growth
was considered (Fig. 5D, right; Fig. S8D, Movie 4). Such spatial
arrangement is a direct consequence of the daughter cells inheriting
their cell type from the mother cell along the lineage tree. In this
case, the cell-type proportions were maintained globally, and the
states of adjacent cells did not need to readjust to maintain the
respective proportions locally. The relative size of the u+ cluster
with respect to the population size was thereby only constrained by
the cell type proportions. In contrast, for a fixed population size and
starting from random initial conditions, a random arrangement of
cell types across the grid was observed (Fig. S9D). Thus, in systems
with global all-to-all or probabilistic coupling, the growing of the
population is crucial for the observed spatial organisation.
Therefore, these results suggest that the IHSS not only represents

a dynamical mechanism for generating stable proportions of
differentiated cell types, but also enables their reproducible
arrangement in regular patterns, the frequency of which is in turn
constrained by the communication range.

DISCUSSION
We have argued here that intercellular communication, an integral
process in developing mammalian embryos (Saiz et al., 2020;
Lorthongpanich et al., 2012), gives rise to mutually exclusive
differentiated cell types (Koseska and Bastiaens, 2017) as the
population grows in size. We demonstrated that both the
homogeneous undifferentiated and heterogeneous differentiated cell
types, as well as the transition between them, can be described without
changing the model parameters. This is valid when isolated cells are
characterised with monostable steady state or oscillatory gene
expression dynamics. The proposed simple but scalable mechanism
enables robust cell-type proportions to emerge autonomously, but also
describes their reliable recovery upon perturbation. This population-
based heterogeneous solution is thereby distinct from the concept that
single-cell multistability together with cell-to-cell variability are
necessary to describe how differentiated cell types emerge. Such a
single-cell scenario does not provide a mechanism for robust
proportioning between differentiated cell types, but rather relies on
tight regulation of initial states and signalling.
These two conceptual views have been recently subjected to an

experimental test (Raina et al., 2020 preprint) using an in vitro
model for robust proportioning of epiblast and primitive
endoderm-like cell types in mouse embryonic stem cells.
Starting from a broad range of initial gene expression profiles,
the wild-type populations achieved robust epiblast and primitive
endoderm cell-type proportions, in contrast to a communication-
deficient mutant. The experiments also showed that the
proportions could be reliably re-established in the wild type
upon disproportionate removal of one cell type, in line with our
predictions. Therefore, these observations corroborate the
proposed hypothesis that balancing between robustness of
differentiated cell-type proportions, while maintaining the
plasticity of the system, such that it can recover to the exact
proportioning upon perturbation, requires a population-based
symmetry-breaking mechanism as realised by the IHSS.
Important insights regarding symmetry-breaking mechanisms

unquestionably came from Turing’s seminal work (Turing, 1952),
and have been widely explored to describe the emergence of spatial
organisation during development (Raspopovic et al., 2014;
Economou et al., 2012). The IHSS similarly provides a dynamical
transition from homogeneous mlp to a heterogeneous state of

differentiated cell types within a population. Even more, the IHSS
enables a reproducible spatial arrangement of the two differentiated
cell types for a broad range of coupling scenarios, irrespective of the
initial conditions. We have demonstrated that the formed pattern
type is tightly related to the coupling range and the specified stable
IHSS distribution. The spatial patterns identified in our simulations
are broadly consistent with experimentally observed patterns in cell
differentiation paradigms that could potentially be governed by an
IHSS. Cell differentiation in the inner cell mass (ICM), for example,
is triggered by a short-range communication signal (Raina et al.,
2020 preprint). In mouse embryos and ICM organoids, the two cell
types differentiating from the ICM form small clusters (Mathew
et al., 2019; Fischer et al., 2020), similar to what we obtain in
simulations with short-range coupling.

What is unique about the bifurcation transition presented here is
not only the reliability of the differentiated cell type proportions and
spatial organisation, but also the timing of the differentiation event
that emerges as a result. The mechanism of differentiation timing is
a unique property for organisation of the parameters of the system
before the subcritical PB. A similar mechanism of population-based
symmetry breaking, but via supercritical PB, has been previously
suggested for the Delta-Notch lateral inhibition model, when the
strength of the local interaction between the two cells is varied
(Ferrell, 2012). However, in this case, the differentiation timing
cannot be realised and the manifestation of only a specific cell-type
proportioning with likely a spatial checkerboard-like pattern can be
explained. A conceptually equivalent model to Delta-Notch has
been recently described for cell differentiation in the mouse
blastocyst, by relying on non-autonomous switching of gene
expression circuits at a specific size of the population to
recapitulate the emergence of differentiated cell types (Saiz et al.,
2020). Thereby, the issue of self-organised differentiation timing
characteristic for early embryo development has not been addressed.

The IHSS mechanism proposed here can be also taken one step
further. An extension of the proposed mechanism can be envisioned
that describes pluripotency and multipotency of stem cells.
Conceptually, this would correspond to a finite cascade of
subsequent PBs occurring simultaneously on both branches of the
existing IHSS solutions (Zakharova et al., 2013; van Kekem and
Sterk, 2019). IHSS therefore represents a cooperative dynamical
mechanism through which a growing homogeneous cell population
can break the symmetry, a prerequisite for novel information
regarding different cellular types to emerge. Organisation in the
vicinity of this dynamical transition allows the comprehensive
capture of not only the differentiation timing, but also how
robustness and accuracy during development are generated.

MATERIALS AND METHODS
Modelling a generic cell-cell communication system
To model the coupled system (Eqn 1), single cells were distributed spatially
on a regular two-dimensional lattice, the dimensions of which are specified
throughout the figures. The cells were coupled through paracrine signalling
communication, by secreting and sensing the signalling molecule s within a
certain distance. Four different communication ranges, R, were mainly
considered, forming distinct network couplings (Fig. 1C): globally
connected network (all-to-all communication, R=∞); locally connected
network (cells communicate only with adjacent cells on the lattice, R=1, i.e.
within a unit lattice distance); short-range connected network (cells
communicate with cells within distance R=2, i.e. with adjacent cells and
second-adjacent cells on the lattice); and probabilistic distance-based
coupling [cells establish communication with other cells with probability
e�ðd

2=2R2Þ, where d is the Euclidean cell-cell distance and R=1 in the default
case]. No-flux or insulation boundary conditions on the lattices were used,
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hence cells near the boundaries had fewer communicating neighbours, as
exemplified by the schematic for short-range coupling on a 2×4 grid in
Fig. 1C. In all cases, si;ext ¼ ð1=ðjNðiÞj þ 1ÞÞP j[ðNðiÞ<iÞ sj is the external
amount of signal perceived by cell i, depicted as the averaged secreted signal
from its communicating neighbourhood N(i) (including itself ) at every time
instance, thus assuming an immediate mixing of s.
Each gene regulation term takes the renormalised Hill-type function form,

xn/(1+xn) for activation or 1/(1+xn) for repression, and is therefore sensitive
to values of the order of 1 of the transcription factor input x. The
corresponding maximal transcription rates are αu, αv, αs and αu,s, whereas β,
γ, δ and η are the Hill coefficients. The reaction rates are globally scaled by
λ. Values of αu=2.3, αv=3.5, αs=2, αu,s=1, β=γ=δ=η=2 and λ=50 were used
throughout the study, unless noted otherwise. For the case of non-identical
cells (Fig. S4A), the αv parameter was uniformly varied between the cells in
the range from −1% to 1% of its default value.
For the stochastic simulations (Fig. 1D, Fig. 2B, Fig. 3C, Fig. 4B-D,

Fig. 5; Fig. S5B,C,E,F,H,I, Figs S8, S9, Movies 1-4), a stochastic
differential equation model using Eqn 1 was constructed by adding a
multiplicative noise σXΔWt, where ΔWt is the Wiener process term, i.e. a
normally distributed random variable with zero mean and variance Δt,
whereas X is a state variable (X∈{u1, v1, s1,…, uN, vN, sN}). The model was
solved with Δt=0.01 using the Milstein method (Mil’shtein, 1974), by
adding a second-order approximation term 0:5s2X ðDW 2

t � DtÞ. In the cases
when the noise intensity σ was not varied, it was set to 0.1.
To discriminate between the multilineage-primed- (mlp), u-positive (u+)

or v-positive (v+) cell types for a given realisation, each marginal cell state
vector (ui, vi, si) within the converged state of the system (IHSS or HSS) was
individually categorised as one of three cell types and the three-term u+/v+/
mlp ratio (proportions) in the population was subsequently calculated. The
reference mlp state vector (umlp, vmlp, smlp) was predetermined for a given
parameter set, i.e. for a specific value of αu, from the respective steady-state
value of the 1-cell monostable system realisation (as in Fig. S2A), as the
bifurcation analysis demonstrated that the mlp HSS for single-cell and cell-
to-cell coupled systems is equivalent. Every marginal cell state (ui, vi, si) for
i ¼ 1;N of a deterministic realisation was categorised asmlp cell type when
its value fell within 1% around the predetermined mlp state vector, whereas
cell states whose ui/vi ratio was larger than the umlp/vmlp ratio of themlp state
were assigned u+, and otherwise v+ cell types. Transient states during the
stochastic realisations in Fig. 1D, Fig. 4D and Movies 1-4 were categorised
as mlp type if they fell within 5% around the deterministic mlp state. End
states of all stochastic realisations were allowed to converge to their
deterministic attractor state in noise-free fashion before categorising (with
1% s.d. around themlp state), as in Fig. 3C, Fig. 4B,C, Fig. 5; Figs S5B,C,E,
F,H,I and Figs S8, S9.
Initial conditions for all cells and variables were independently randomly

sampled from a normal distribution N ðmics; s
2
icsÞ, typically around the

corresponding αu-specific mlp state vector (umlp, vmlp, smlp) as the mean
(μics), and with σics=0.1μics or σics=0.2μics, as denoted in the respective
figures. αu-specific mlp states correspond to the steady-state values in the
single-cell system (Fig. S2A). For Fig. 4A and Fig. S5A,D,G, σics was
increasing from 0 to 50% of the respectivemlp value (μmlp). For Fig. 4B and
Fig. S5B,E,H, μics values were shifted stepwise along the line segment from
a typical v + cell state (μv+) towards a typical u+ cell state (μu+), using

μics=kμu++(1−k)μv+ for k [ 0;
1

3
;
2

3
; 1

� �
, and with σics=0.1μics.

Finally, for the results from ten repetitions, in which the identified IHSSs
with equivalent proportions were grouped, each proportion was plotted as a
stacked sub-bar within a bar plot, the width of which corresponded to the
fraction of occurrence of that proportion in the simulations. Proportions were
plotted in ascending order of their u+ cell-type fractions. The results from
100 repetitions (Fig. 5; Fig. S9) were plotted equivalently, without vertical
lines separating the sub-bars of the proportions.

Estimating IHSSdistributions as a function of the numberof cells
In Fig. 2B, the different branches of the IHSS (and the proportions of cells in
them) were estimated by analogy to Fig. 2A, but here using the number of
cells as a bifurcation parameter. For this, exhaustive scanning was
performed to locate the different fixed point attractors in the state space

for each N. The scanning process involved 20 repetitive executions with
different noise intensities (varying from 0 to 0.3). Each repetition consisted
of 30 alternating cycles of stochastic execution (for exploration), followed
by deterministic execution (for convergence to an attractor), when the
reached state was tested for stability and subsequently recorded. For every
distinctly detected attractor, the u+/v+/mlp proportion of cells was estimated,
and attractors with equivalent proportions were grouped. The average u
values were calculated separately for both u+ and v + cell types for each
proportion, and plotted as branches (u+ and v + cells for IHSS, or mlp cells
for HSS; colour-coding as in Fig. 2A), in analogy with the bifurcation
diagrams in Fig. 2A and Fig. 3A. Chimera-like states were omitted from the
diagram for simplicity.

Lineage tree generation
The generation of lineage trees was performed using stochastic simulations
in which the system doubles in size at regular time intervals, starting from a
single-cell system (Fig. 1D), unless otherwise specified (Fig. 4D). At every
cell division, the final state of the mother cell is passed on to the initial
conditions of the daughter cells. Cell divisions occur along the horizontal
and vertical axes on the grid alternately, sequentially yielding lattices of
1×1, 1×2, 2×2, 2×4, 4×4, 4×8, 8×8, etc., as demonstrated in Fig. S1. Cellular
states were categorised in every time instance to plot the single-cell temporal
evolutions in the lineage trees (Fig. 1D, Fig. 4D). Furthermore, cellular
proportions in the system were estimated from those values, and their
temporal evolution was shown in the panels above the lineage trees. The
fraction of u+ cells was plotted to yield Fig. 3C, Fig. 5C, Fig. S8 (lower left
plots) and Fig. S9C.
In the cell-type separation case (Fig. 4D), the states of the cells at the end

of the fourth cycle (from Fig. 1D) were categorised and the differentiated
cells were then separated: u+ cells were given as seeds to a new lineage tree
(1×2 grid), whereas v + cells were seeds for a separate one (2×3 grid).
Following this, multiple cell divisions were again performed and the cell
proportions were estimated.

Analysis of spatial patterns
To characterise the spatial organisation of the system, lineage tree
simulations with an extended duration of 13 cell cycles were performed,
reaching a final size of a 64×64 grid. Both for deterministic and probabilistic
distance-based coupling, communication with ranges of 1, 2, 3, 5 and 10
were considered. Additionally, global coupling was also used.
Spatial organisations were analysed at the end of each cell cycle, after the

collective state reaches a steady state in a noise-free fashion. Fractions of u+/v+/
mlp cells were quantified for the final spatial configuration (64×64 grid), and
the results from 100 different repetitions were grouped as stacked bars.
Moreover, the fractions of u+ cells were quantified for the end state of each cell
cycle to track the development of the lineage tree (Fig. 3C; Fig. S8). The
percentage of the numerical simulation realisations that showed symmetry
breaking following a certain cell division cycle are also denoted on the plots
(Fig. S8, lower left plots). Histograms depicting the proportion of numerical
simulation realisations upon which a specific u+ cell-type fraction was reached
in the final state of the lineage tree are also shown (Fig. S8, lower left plots).
To characterise the spatial clustering, the average u+ cluster radius was

estimated from the spatial configurations by calculating for all u+ cells the
fraction of u+ cells in the surround within increasing distance (Fig. S7). The
cluster radius is therefore the distance by which the fraction of u+ cells drops
to halfway between the fraction at zero distance (equal to 1), and the global
fraction of u+ cells (dashed lines in Fig. S7), which is analogous to
calculating half-life from exponential decay. The results from the
realisations were plotted as single points in ascending order for each
coupling range type in Fig. 5B and Fig. S9B. As with the fraction of u+ cells,
the u+ cluster radius was also tracked over the development of the lineage
tree, with a histogram being plotted for the final state as well. Both measures
were also estimated when considering a population with a fixed size (64×64
grid), and starting from random initial conditions (μics=μmlp, σics=0.1μics)
(Fig. S9).
The lineage tree simulations shown in Movies 1-4 were performed with a

reduced number of time points (2000) per cell cycle to yield shorter movies.
Spatial configurations with stochastic categorisation of the cell types were
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saved for every tenth time point, and the saved frames were combined in a
movie of 60 frames per second.

Decreasing cell-cell communication strength
For Fig. S6A, deterministic simulations were performed for a fixed
population size on a 4×8 grid, short-range coupling (other parameters as in
Fig. 1D) and starting from random initial conditions (μics=μmlp, σics=0.1μics).
To model the decreased cell-cell communication strength, an inhibitory
multiplicative term (1−sinh,out), where sinh,out∈{0, 0.05, 0.1, 0.15, 0.2, 0.25,
0.3}, was introduced to the first term in the equation for s in Eqn 1. This
enabled the effective reduction of the production strength of s by a given
percentage. The corresponding results from ten independent realisations for
each condition are presented in Fig. S6A.
Similarly, for Fig. S6B, an inhibitory multiplicative term (1−sinh,in),

where sinh,in∈{0, 0.0153, 0.0307, 0.046, 0.0613, 0.0767, 0.092}, was
introduced to the second term in the equation for u in Eqn 1. Other settings
were the same as for Fig. S6A.

Additional cell-cell communication systems exhibiting
population-based symmetry breaking
To demonstrate the generality of the population-based symmetry-breaking
mechanism via a PB, we also tested several minimal network topologies
with effective negative feedback coupling on u via s (Fig. S3A-C). Their
dynamics were described using the following system of equations:

1

l

dui
dt
¼au

1

1þ vbi
þ au;s

1

1þ shi;ext
� ui

1

l

dvi
dt
¼av

1

1þ ugi
þ av;s

shi;ext
1þ shi;ext

� vi

1

l

dsi
dt
¼as

udi
1þ udi

þ as;v
1

1þ vdi
� si:

ð2Þ

For Fig. S3A, αu,s=0, αs=1, αv,s=1, αs,v=0 and αv=2.75. For Fig. S3B,
αu,s=0.5, αs=0, αv,s=0, αs,v=3 and αv=3. For Fig. S3C, αu,s=0, αs=0, αv,s=1,
αs,v=2 and αv=3.

Paradigmatic model mimicking the vertebrate neurogenesis
process
It has been previously demonstrated that the presence of time delays in
models of lateral inhibition can result in significant oscillatory transients
before patterned steady states are reached. The impact of local feedback
loops in a model of lateral inhibition based on the Notch signalling pathway,
elucidating the roles of intracellular and intercellular delays in controlling
the overall system behaviour, has also been proposed (Momiji and Monk,
2009). Here, we aimed to understand whether population-based PB can
provide the dynamical background behind the observed symmetry-breaking
phenomenon. As our aim was to demonstrate the validity of this concept, we
omitted the molecular details of the Notch pathway example and modelled a
generic case in which the gene expression dynamics in each cell were
characterised by oscillatory behaviour, whereas intercellular communication
between the N cells was realised in a global manner, for simplicity (N=2,
Fig. S3D). The dynamics of the system were therefore described as:

dpi
dt
¼ap

1

1þ qbi
þ a p;r

rhi
1þ rhi

� pi

dqi
dt
¼aq

1

1þ pgi
� qi

dri
dt
¼eðar

1

1þ pgi
� riÞ þ 2dðri;ext � riÞ

dri;ext
dt
¼ de

N
Sjðrj � ri;extÞ:

ð3Þ

Here, p and q are two genes that mutually inhibit the expression of each
other, r controls the production of the signalling molecule, the extracellular
concentration of which is denoted as rext. This system has been demonstrated

to exhibit synchronised oscillations in a population of communicating cells
(Kuznetsov et al., 2004; Koseska et al., 2007). The parameters are as
follows: αq=5, αp,r=1, αr=4, β=2, γ=2, η=2, ε=0.01, d=0.008 and de=1.

The numerical bifurcation analysis was performed using the XPP/AUTO
software (http://www.math.pitt.edu/∼bard/xpp/xpp.html). All simulations
were performed using custom-made code in MATLAB (MATLAB and
Statistics Toolbox Release R2020b, MathWorks).
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ABSTRACT

BACKGROUND: Mammalian reproduction requires the fusion of two specialized cells: an oocyte and a sperm. In addition to produc-
ing gametes, the reproductive system also provides the environment for the appropriate development of the embryo. Deciphering
the reproductive system requires understanding the functions of each cell type and cell–cell interactions. Recent single-cell omics
technologies have provided insights into the gene regulatory network in discrete cellular populations of both the male and female re-
productive systems. However, these approaches cannot examine how the cellular states of the gametes or embryos are regulated
through their interactions with neighboring somatic cells in the native tissue environment owing to tissue disassociations. Emerging
spatial omics technologies address this challenge by preserving the spatial context of the cells to be profiled. These technologies hold
the potential to revolutionize our understanding of mammalian reproduction.

OBJECTIVE AND RATIONALE: We aim to review the state-of-the-art spatial transcriptomics (ST) technologies with a focus on
highlighting the novel biological insights that they have helped to reveal about the mammalian reproductive systems in the context
of gametogenesis, embryogenesis, and reproductive pathologies. We also aim to discuss the current challenges of applying ST tech-
nologies in reproductive research and provide a sneak peek at what the field of spatial omics can offer for the reproduction commu-
nity in the years to come.

SEARCH METHODS: The PubMed database was used in the search for peer-reviewed research articles and reviews using combina-
tions of the following terms: ‘spatial omics’, ‘fertility’, ‘reproduction’, ‘gametogenesis’, ‘embryogenesis’, ‘reproductive cancer’, ‘spatial

GRAPHICAL ABSTRACT

Applications of spatial transcriptomics technologies in mammalian reproductive systems in the context of gametogenesis, embryogenesis, and
reproductive pathologies.
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transcriptomics’, ‘spermatogenesis’, ‘ovary’, ‘uterus’, ‘cervix’, ‘testis’, and other keywords related to the subject area. All relevant pub-
lications until April 2023 were critically evaluated and discussed.

OUTCOMES: First, an overview of the ST technologies that have been applied to studying the reproductive systems was provided.
The basic design principles and the advantages and limitations of these technologies were discussed and tabulated to serve as a
guide for researchers to choose the best-suited technologies for their own research. Second, novel biological insights into mamma-
lian reproduction, especially human reproduction revealed by ST analyses, were comprehensively reviewed. Three major themes
were discussed. The first theme focuses on genes with non-random spatial expression patterns with specialized functions in multi-
ple reproductive systems; The second theme centers around functionally interacting cell types which are often found to be spatially
clustered in the reproductive tissues; and the thrid theme discusses pathological states in reproductive systems which are often as-
sociated with unique cellular microenvironments. Finally, current experimental and computational challenges of applying ST tech-
nologies to studying mammalian reproduction were highlighted, and potential solutions to tackle these challenges were provided.
Future directions in the development of spatial omics technologies and how they will benefit the field of human reproduction were
discussed, including the capture of cellular and tissue dynamics, multi-modal molecular profiling, and spatial characterization of
gene perturbations.

WIDER IMPLICATIONS: Like single-cell technologies, spatial omics technologies hold tremendous potential for providing significant
and novel insights into mammalian reproduction. Our review summarizes these novel biological insights that ST technologies have
provided while shedding light on what is yet to come. Our review provides reproductive biologists and clinicians with a much-
needed update on the state of art of ST technologies. It may also facilitate the adoption of cutting-edge spatial technologies in both
basic and clinical reproductive research.

Keywords: spatial transcriptomics / reproduction / gametogenesis / pregnancy / embryogenesis / cancer

Introduction
Reproduction ensures the transmission of genetic and epigenetic
information to the next generation and the continuity of species.
The maintenance of the reproductive systems, the generation of
gametes, and embryonic development are some of the central fo-
cuses of reproductive biology. A deep understanding of mamma-
lian reproduction could facilitate the diagnosis and treatment of
infertility, cancer, and other reproductive pathologies, as well as
the development of contraceptives.

Mammalian reproduction is regulated by numerous biological
pathways and involves many cell types. For example, the devel-
opment of gametes is a highly regulated process, which includes,
but is not limited to, chromatin remodeling, epigenetic reprog-
ramming, cell cycle regulation, meiosis, and cell migration
(Marston and Amon, 2004; Richardson and Lehmann, 2010;
Yosefzon et al., 2017; Cabot and Cabot, 2018; Larose et al., 2019;
Fang et al., 2022). It also requires cellular and molecular interac-
tions between developing gametes and surrounding somatic cell
types (Wassarman, 2002; Mruk and Cheng, 2004; Gershon et al.,
2008; Hofmann and McBeath, 2022). Deciphering such complexity
requires technologies capable of characterizing molecular and
cellular processes at scale. While recent single-cell technologies
offer a high throughput solution (Vitak et al., 2017; Wang et al.,
2018b, 2019, 2021; Green et al., 2018; Guo et al., 2018; Argelaguet
et al., 2019; Ferrero et al., 2019; McGinnis et al., 2019; Zhao et al.,
2020; Cheung et al., 2021; Li et al., 2018, 2021; Mittnenzweig et al.,
2021; Yan et al., 2021; Zhang et al., 2021; Garcia-Alonso et al.,
2022), they require tissue dissociation, which results in the loss of
spatial context and significant cellular information such as cell–
cell and cell–extracellular matrix interactions.

Spatial transcriptomics (ST) technologies have emerged as
tools that can not only provide the information on the abundance
of mRNA molecules in the cells but also capture their spatial
locations within the tissue (Marx, 2021; Rao et al., 2021; Tian et al.,
2023). These technologies range from laser capture microdissec-
tion (LCM), in situ hybridization (ISH) and in situ sequencing (ISS)
to solid phase-based capturing technologies (Marx, 2021; Rao
et al., 2021; Tian et al., 2023). Together, they play a crucial role in
exploring the spatial distribution of RNA, the spatial location of
cell populations, and cell–cell interactions. In this review, we in-
troduce major ST technologies that have been applied to

mammalian reproductive systems, discuss in detail the biological
insights that have been revealed by studies using ST, and offer an
outlook for the future of ST technologies and how they can fur-
ther benefit the field of reproductive biology in the near future.

Overview of ST technologies
ST technologies can be primarily categorized into two classes
based on their design principles. The first class relies on the
imaging of pre-determined mRNA targets. These targeted
approaches include ISH-based methods and ISS-based methods.
The second class of ST technologies includes unbiased
approaches that build on spatial isolation/capture of RNA mole-
cules followed by next-generation sequencing (NGS). For readers
who are interested in the current landscape of ST technologies,
we have compiled a list of representative ST technologies in
Table 1. For readers who are interested in learning about compu-
tational approaches to analyze ST data, we recommend these ex-
cellent reviews (Dries et al., 2021; Longo et al., 2021; Zeng et al.,
2022). In the next two sections, we focus on ST technologies that
have been applied to the reproductive systems.

Targeted approaches
The ISH method visualizes the target molecules in tissue sections
by using imaging probes to sequentially hybridize the targets.
Representative techniques include single-molecule fluorescence
in situ hybridization (smFISH) (Femino et al., 1998), sequential
single-molecule FISH (seqFISH) (Lubeck et al., 2014), and multi-
plexed error-robust fluorescence in situ hybridization (MERFISH)
(Chen et al., 2015) (Fig. 1A).

In smFISH, multiple fluorescent probes target specifically
complementary sites of an individual mRNA to generate high-
intensity signals for visualization. This methodology accurately
quantifies and visualizes the expression of RNA molecules within
the cells. However, owing to a limited number of available fluo-
rescent channels, multiple RNA targets cannot be measured si-
multaneously. To overcome this limitation, a technology that
combines the smFISH technique with combinatorial labeling was
developed. This technology, termed seqFISH (Lubeck et al., 2014),
decodes mRNAs by sequential rounds of hybridization, imaging,
and probe stripping. Specifically, during each round of hybridiza-
tion, each transcript labeled by FISH probes with a single type of
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Table 1. A list of representative spatial transcriptomics technologies.

TARGETED APPROACHES

In situ hybridization (ISH)

Year Methods Authors Features Number of targets Spatial resolution Limitations Estimated cost*

1998 smFISH
(Femino
et al., 1998)

Andrea M.
Femino

Multiple oligonucleotide probes
hybridize with the same tran-
script.

4–5 targets Subcellular reso-
lution

The spectral overlap limits the
simultaneous detection of
multiple transcripts.

�$120/sample; Microscope
needed.

2014 seqFISH
(Lubeck
et al., 2014)

Eric Lubeck
et al.

The mRNA molecules are bar-
coded by sequential rounds
of hybridization, imaging,
and probe stripping.

Dozens of targets
within individual
cell

Subcellular reso-
lution

Complex experimental setup:
data analysis is challenging.

Custom microfluidics and flow
cell: �$5000; consumable:
�$500/sample; microscope
needed.

2015 MERFISH
(Chen et al.,
2015)

Kok Hao Chen
et al.

Using the binary words of modi-
fied Hamming code to encode
the RNA molecules.

�100–1000 genes
within individual
cell

Subcellular reso-
lution

Costly instrument Commercial Vizgen MERSCOPE
Instrument: �$300 000; consum-
able: �$600/sample.

2019 MERFISH (Xia
et al., 2019)

Chenglong Xia
et al.

Enhanced throughput of the
original MERFISH.

�10 000 genes
within individual
cell

Subcellular reso-
lution

Complex experimental setup;
data analysis is challenging.

Custom microfluidics and flow
cell: �$5000; consumable:
�$500/sample; microscope
needed.

2019 seqFISHþ (Eng
et al., 2019)

Chee-Huat
Linus Eng
et al.

Using 60 ‘pseudocolor’ channels
to dilute mRNA molecules.

�10 000 within indi-
vidual cell

Sub-diffraction
limit resolution

Complex experimental setup;
data analysis is challenging.

Custom microfluidics and flow
cell: �$5000; consumable:
�$600/sample. microscope
needed.

2019 GeoMix
(Nanostring,
2019)

Nanostring Based on probes linked to
indexing oligo barcodes via a
photocleavable linker.

A few hundred
genes

Single-cell resolu-
tion

Costly instrument Commercial GeoMix instrument:
�$290 000; consumable: �$500/
sample. Additional NGS re-
quired.

In situ sequencing (ISS)

Year Methods Authors Features Number of targets Spatial resolution Limitations

2013 ISS (Ke et al.,
2013)

Rongqin Ke
et al.

Based on padlock probes, RCA,
and sequencing-by-ligation
chemistry.

256 targets within a
single cell

Subcellular reso-
lution

Laborious and low efficiency Commercial microfluidics and
flow cell: �$5000; consumable:
�$500/sample. Microscope
needed.

2014 FISSEQ (Lee
et al., 2014)

Je Hyuk Lee
et al.

RNA is reverse transcribed with
tagged random hexamers;
RCA; SOLiD sequencing

Entire transcriptome Subcellular reso-
lution

Low sequencing depth; time-
consuming protocol; SOLiD
sequencing reagents have
been discontinued

Commercial microfluidics and
flow cell: �$5000; consumable:
�$500/sample. Microscope
needed.

2018 BaristaSeq
(Chen et al.,
2018)

Xiaoyin Chen
et al.

Based on padlock probes and
RCA; using in situ barcode se-
quencing compatible with
Illumina sequencing chemis-
try

Entire transcriptome Subcellular reso-
lution

Low sequencing depth Custom microfluidics and flow
cell: �$5000; consumable:
�$600/sample. Microscope
needed.

2018 STARmap
(Wang et al.,
2018a)

Xiao Wang
et al.

Based on SNAIL probes, RCA,
and fluorescent in situ se-
quencing

Detecting �1000
transcripts in a
cell

Subcellular reso-
lution

Complex experimental setup;
data analysis is challenging.

Custom microfluidics and flow
cell: �$5000; consumable:
�$600/sample. Microscope
needed.

2021 ExSeq (Alon
et al., 2021)

Shahar Alon
et al.

Based on expansion microscopy 3039 genes Nanoscale resolu-
tion

Complex experimental setup;
data analysis is challenging.

Custom microfluidics and flow
cell: �$5000; consumable:
�$600/sample. Microscope
needed.
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Table 1. (continued)

In situ sequencing (ISS)

Year Methods Authors Features Number of targets Spatial resolution Limitations

2023 Xenium (10�
Genomics,
2023)

10� Genomics Padlock probe-based RCA and
fluorescent in situ sequencing.

300 genes Subcellular reso-
lution

Costly instrument Commercial Xenium instrument:
�$350 000; consumable:
�$1000/sample.

UNBIASED APPROACHES

Year Methods First author Features Number of targets Spatial resolution Limitations Estimated cost

1996 LCM (Emmert-
Buck et al.,
1996)

Michael R.
Emmert-
Buck et al.

Using laser to accurately obtain
target cell subgroups or single
cells

Entire transcriptome Single-cell resolu-
tion

Low throughput; time-consum-
ing protocol

Commercial LCM instrument:
�$150 000; consumable: �$100/
sample; additional NGS re-
quired.

2016 Spatial
Transcripto-
mics (Ståhl
et al., 2016)

Patrik L. Ståhl
et al.

Capturing RNA using spatially
indexed poly(dT) oligo arrays.

Entire transcriptome 100 mm Low sensitivity for low abun-
dant transcripts; low spatial
resolution

�$650/sample; additional NGS re-
quired.

2017 GEO-seq (Chen
et al., 2017)

Jun Chen et al. Combining LCM with single-cell
RNA-seq

Entire transcriptome Single-cell resolu-
tion

Low throughput; time-consum-
ing protocol

Commercial LCM instrument:
�$150 000; consumable:
�$1000/sample; additional NGS
required.

2019 Visium (10�
Genomics,
2019)

10� Genomics Based on the spatial transcrip-
tomics technology

Entire transcriptome �55 lm Low spatial resolution �$3000/sample; additional NGS re-
quired.

2019 Slide-seq
(Rodriques
et al., 2019)

Samuel G.
Rodriques
et al.

Capturing mRNA using spatially
indexed 10-lm-diameter
beads

Entire transcriptome 10 lm Low sensitivity for low abun-
dant transcripts

�$1000/sample; additional NGS re-
quired.

2020 DBiT-seq (Liu
et al., 2020)

Yang Liu et al. Using microfluidic chip and
DNA barcodes to spatially in-
dex molecules in the tissue

Entire transcriptome 10 lm Requiring a custom microfluidic
device

Custom microfluidics: �$7000;
consumable: �$1400/sample;
additional NGS required.

2021 Slide-seqV2
(Stickels
et al., 2021)

Robert R.
Stickels et al.

Enhanced capture efficiency of
the original Slide-seq.

Entire transcriptome 10 lm Cannot be applied to FFPE tis-
sue blocks

Commercial Curio Seeker product
line: �$1300/sample; additional
NGS required.

2021 Seq-Scope
(Cho et al.,
2021)

Chun-Seok
Cho et al.

Repurposing of an illumina se-
quencing flow cell.

Entire transcriptome �0.5–0.8 lm Exposing the cluster surface of
the flow cell is challenging.

�$1500/sample; additional NGS re-
quired.

2021 Stereo-seq
(Chen et al.,
2022)

Ao Chen et al. Using DNA nanoball-patterned
chips to capture RNA mole-
cules

Entire transcriptome �220 nm Low sensitivity for low abun-
dant transcripts.

Commercial BGI Platform: �$1500/
sample; additional NGS re-
quired.

2021 Sci-Space
(Srivatsan
et al., 2021)

Sanjay R.
Srivatsan
et al.

Using unmodified DNA oligos to
label nuclei

Entire transcriptome Single-cell resolu-
tion

Cannot capture cytoplasmic
RNA; dropout during nucleus
collection.

�$5000/sample; additional NGS re-
quired.

2022 Pixel-seq (Fu
et al., 2022)

Xiaona-n Fu
et al.

Polony gel stamping enables
scalable replication of DNA
cluster arrays

Entire transcriptome �1 lm Require specialized expertise in
gel fabrication and transfer.

�$105/sample; additional NGS re-
quired.

* Please note that this is only a rough estimate. Many of the technologies have not yet been commercialized and, therefore, the accurate information about their costs is not fully available. Furthermore, the actual cost of an
experiment can vary significantly depending on experimental designs (e.g. tissue type and size, number of cells in a tissue slice, number of genes profiled, and pre-designed versus custom gene panels). Additional costs of
obtaining a microscope for imaging-based technologies and next-generation sequencing for array-based technologies are not included in our calculation.
BaristaSeq: barcode in situ targeted sequencing; DBiT-seq: deterministic barcoding in tissue for spatial omics sequencing; FFPE: formalin fixed paraffin embedded; FISSEQ: fluorescent in situ sequencing; GEO-seq: geographical
position sequencing; ISH: in situ hybridization; ISS: in situ sequencing; LCM: laser capture microdissection; MERFISH: multiplexed error-robust fluorescence in situ hybridization; NGS: next-generation sequencing; RCA: rolling
circle amplification; smFISH: single-molecule fluorescence in situ hybridization; STARmap: spatially resolved transcript amplicon readout mapping; Stereo-seq: spatial enhanced resolution omics-sequencing.
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fluorophore is visualized, and then, the FISH probes are removed
by treatment with DNase. In a subsequent round, the same tran-
script is hybridized with the same FISH probes but now labeled
with a different dye. Thus, four dyes and eight rounds of hybridi-
zation can theoretically cover the entire transcriptome of the
mouse or the human (48 ¼ 65 536). However, global profiling of
hundreds or thousands of mRNA is hindered by optical crowding.
To overcome this challenge, seqFISHþ was developed (Eng et al.,
2019). seqFISHþ expands the barcode base palette from 4 to 5 col-
ors to 60 pseudocolors per image cycle, resulting in the detection
of �10 000 genes per cell by repeating the cycle of pseudocolor
imaging only four times (Fig. 1A, left).

Another ISH-based method is MERFISH (Chen et al., 2015),
which uses the modified Hamming code to encode the RNA mole-
cules (Fig. 1A, right). Using a two-step labeling scheme, MERFISH
dramatically decreases the probe hybridization time and reduces
the error rate of barcode identification. Furthermore, the detec-
tion efficiency of RNA molecules by MERFISH can be increased
through a combination with expansion microscopy, which effec-
tively increases the distances between neighboring RNA mole-
cules and helps substantially increase the RNA density
measurable by MERFISH (Wang et al., 2018c). Thus, the gene
throughput of MERFISH has been increased from the original

�1000 transcripts to �10 000 transcripts in individual cells (Xia
et al., 2019).

Besides ISH-based approaches, ISS-based methods are also
frequently used to yield spatial transcriptome information
(Fig. 1B). In 2013, an ISS technology that combines padlock prob-
ing, rolling circle amplification (RCA), and sequencing-by-ligation
chemistry was used to sequence RNAs in situ for the first time (Ke
et al., 2013). In ISS, the padlock probes that carry transcript-
specific barcodes hybridize to the RNA targets and are circular-
ized via ligation of the 50 and 30 ends of the probes. Then, the
circularized padlock probes are amplified by RCA and the probe
barcodes are sequenced in situ using fluorescent oligos. Similarly,
fluorescent in situ sequencing (FISSEQ) (Lee et al., 2014), another
ISS-based method, first generates cDNA from RNA using reverse
transcription with tagged random hexamers. Then, the cDNA
fragments are circularized by circligase and amplicons are
formed after RCA. This procedure ensures that RNA molecules
are profiled in a non-targeted manner. Spatially resolved tran-
script amplicon readout mapping (STARmap) is another technol-
ogy based on ISS (Wang et al., 2018a). It uses a pair of primer and
padlock probes (called SNAIL probes) to ensure target-specific
signal amplification. STARmap bypasses the step of reverse tran-
scription to increase the efficiency of amplicon generation. In

Figure 1. Representative spatial transcriptomics technologies. (A) Schematics of ISH-based ST technologies seqFISHþ and MERFISH. (B) Schematics of
ISS-based ST technologies FISSEQ and STARmap. (C) Schematics of solid phase capture-based ST technologies Slide-seq and Stereo-seq. CID: co-
ordinate identity; FISSEQ: fluorescent in situ sequencing; ISH: in situ hybridization; ISS: in situ sequencing; MERFISH: multiplexed error-robust
fluorescence in situ hybridization; RCA: rolling circle amplification; RT: reverse transcription; seqFISH: sequential single-molecule fluorescence in situ
hybridization; ST: spatial transcriptomics; STARmap: spatially resolved transcript amplicon readout mapping.
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addition, an improved ISS chemistry called SEDAL was devised
specifically for STARmap. SEDAL eliminates error accumulation
as sequencing proceeds and exhibits minimal background. With
these improvements, STARmap reads >1000 genes per cell in a
mouse brain.

Unbiased approaches
In the early days of ST, physical microdissection techniques were
used to isolate molecules at specific spatial locations, such as
those in LCM (Emmert-Buck et al., 1996), Tomo-Seq (Junker et al.,
2014), and spatial transcriptomics by reoriented projections and
sequencing (STRP-seq) (Schede et al., 2021). LCM can efficiently
and accurately obtain target cell subgroups or single cells within
tissues (Emmert-Buck et al., 1996), and is often used to analyze
the transcriptome of tissue regions in combination with other se-
quencing methods. For example, geographical position sequenc-
ing (Geo-seq) captures cell heterogeneities and spatial variance
simultaneously by combining LCM with single-cell RNA sequenc-
ing (scRNA-seq) technology (Chen et al., 2017). Similarly, LCM-seq
combines LCM with poly A-based Smart-seq2 RNA sequencing
(Nichterwitz et al., 2016, 2018).

Although LCM combined with scRNA-seq can provide ST infor-
mation at cellular resolution, its low throughput makes it diffi-
cult to scale to large tissue areas. To overcome this limitation, a
solid-phase capture technology named Spatial Transcriptomics
was developed in 2016 (Ståhl et al., 2016). Its innovation lies in the
introduction of spatial barcodes before sequencing library prepa-
ration (Jemt et al., 2016). Specifically, the mRNA molecules of tis-
sue sections are captured with spatially barcoded oligo(dT)
primers anchored on glass slides. The subsequent reverse tran-
scription enables the resulting cDNAs to be coupled to the
arrayed oligo(dT) primers on the glass slides. By using NGS, the
mRNA identity and the coupled spatial barcode can be identified.
Each gene can then be unbiasedly mapped to the tissue sections
based on the unique spatial barcode. Thus, Spatial
Transcriptomics quantifies the gene expression and visualizes
the distribution of mRNAs within tissue sections. The spatial res-
olution of Spatail Transcriptomics is 100 lm with a center-to-
center distance of 200 lm between two adjacent ‘spots’. Building
upon the ST technology, the commercially available 10�
Genomics Visium technology (10� Genomics, 2019) increases the
cellular resolution to 55 lm with a 100-lm center-to-center dis-
tance between spots and a sensitivity of >10 000 transcripts per
spot.

Slide-seq is another ST technology that combines spatial bar-
coding with solid-phase RNA capture (Rodriques et al., 2019)
(Fig. 1C). The Slide-seq array is generated by packing DNA-
barcoded beads onto a glass surface. The position of each bead is
determined by ISS. Using the spatially indexed arrays, Slide-seq
captures mRNA molecules from fresh frozen tissue sections and
enables unbiased mapping of the mRNA molecules back to the
original locations. Compared with Spatial Transcriptomics and
10� Genomics Visium, Slide-seq provides a higher spatial resolu-
tion (10-lm bead diameter) and lower experimental cost. Slide-
seqV2 (Stickels et al., 2021), an improved version of Slide-seq, has
an RNA capture efficiency of �10-fold greater than the original
Slide-seq, resulting from the improved workflow of library gener-
ation, bead synthesis, and array indexing.

Recently, spatial enhanced resolution omics-sequencing
(Stereo-seq) has achieved nanoscale resolution (220-nm spot di-
ameter with �500-nm center-to-center distance) by using spa-
tially barcoded DNA nanoball (DNB) chips (Fig. 1C). The spatial
location of each DNB can be read out by sequencing. The high

sensitivity and resolution allow Stereo-seq to be used to visualize
nuclear versus cytoplasmic transcripts. Other examples of ST
technologies based on solid-phase capture and spatial barcoding
include deterministic barcoding in tissue for spatial omics se-
quencing (DBiT-seq) (Liu et al., 2020), sci-Space (Srivatsan et al.,
2021), and Pixel-seq (Fu et al., 2022).

Biological insights of mammalian
reproduction revealed by ST technologies
ST technologies have been widely applied for the visualization of
molecular spatial structures within various tissues (Garcia-
Alonso et al., 2022; Guilliams et al., 2022; Hwang et al., 2022; Kuppe
et al., 2022; Ratz et al., 2022). By capturing the spatial context of
RNA molecules, ST complements scRNA-seq for biological dis-
coveries. In the following sections, we systematically review the
novel biological insights of mammalian reproduction revealed by
ST technologies, including the identification of genes with non-
random spatial expression patterns and specialized functions;
the characterization of cellular neighborhoods under reproduc-
tive homeostasis; and the examination of tissue microenviron-
ment under pathological conditions.

Spatially patterned gene expression and
functions in reproductive systems
Genes with non-random spatial distributions within a tissue of-
ten play important roles in cellular functions. To this end, ST
technologies offer a unique opportunity to identify these genes at
scale.

For example, seminiferous tubules are the functional units of
spermatogenesis in mammalian testes (Hess and Renato de
Franca, 2008) (Fig. 2A). In a recent study, Slide-seqV2 was used to
capture the spatial distribution of testicular genes in the mouse
and human testis at a high throughput (Chen et al., 2021b).
Computational analysis of the Slide-seqV2 data systematically
revealed genes with non-random spatial distribution in seminif-
erous tubules such as genes enriched at the periphery of a tubule
versus genes enriched near the center of a tubule. The analysis
also identified genes whose expression is restricted to a subset of
seminiferous tubules. Among these genes, Habp4 (hyaluronan
binding protein 4) was discovered as a potential novel regulator
of the chromatin remodeling process during male germ cell de-
velopment. Furthermore, by comparing the gene expression pro-
files of Leydig cells (the testosterone-producing somatic cells in
the interstitial space), the authors showed that Leydig cells that
are spatially adjacent to a subset of seminiferous tubules express
a high level of 1700017N19Rik. These 1700017N19Rik-expressing
Leydig cells also express the stem Leydig cell marker Nr2f2 (nu-
clear receptor subfamily 2 group F member 2), indicating that
1700017N19Rik may be involved in the regulation of stem Leydig
cell functions. A similar analysis was performed on testicular
macrophages, which identified two spatially distinct macrophage
subpopulations. One population localizes in the interstitial space
and the other is enriched in the peritubular space. These two
populations can be distinguished by the expression of H2-Ab1
(histocompatibility 2, class II antigen A, beta 1) and Il1b genes
that are exclusively expressed in peritubular macrophages.
Besides Leydig cells and macrophages, it is likely that other tes-
ticular somatic cells, such as Sertoli cells and myoid cells, also
exhibit spatially dependent gene expression patterns. However,
the spindle shape of the myoid cells as well as the spatial proxim-
ity of Sertoli cell cytoplasm and that of germ cells make it chal-
lenging to capture the myoid cell-specific or Sertoli cell-specific
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Figure 2. Applications of spatial transcriptomics technologies in reproductive systems. (A) The establishment of an unbiased spatial transcriptome
atlas of mammalian spermatogenesis using Slide-seqV2. (B) (i) An overview of the human female reproductive system. (ii) The cellular structure and
molecular signaling of the human endometrium throughout the menstrual cycle. (iii) Spatial characterization of high-grade serous ovarian carcinoma
tumor tissue from poor and excellent responders to neoadjuvant chemotherapy. (iv) Stereo-seq identifies cancer-associated myofibroblasts, which may
play a supporting role in tumor growth and metastasis by inhibiting lymphocyte infiltration and remodeling tumor extracellular matrix in cervical
squamous cell carcinoma. (C) Upper panel: spatial cellular neighborhoods of the mouse uterus at the embryo implantation site. AMMy: anti-
mesometrial myometrium; E: embryo; FMI: fetal–maternal interface; Glan: uterine glands; MD: mesometrial decidua; MMy: mesometrial myometrium;
PDZ: primary decidual zone; SDZ: secondary decidual zone; TDZ: transition decidual zone. Lower panel: the spatial gene expression profile of the
enhancer of zeste homolog 2 (Ezh2) knockout (KO) mouse uterus. (D) Dissecting the developmental processes of mouse and zebrafish embryos using
spatial transcriptomics technologies.
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transcriptome using Slide-seqV2. This is because one spot on the
Slide-seqV2 array may capture mRNA transcripts from two to
three adjacent cells. Thus, single-cell-level ST approaches may
be better at resolving the spatial transcriptome in cells with irreg-
ular shapes or small sizes. For example, seqFISH, a single-cell ST
approach, was employed to probe the spatial expression patterns
of marker genes of human spermatogonial sub-states identified
by scRNA-seq (Guo et al., 2018). This analysis showed that PIWIL4
(piwi-like RNA-mediated gene silencing 4) and ETV5 (ETS variant
transcription factor 5)/L1TD1 (LINE1-type transposase domain
containing 1) are enriched in spatially distinct spermatogonium
(SPG) subpopulations.

The human endometrium is another example in which ST
technologies have been employed to reveal spatial gene expres-
sion pattens (Fig. 2B, ii). Studying human endometrial homeosta-
sis and pathology has been challenging owing to a lack of model
systems (Maurya et al., 2021). One study combined scRNA-seq
with ISH to characterize the human endometrium across the
menstrual cycle (Wang et al., 2020). Besides the canonical cell
types such as stromal fibroblast, endothelium, macrophage, and
lymphocyte, scRNA-seq analysis also identified an epithelium-as-
sociated cell type the authors called ‘ciliated epithelium’. Four
genes were found to be highly discriminatory for these ciliated
cells (C11orf88, C20orf85, FAM183A (family with sequence similar-
ity 183 member A), and CDHR3 (cadherin-related family member
3)). ISH targeting of these four genes revealed their consistent co-
expression with FOXJ1 protein (forkhead box J1, a master regula-
tor for motile cilia with epithelial lineage identity) in both glandu-
lar and luminal epithelia on Days 17 and 25 of the menstrual
cycle. In another study, Garcia-Alonso et al. (2021) examined the
human endometrial epithelium using 10� Genomics Visium.
They spatially resolved five cell clusters corresponding to cells in
the luminal, functional, and basal layers. Gene signatures of
WNT and NOTCH signaling pathways were found to be present
in distinct endometrial locations. For example, genes encoding
the WNT pathway components, FOXJ1 and LGR5 (leucine-rich
repeat-containing G protein-coupled receptor 5), are enriched at
the luminal surface while NOTCH2 (notch receptor 2) is mainly
expressed in glands in the functional layer. Furthermore, the
authors found that NOTCH2 expression increases in glands mov-
ing away from the lumen while WNT7A (wnt family member 7A)
expression is higher in the luminal epithelium compared with
glands. By contrast, the noncanonical WNT gene WNT5A is
enriched in stromal cells surrounding the glands. These findings
suggest an almost mutually exclusive spatial expression pattern
between the canonical and noncanonical WNT pathways in the
glandular microenvironment.

Besides the human, ST technologies have also been applied to
study the mouse uterus in a uterine Ezh2 (enhancer of zeste ho-
molog 2) knockout (KO) model (Mesa et al., 2021) (Fig. 2C, lower
panel). EZH2 is an epigenetic modifier that methylates histone ly-
sine residue 27 (Trevino et al., 2015). Conditional deletion of Ezh2
in the uterus results in an increased proliferation of luminal and
glandular epithelial cells and affects the estrogen signaling path-
way (Fang et al., 2019; Nanjappa et al., 2019). Spatial analysis of
the uterine Ezh2 KO model versus the wild type (WT) using 10�
Genomics Visium allowed a specific selection of epithelial cells
for downstream analyses. Differential expression analysis identi-
fied up-regulated (Asb4 (ankyrin repeat and SOCS box-containing
4), Cxcl14 (chemokine (C-X-C motif) ligand 14), Dio2 (deiodinase,
iodothyronine, type II), and Igfbp5 (insulin-like growth factor-
binding protein 5)) and down-regulated (Sult1d1 (sulfotransferase

family 1D, member 1), Mt3 (metallothionein 3), and Lcn2 (lipocalin
2)) genes in Ezh2 KO versus WT uterine epithelium.

Finally, multiple ST technologies have been used to spatially
profile gene expression during embryogenesis (Fig. 2D). In one
study, spatial analysis of mouse E14.0 embryos using sci-Space

revealed spatially patterned, cell-type-specific gene expression
across the embryo (Srivatsan et al., 2021). Follow-up analyses dis-
tinguished genes whose spatial pattern of expression is contrib-
uted by multiple cell subtypes from genes whose spatial pattern

of expression is contributed by the presence of a single spatially
restricted, unannotated cell subtype. For example, the spatial ex-
pression pattern of Hox genes, a class of homeotic transcription
factors that specify the body plan, could not be explained solely
by spatial restriction of a single-cell subtype. The spatial expres-

sion of Cyp26b1, a gene encoding a member of the cytochrome
P450 superfamily, is restricted to the brainstem with expression
observed in multiple neuronal subclusters. In another study,
LCM-based Tomo-seq was applied to zebrafish embryos (Holler

et al., 2021). The authors sorted genes based on their spatial ex-
pression patterns along the animal-to-vegetal axis of the embryo.
As a result, three major groups of spatially patterned genes were
identified. One group localizes to the animal side of the embryo,
one group of genes is equally distributed across all sections, and

a third group of genes is spatially confined to the most vegetal
part of the yolk sac. By combining Tomo-seq data of Xenopus lae-
vis and Xenopus tropicalis embryos with that of the zebrafish em-
bryos, the authors identified nine genes, such as dazl (deleted in

azoospermia like) and camk2g1 (calcium/calmodulin-dependent
protein kinase II gamma 1), that localize vegetally in all three spe-
cies, suggesting their conserved function in germ cell develop-
ment or dorsoventral axis development.

Cellular neighborhoods and their functional
implications in reproductive physiology
Another key feature of ST is the ability to identify spatial cluster-
ing of interacting cell populations (i.e. cell neighborhoods) within
the tissue context.

In the testis, developing gametes are regulated by the tissue

microenvironment consisting of various somatic cell types
(Sertoli cells, Leydig cells, myoid cells, endothelial cells, macro-
phages, etc.) (Phillips et al., 2010; Wu et al., 2020) (Fig. 2A).
Therefore, understanding the interplay between the developing

gametes and the somatic cells is essential to the understanding
of spermatogenesis. Using the Slide-seqV2 data, one study calcu-
lated the cellular compositions of the tissue microenvironment
surrounding SPG (the stem cell-containing developing gametes)
by identifying their cellular neighborhoods (Chen et al., 2021b). It

was found that in both the mouse and human testis, undifferen-
tiated and differentiating SPG self-aggregate while also spatially
segregating from each other. Furthermore, no difference in the
spatial compositions of the microenvironment surrounding the

undifferentiated versus differentiating mouse SPG was found,
which was further validated by an independent ISS experiment
targeting 22 testicular marker genes. Of interest, in contrast to
the mouse, significant differences in the spatial cellular composi-

tions of the microenvironment surrounding the human undiffer-
entiated versus differentiating SPG were identified. For example,
a differential enrichment of endothelial cells in the microenvi-
ronment surrounding the human undifferentiated versus differ-
entiating SPG was noted. Together, this study revealed

differences in the spatial structure of the spermatogonial micro-
environment between the mouse and the human, indicating
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differential regulatory mechanisms governing the early stage of
spermatogenesis between the two species.

During pregnancy, the relationship between the placenta and
the decidua of the uterus is essential to nurture and protect the
fetus. To this end, one study focused on the development of tro-
phoblast cells at the human maternal–fetal interface by integrat-
ing single-nucleus RNA sequencing (snRNA-seq) with 10�
Genomics Visium (Arutyunyan et al., 2023). Different trophoblast
subsets were annotated and spatially mapped in the tissue.
These trophoblast cells were further grouped into five pre-
defined microenvironments in the tissue based on histological
features, and distinct trophoblast subsets were found in different
microenvironments. Furthermore, by ordering trophoblast states
based on their proximity in both the gene expression and physi-
cal space, the most likely trajectory for the emergence and differ-
entiation of invasive extravillous trophoblast cells (EVTs) was
inferred (Arutyunyan et al., 2023). This analysis showed that a
subset of EVTs (EVTs-2) can transit either into interstitial EVTs
that invade through decidual stroma or into endovascular EVTs
that move down inside the arteries. Thus, this study demon-
strates how high-quality single-cell and spatial data can be inte-
grated to identify the spatial organization of cell-type subsets
and their developmental relationships.

Similarly, normal uterine functions are required during preg-
nancy and depend on crosstalk among multiple cell types in uter-
ine microenvironments. By applying 10� Genomics Visium to the
embryo implantation site of the mouse uterus on pregnancy Day
7.5, Li et al. (2022) identified 11 cellular neighborhoods, including
a mesometrial myometrium (MMy), an anti-mesometrial myo-
metrium, a mesometrial decidua (MD) enriched with natural
killer (NK) cells, a vascular sinus zone (VSZ) for maternal vessel
remodeling, a fetal–maternal interface (FMI), a primary decidual
zone (PDZ), a transition decidual zone (TDZ), a secondary decid-
ual zone (SDZ), undifferentiated stroma (udStr), uterine glands,
and the embryo (Fig. 2C, upper panel). Consistent with previous
histological studies, the authors found that the MMy is located
next to the mesometrial uterine artery, and the embryo environ-
ment is surrounded by the decidual zone composed of polyploid
decidual cells. Analysis of gene expression further showed that
the decidual zone can be divided into the PDZ, the SDZ, and the
TDZ. The PDZ consists of cells that express high levels of prolac-
tin genes Prl3c1, Prl8a2, and troponin gene Tnnc1. In contrast, the
SDZ expresses metallothionein genes Mt3, Mt4, and cochlin.
Using the ST data, the authors identified three major communi-
cation regions among the uterine neighborhoods. The first one
consists of the embryo and its adjacent FMI and PDZ microenvir-
onments. The other two regions can be divided into the mesome-
trial pole and the anti-mesometrial pole. The mesometrial pole is
made up of the MD, VSZ, and FMI, while the anti-mesometrial
pole consists of PDZ, TDZ, SDZ, and udStr. These neighborhoods
communicate not only within the regions but also between
regions. Together, this study demonstrates the complex molecu-
lar and cellular interactions that occur during early pregnancy.
Given the low spatial resolution of the 10� Genomics Visium
technology, future studies using single-cell-level ST approaches
may better resolve the spatial heterogeneity of cell-type distribu-
tions and communications in the uterine microenvironment.

Besides the testis and the uterus, the mouse placenta has also
been studied using ST to reveal its cellular neighborhoods. By us-
ing STARmap to target 903 placental genes, He et al. (2021) discov-
ered distinct spatial patterns of placental cell types. The authors
found that a subset of maternal decidua cells (MD-1), a subset of
trophoblast giant cells (TG-2), and maternal NK cells mainly self-

aggregate, while a subset of glandular trophoblast cells (GT-2),
TG-1, TG-3, endothelial, and stromal cells exhibit high spatial
mixing with each other. Furthermore, to investigate if the neigh-
bors of a cell influences the gene expression of the cell, the
authors performed clustering of MD-1 cells based on their gene
expression and cellular neighborhood compositions, respectively.
Both clustering results identified the same two subtypes, suggest-
ing that the spatial environment may shape the gene expression
landscape of MD-1 cells. Future functional studies are needed to
go beyond this correlation analysis to establish causality between
cellular microenvironment and gene expression.

Finally, ST technologies have also been applied to embryos for
tissue structure analysis (Fig. 2D). For example, Chen et al. (2022)
applied Stereo-seq to mouse embryos. In the spinal cord region of
an E13.5 embryo, the authors identified the Hopx (HOP homeo-
box)þ ventricular zone, Slc5a7 (solute carrier family 5, member
7)þ marginal zone, Vsnl1 (visinin-like 1)þ basal plate, Fut9 (fuco-
syltransferase 9)þ ventral and Hoxb8þ lateral parts of the spinal
alar plate, and Pdyn (prodynorphin)þ superficial stratum of spinal
basal plate. Furthermore, spatial clustering of cell types in the
embryonic brain recapitulated known anatomically defined brain
regions including the ventricular and mantle zones of the pal-
lium, subpallium, midbrain, hindbrain, diencephalon, cerebel-
lum, hypothalamus, olfactory bulb, and choroid plexus. In
another study, Srivatsan et al. (2021) used sci-Space data of
mouse embryos to delineate the spatial gradients of cellular dif-
ferentiation and neuronal migration. The authors found that in
the pallium, immature neurons migrate and differentiate radially
outward, leading to the inside-out development of the cortical
layers. In the subpallium, cortical interneurons born in the gan-
glionic eminences migrate tangentially to populate the develop-
ing cortex and olfactory bulb. Moreover, midbrain neurons seem
to migrate both radially, toward the pial surface, and tangen-
tially, parallel to the pial surface, to populate this region.
Together, these studies demonstrate the ability of ST technolo-
gies to resolve complex tissue structure, such as the embryo.

Reproductive pathology-associated spatial
microenvironments
Pathological states in a tissue are often associated with altered
cellular microenvironments. By identifying genes with spatially
patterned expressions and spatially clustered cell populations,
ST is well positioned to detect and characterize such alterations.

Diabetes mellitus has been known to impact male fertility
through multiple mechanisms, such as disruption of spermato-
genesis, testicular degeneration and apoptotic changes, and en-
docrine disorders (Bhat et al., 2006; Agbaje et al., 2007; Ricci et al.,
2009; Schoeller et al., 2012; Jangir and Jain, 2014; Maresch et al.,
2018). Applying Slide-seqV2 to testis samples from leptin-
deficient diabetic mice (ob/ob) and WT mice identified genes with
altered spatial expression patterns such as Smcp (sperm
mitochondria-associated cysteine-rich protein) and Malat1 (me-
tastasis-associated lung adenocarcinoma transcript 1). Further
analysis of Slide-seqV2 data showed a significant increase in the
extent of spatial mixing between haploid spermatids and other
testicular cell types in ob/ob seminiferous tubules (Chen et al.,
2021b), suggesting that the disruption of the spatial structure of
seminiferous tubules is a potential mechanism of diabetes-
induced testicular injuries.

Besides the testis, other male reproductive organs, such as the
prostate, have also been investigated using ST approaches. Hirz
et al. (2023) applied Slide-seqV2 to study the prostate tumor mi-
croenvironment. First, compared to the spatial configuration of
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the healthy prostate tissue in which well-organized prostate epi-
thelial glands are surrounded by immune and non-immune stro-
mal cells including fibroblasts, pericytes, and endothelial cells,
the tissue architecture was notably disrupted in the cancerous
prostate. The authors found that the spatial distributions of
fibroblasts, endothelial cells, and pericytes became more dis-
persed compared to those in healthy tissues. Second, compared
to the healthy prostate tissue in which an organized glandular
epithelium contains a well-structured bilayer of basal and lumi-
nal cells, there was an expansion of the luminal epithelial popu-
lation and loss of the well-organized glands in tumor-adjacent
normal sample. Third, among the four epithelial subpopulations,
the spatial organizations of the club and hillock cells were dis-
rupted in the tumor and tumor-adjacent normal tissues. Finally,
to infer cell–cell communications (CCC), the Slide-seqV2 data
were used to construct a graph of physically adjacent cells, which
permitted testing of whether a ligand–receptor (LR) score, defined
as a product of the two corresponding expression levels, was sig-
nificantly higher in physically adjacent cells than would be
expected from a randomized spatial arrangement. This analysis
revealed 405 statistically significant potential LR interactions.
Focusing on tumor–stromal communication, the authors found
that tumor cells expressing vascular endothelial growth factors
(VEGFA and VEGFB) can stimulate a subpopulation of endothelial
cells through VEGF receptors, FLT143 and beta-1 integrin.
Potential interactions between tumor cells and fibroblasts
(COL9A2-ITGA1) and tumor cells with a subpopulation of peri-
cytes cells (COL12A1-ITGA1) were also identified. Together, this
study demonstrates the power of ST in dissecting the prostate tu-
mor microenvironment as well as tumor–stromal cell interac-
tions.

In the human uterus, Garcia-Alonso et al., identified four main
groups of human endometrial epithelial cells based on their
marker gene expression using scRNA-seq: a SOX9 (SRY-box
transcription factor 9)þ population; PIFO (primary cilia
formation)þTPPP3 (tubulin polymerization promoting protein
family member 3)þ ciliated cells; LGR5þ lumenal cells; and
SCGB2A2 (secretoglobin family 2A member 2)þ glandular cells.
Further analysis of the SOX9þ population revealed three cell clus-
ters: SOX9þLGR5þ cells; SOX9þLGR5� cells; and proliferative
SOX9þ cells. By integrating scRNA-seq and 10� Genomics Visium
data, the authors showed that SOX9þLGR5þ cells are spatially
enriched in the surface epithelium; SOX9þLGR5� cells locate in
the basal glands; and proliferative SOX9þ cells are spatially
mapped to glands in the regenerating superficial layer. ISH
experiments further confirmed the spatial distribution of prolif-
erative SOX9þ cells by showing high expression of the prolifera-
tive marker MKI67 in the superficial layer of the endometrium
during the proliferative phase (Garcia-Alonso et al., 2021). In
the same study, the authors correlated the clinical stages of en-
dometrial adenocarcinomas with the three clusters of the SOX9þ

population. The more advanced stages of endometrial adenocar-
cinomas (stages III and IV) were found to have a greater
SOX9þLGR5þ signal. This SOX9þLGR5þ signal is also stronger in
endometrial tumors characterized by high copy number altera-
tions and is linked with a worse prognosis (Garcia-Alonso et al.,
2021). These data demonstrate the importance of pinpointing the
molecular and spatial identity of cellular subtypes for disease di-
agnosis and treatment. In another study, Fonseca et al. (2023) ap-
plied 10� Genomics Visium to study endometriosis—a disease
characterized by endometrial-like tissue growing outside of the
uterine cavity. FOXJ1þ ciliated cells and LGR5þ and SOX9þ cells
were found to be surrounded by KRT10 (keratin 10)þ cells both

within and outside of the endometriosis lesion proper.
Furthermore, ECM1 (extracellular matrix protein 1)þ and MMP11
(matrix metallopeptidase 11)þ endometrial-type stroma cells were
detected in the endometriosis lesions. CFD (complement factor D)þ

peritoneal fibroblasts were separated from the lesions by a region
of C7 (complement C7)þ fibroblasts scattered with FAP (fibroblast
activation protein alpha)þ cells. This study demonstrates the cel-
lular and spatial heterogeneity in the endometriosis lesion.

In the ovary, high-grade serous ovarian carcinoma (HGSC) is
the most common type of ovarian cancer and is also highly che-
mosensitive. Platinum-based combination chemotherapy is an
important treatment for this disease, but patient responses to the
treatment vary significantly (Matulonis et al., 2016). The mecha-
nisms behind this diversity in response to treatment are unclear
(Peres et al., 2020). Stur et al. (2022) applied 10� Genomics Visium
to investigate the reasons behind the different responses to neo-
adjuvant chemotherapy from patients with HGSC. The authors
uncovered more stromal-dominated cell groups, largely formed
by myofibroblasts rather than conventional cancer-associated
fibroblasts in the tumor samples from the poor responder (PR)
group. By contrast, tumors of excellent responders (ER) contain a
high proportion of immune cells, including T cells, B cells, and
NK cells. Unsupervised clustering of the ST data revealed nine
cell clusters. Significant differences in the spatial distribution of
these clusters were observed. For example, in the PR group, the
clusters are physically larger and distributed throughout the
whole tissue area, whereas in the ER group, clusters are smaller
and more compact. Furthermore, some clusters are located close
to each other in one group but significantly farther from each
other in the other group, indicating differential cell-to-cell con-
tacts in different groups (Fig. 2B, iii). Follow-up studies on how
the cell-to-cell contacts differ in the two patient groups at the
molecular level (e.g. LR interactions) would provide mechanistic
insights into the differential responses to chemotherapy from
patients with HGSC.

In addition to ovarian cancer, cervical cancer also threatens
the reproductive health of women worldwide. Recently, Ou et al.
(2022) used snRNA-seq and Stereo-seq to analyze the gene ex-
pression patterns and cellular interactions in cervical squamous
cell carcinoma tumors (Fig. 2B, iv). The authors identified six tis-
sue clusters based on gene expression patterns: tumor, stroma
(without obvious inflammation), inflammation (stroma with dif-
fuse inflammation or focal inflammation), gland, blood vessel,
and necrosis. The tumor cluster was further divided into hyper-
metabolic tumor and hypometabolic tumor based on the expres-
sion level of genes associated with oxygen status and energy
production pathways. Of interest, a unique spatial cluster largely
composed of cancer-associated myofibroblasts (myCAFs) was
found outside the hypermetabolic tumor regions. Differential
gene expression analysis showed that the myCAFþ tumors are
more active in energy usage, metabolism, mitosis, and cell
growth than myCAF– tumors, whereas signaling activities associ-
ated with cellular adhesion, apoptosis, and immune responses
are down-regulated in myCAFþ tumors. These observations indi-
cate that the presence of myCAFs may play important roles in
supporting cervical cancer progression.

Challenges and outlook of applying ST
technologies to studying mammalian
reproduction
A growing number of studies, as reviewed above, have demon-
strated the utility of ST technologies in revealing the biological
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regulation of reproductive physiology and pathology. However,
challenges remain to apply ST technologies to study reproductive
systems.

Experimental challenges
The number of unique molecules per cell captured by the current
ST technologies is, in most cases, less than that captured by the
state-of-art scRNA-seq technologies. This has hindered the spa-
tial profiling of lowly expressed genes and rare cell types in repro-
ductive systems. At the RNA level, the current ST methods
mostly focus on the detection of mRNAs, whereas the spatial in-
formation of non-coding RNAs is rarely resolved, even though
non-coding RNAs play important roles in reproductive systems
(Bourc’his and Voinnet, 2010; Cabili et al., 2011; Pauli et al., 2011;
McIver et al., 2012; de Mateo and Sassone-Corsi, 2014). A combi-
nation of in situ RNA polyadenylation with existing ST technolo-
gies may solve the issue (McKellar et al., 2022). Furthermore,
many ST technologies are optimized for fresh frozen tissue speci-
mens and have a high requirement for RNA integrity, preventing
their applications in clinical research where clinical specimens
are often formalin fixed and paraffin embedded and contain a
large quantity of fragmented RNAs. Thus, for samples with low
RNA quality, a targeted gene panel may be applied to enhance
the capture efficiency of the ST technologies (Mirzazadeh et al.,
2023). Finally, many ST technologies rely on specialized equip-
ment or custom-made arrays. Although several commercial ST
solutions are available, the high costs of these solutions limit
their accessibility to non-specialist laboratories (Table 1).
Institutional or regional core facilities that provide these com-
mercial solutions on a fee-for-service basis would help to democ-
ratize the use of ST technologies.

Computational challenges
Current ST approaches span a wide range of spatial resolution,
from broad tissue regions to subcellular localization (Table 1). In
reproductive systems, cell sizes vary significantly among differ-
ent cell types and even within cells belonging to the same cell
type but at different developmental stages. The ability to accu-
rately perform cellular segmentation on the measured molecules
is, therefore, crucial to many downstream applications, such as
quantifying cell-type composition and tissue organization. For
example, in ISH- and ISS-based ST approaches, individual tran-
scripts need to be grouped into cells from microscopy images
based on image masks generated by a segmentation algorithm.
This algorithm often needs extensive customization and fine tun-
ing for each tissue type. Thus, innovations in computer vision,
such as the recent machine learning-based approaches (Berg
et al., 2019; Pachitariu and Stringer, 2022), will greatly accelerate
the ability of ST tools to be applied to various reproductive
organs.

Another key computational challenge is to analyze CCC spe-
cifically for ST data. While many analyses focus on the structural
relationship of cells, such as calculating the frequencies or pair-
wise co-occurrence of cell types in different tissue regions, few
tools are available to model CCC at the molecular level. Current
methods to examine molecular CCC do so in a pairwise and local
manner, focusing on information between cells or in the neigh-
borhoods of individual cells (Cang and Nie, 2020; Dries et al., 2021;
Garcia-Alonso et al., 2021; Shao et al., 2022). As a result, the collec-
tive or global information in CCC, such as the competition be-
tween cells, and long-range cell–cell interactions, such as the
endocrine and telecrine signaling (both are common regulatory
mechanisms in the reproductive organs), are neglected.

Incorporating prior knowledge of cell–cell competition and classi-
fication of LR interactions into short-range and long-range com-
munications might be helpful to infer the comprehensive

communication categories computationally.

The outlook
The rapid progress in the development of ST technologies will

open new possibilities for the study of reproductive systems and
beyond. We anticipate several exciting new directions the field is
heading.

First, going beyond capturing a snapshot of molecular abund-

ancy in a spatially resolved manner, ST technologies can be ap-
plied to measure cellular dynamics. For example, by combining
ethynyl-20-deoxyuridine labeling of the transcriptome with

STARmap, temporally resolved in situ sequencing and mapping
was recently developed to simultaneously profile the age and lo-
cation of individual RNA molecules within intact cells and tissues

(Ren et al., 2023). Furthermore, novel temporal recording technol-
ogies have enabled the encoding of cellular lineages (Shipman
et al., 2016; Frieda et al., 2017; Chen et al., 2020; Choi et al., 2022)

and transcriptomic states (Chen et al., 2021a; Rodriques et al.,
2021) in the form of DNA or RNA mutations. Combining these re-
cording approaches with ST technologies may reveal cellular his-

tories and dynamics during gamete development and embryonic
development within the native tissue context.

Second, progress in single-cell technologies has already en-
abled multi-modal profiling of the transcriptome, the proteome,

and the epigenome (Zhu et al., 2020; Ogbeide et al., 2022). Spatial
multi-omics technologies may provide solutions for spatially re-
solved muti-modal profiling. Recent developments in DNA-

tagged antibodies and application of LCM have enabled highly
multiplexed protein or whole proteome readouts (Goltsev et al.,
2018; Merritt et al., 2020; Mund et al., 2022), respectively. The pro-

tein A-Tn5 transposase fusion has enabled highly multiplexed
spatial readouts of the epigenome (Deng et al., 2022a,b; Lu et al.,
2022). These approaches can be readily coupled with ST measure-

ments. For instance, spatially resolved co-capture of the tran-
scriptome and the epigenome in E13 mouse embryo has been
proven feasible (Zhang et al., 2023). Soon, whole proteome-

targeting antibody/nanobody libraries may be developed for in
situ measurements.

Finally, ST technologies may offer an opportunity to dissect

gene functions at scale within the native tissue context. For bio-
logical processes like gametogenesis, thousands of genes are in-
volved, which makes it difficult to pinpoint the functional

contribution of each gene. Traditionally, the in vivo functions of a
gene can be analyzed by generating KO mouse lines. However,
this approach demands significant time and resources, making it

challenging to scale. Emerging technologies, such as clustered
regularly interspaced short palindromic repeats (CRISPR) screens
coupled with scRNA-seq, can examine gene functions at scale

(Dixit et al., 2016; Datlinger et al., 2017). While cell-intrinsic effects
of a gene perturbation may be read out using scRNA-seq, the ex-
tracellular effects of a gene perturbation cannot be assessed ow-

ing to tissue disassociation. This excludes using CRISPR screens
to identify genes controlling phenotypes that require spatial reso-
lution to assess, such as genes encoding secreted factors.

Therefore, future efforts to develop a CRISPR screen approach
that retains the spatial context of a biological process will enable
profiling of phenotypes that cannot be accessed in the absence of

tissue context, such as cellular localization and cell–cell interac-
tions.
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Conclusion
Reproduction is essential for the continuation of our species, as it

ensures that parental genetic and epigenetic information are

passed on to the next generation. Besides producing gametes, the

reproductive system also provides the environment for the ap-

propriate development of the embryo. New genomic and compu-

tational tools offer unique opportunities to study the intricate

spatiotemporal regulatory mechanisms that are required for

mammalian reproduction.
Like scRNA-seq, ST technologies hold tremendous potential

for clinical applications. First, the identification of signaling path-

ways regulating human germ cell differentiation and prolifera-

tion will enable the development of protocols for human in vitro

spermatogenesis—a technology that would have tremendous im-

pact on fertility preservation. Second, spatially altered genes, cell

types, and spatial neighborhoods under pathological conditions

identified by ST technologies may be considered as markers for

infertility, cancer, or other reproductive disorders. Finally, CCC

through LR interactions revealed by ST technologies may also

serve as new therapeutic targets for either treating reproductive

disorders or developing novel contraceptive approaches.
In summary, our review discusses the novel biological insights

that have been revealed by studies using ST technologies, while

also shedding light on what is yet to come. We hope that this re-

view will provide reproductive biologists and clinicians with a

much-needed update on the state of art of ST technologies. This

review may also facilitate the adoption of cutting-edge spatial

omics technologies in both basic and clinical reproductive re-

search.
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FMI Fetal–maternal interface
FOXJ1 Forkhead box J1
Fut9 Fucosyltransferase 9
GT Glandular trophoblast cells
H2-Ab1 Histocompatibility 2, class II antigen

A, beta 1
Habp4 Hyaluronan binding protein 4
HGSC High-grade serous ovarian carcinoma
Hopx HOP homeobox
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Igfbp5 Insulin-like growth factor-binding
protein 5

Il1b Interleukin 1 beta
ISH In situ hybridization
ISS In situ sequencing
KO Knockout
KRT10 Keratin 10
L1TD1 LINE1-type transposase domain con-

taining 1
LCM Laser capture microdissection
Lcn2 Lipocalin 2
LGR5 Leucine-rich repeat-containing G

protein-coupled receptor 5
Malat1 Metastasis-associated lung adeno-

carcinoma transcript 1
MD Mesometrial decidua
MERFISH Multiplexed error-robust fluores-

cence in situ hybridization
MMP11 Matrix metallopeptidase 11
MMy Mesometrial myometrium
Mt3 Metallothionein 3
myCAFs Cancer-associated myofibroblasts
NGS Next-generation sequencing
NOTCH2 Notch receptor 2
NR2F2 Nuclear receptor subfamily 2 group F

member 2
Pdyn Prodynorphin
PDZ Primary decidual zone
PIFO Primary cilia formation
PIWIL4 Piwi-like RNA-mediated gene silenc-

ing 4
PR Poor responder
RCA Rolling circle amplification
SCGB2A2 Secretoglobin family 2A member 2
scRNA-seq Single-cell RNA sequencing
SDZ Secondary decidual zone
seqFISH Sequential single-molecule fluores-

cence in situ hybridization
Slc5a7 Solute carrier family 5, member 7
Smcp Sperm mitochondria-associated cys-

teine-rich protein
smFISH Single-molecule fluorescence in situ

hybridization
SOX9 SRY-box transcription factor 9
ST Spatial transcriptomics
STARmap Spatially resolved transcript ampli-

con readout mapping
Stereo-seq Spatial enhanced resolution omics-

sequencing
Sult1d1 Sulfotransferase family 1D, member

1
TDZ Transition decidual zone
TG Trophoblast giant cells
TPPP3 Tubulin polymerization promoting

protein family member 3
udStr Undifferentiated stroma
Vsnl1 Visinin-like 1
VSZ Vascular sinus zone
WNT7A Wnt family member 7A
WT Wild type
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