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Testis Systems Biology 
 

- Cell Biology of the Testis 
- Cell Types and Organization 
- Cell Associations 

 
- Spermatogenesis 

- Stages and Cycle 
- Germ Cell Differentiation 
- Genes Involved 

 
- Endocrinology of the Testis 

- Gonadotropins 
- Testosterone and Leydig Cell 

 
- Cell-Cell Interactions 

- Types of Interactions 
- Sertoli-Germ Cell Interactions 
- Other Cellular Interactions 

 
 

 
Required Reading 

 
de Kretser, et al. (2018) Structure/Cells Overview. In: Encyclopedia of Reproduction (Second 

Edition). Volume 1, Pages 10-16 
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Development of Testes

The testes are located in the scrotum since sperm production requires a temperature that is cooler than that of the abdomen (de
Kretser, 2016). They develop in the embryo just distal to the kidneys and descend into the scrotum shortly after birth through
the inguinal canal. This canal, found on both sides in the region of the groin, is formed by the attachments of one of the muscles
of the abdominal wall. The canal extends downwards andmedially in the groin and links the abdominal cavity with the scrotum (de
Kretser, 2016; de Kretser et al., 1982; Clermont and Huckins, 1961; Roosen-Runge and Holstein, 1978; Hutson et al., 1990).

Descent of the Testes

In some males, the inguinal canal does not close and the testes may retract from the scrotum into the abdominal cavity for brief
periods. The descent of the testis is important because the temperature of the scrotum is lower than the intra-abdominal temper-
ature and the germ cells require a lower temperature for their survival (Hutson et al., 1992). In somemales, the inguinal canal which
normally closes after the testes descend, remains patent and the testes may retract for varying periods causing damage to the germ
cells because of the higher intra-abdominal temperature. Descent of the testis begins in the fetus at about 28 weeks of gestation and
should be complete by birth and it is controlled by a Leydig cell secreted protein called insulin-like protein 3 which is a member of
the insulin-like protein super family (de Kretser et al., 1982; Bowles and Koopman, 2007).

Failure of the testes to descend should be diagnosed as soon possible as spermatogenic damage and infertility may result. Surgery
can be undertaken to close off the inguinal canal so that the testes are permanently located in the scrotum. The testes are ovoid in
shape and in adults, their volume ranges from 15 to 35 mL. At birth they are about 1–3 mL in volume grow rapidly during pubertal
development. The availability of an orchidometer, a range of spheres from 1 to 3 mL in progressively increasing volumes to 35 mL,
is every helpful in determining testicular size (Fig. 1).

Fig. 1 Orchidometer: This set of models of differing testicular size helps the physician in assessing the size of the testes in patients with delayed
puberty, infertility or potential testicular tumors.
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The testes are covered by thick fibrous tissue that forms the tunica albuginea and should be smooth on their anterior and lateral
surfaces. These surfaces are also covered by a serous membrane called the tunica vaginalis. Posteriorly, in the region under the
epididymis, the tunica albuginea is thickened and projects into the parenchyma of the testes to form the mediastinum of the testis.
A series of tubules traverse the mediastinum of the testis to link the seminiferous tubules to the efferent ducts that form the head of
the epididymis (Roosen-Runge and Holstein, 1978) (Fig. 2).

In prepubertal boys, the germ cells in the testes are called gonocytes which are centrally placed in the seminiferous cords, that are
the precursors of the seminiferous tubules. The other cellular components of the cords are the immature Sertoli cells that extend
from the basement membrane of the tubule to the lumen of the seminiferous tubules. As development proceeds, the gonocytes
move to the periphery of the cords to lie on the basement membrane of the cords and commence dividing by mitosis to give
rise to the spermatogonial stem cells a process that requires retinoic acid and Oct 4 (de Rooji and Russell, 2000; de Rooij and Groo-
tegoed, 1998; Dann et al., 2008; Bowles and Koopman, 2007). Continuation of spermatogonial mitosis requires the action of Foxo1
and the spermatogonial stem cells have the capacity for pluipotency, a characteristic marker of stem cells in many tissues (de Rooji
and Russell, 2000; de Rooij, 2001; Goertz et al., 2011). When this occurs at the time of puberty, the basally placed Sertoli cells form
specialized tight junctions just central to the gonocytes thereby preventing inter-cellular transport of substances and creating
a blood–testis barrier (Dann et al., 2008). External to the basement membrane of the seminiferous tubules, there is a layer of myo-
fibroblasts that can contract and increase the intra-tubular pressure. This facilitates the movement of sperm and the fluid produced
by the Sertoli cells in to the rete testis (Simoni et al., 1999).

Functions

The testes have three functions, the production of sperm, the secretion of the steroid hormone, testosterone, after puberty and the
production and secretion of protein hormones inhibin, activin, and follistatin. In addition, insulin and IGF1 are important in the
control of Sertoli cell proliferation (Pitetti et al., 2013). Testosterone is synthesized and secreted by the Leydig cells of the testis that
lie close to blood vessels found in the inter-tubular region of the testis. The Leydig cells have the characteristics of steroid secreting
cells, namely a well developed smooth endoplasmic reticulum and mitochondria which have tubular cristae unlike “conventional”
mitochondria in which the inner mitochondrial membrane forms “plate-like” cristae (de Kretser, 1967).

There are also lymphatic vessels in the inter-tubular compartment of the testes and these join abdominal lymphatics that also
transport testosterone into the chest where they join the thoracic duct, the common duct of all lymphatic vessels in the body. The
thoracic duct joins the venous system at the junction of the left subclavian vein and the left internal jugular vein (Stanton, 2016)
(Fig. 2).

Fig. 2 The anatomical features of the testis, epididymis, vas deferens and the pampiniform plexus of veins, that surround the testicular artery,
represent the venous drainage of the testis and epididymis.
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Spermatogenesis

The testes produce sperm in tubules termed seminiferous tubules by a process called spermatogenesis. These tubules are
composed of germ cells and the supporting network of Sertoli cells. The tubules are surrounded by a layer of basement
membrane, external to which lies a plate-like layer of peritubular cells which are contractile effectively “squeezing” the seminif-
erous tubules (Holstein et al., 1996; Simoni et al., 1999). Thereby they assist in moving sperm, released into the lumen of the
seminiferous tubules, toward an irregular network of tubules located at the posterior and superior pole of the testis called the rete
testis.

The rete testis is connected with the duct of the epididymis, a coiled tube that lies at the posterior aspect of the testis and is
divided into the head, body and tail, the latter continuing as the vas deferens (Johnston and Whillis, 1954). In the epididymis,
the sperm, which are still not motile, are moved by muscular contractions from the head to the tail of the epididymis. They acquire
mobility as they pass through the epididymis to enter the vas deferens (Baker, 1989). The latter delivers the sperm during ejaculation
to enter the prostatic urethra and pass through the penile urethra.

The cellular components in the seminiferous tubules are the germ cells that are the precursors of sperm and also the Sertoli cells.
The latter are named after the person who first described them and they are a critical component of the seminiferous epithelium.
They extend from the basement membrane of the tubule to the lumen and send projections between the surrounding germ cells not
unlike the branches of a tree from the trunk. These projections contain microfilaments that provide a structural framework for the
epithelium given that the germ cell components migrate from the basally placed spematogonia to the centrally placed spermatids
and their final product, the spermatozoa (Fig. 3).

In prepubertal boys, the germ cells in the testes are called gonocytes and they are centrally placed in the seminiferous cords that
comprise the testis (Clermont and Huckins, 1961; de Rooij and Grootegoed, 1998; de Rooji and Russell, 2000). The other cells
comprising the cords are the immature Sertoli cells that extend from the basement membrane of the cords surrounding the gono-
cytes. At the commencement of puberty, the gonocytes move to the periphery of the cords and the Sertoli cells form specialized cell
junctions central to the gonocytes which will progress to give rise to the population of spermatogonia, the precursors to the subse-
quent stages of spermatogenesis (Johnston and Whillis, 1954). These changes, under the influence of the pubertal increase in FSH,
act through Foxo1 and Oct 4 (Dann et al., 2008).

Where adjacent Sertoli cell projections meet basally, they form specialized tight cell junctions that prevent inter-cellular
transport creating a blood–testis barrier (Dym and Fawcett, 1970: Russell, 1977). These tight junctions are placed at such a posi-
tion in the seminiferous epithelium that only the spematogonia are in contact with the basement membrane of the seminif-
erous tubules. All other germ cells lie central to the blood–testis barrier and are thus dependent on the Sertoli cells for transport
of materials for optimal germ cell function and can be considered to “nurse” germ cells central to these inter-Sertoli cell
junctions.

The inter-Sertoli cell junctions must open centrally to enable the progeny of spermatogonia, the primary spermatocytes, to leave
the basal compartment and enter the luminal compartment. The inter-Sertoli cell junctions reform basally below the primary sper-
matocytes that now lie within adluminal compartment of the seminiferous tubule (Stanton, 2016).

Studies have shown that the number of Sertoli cells can affect the magnitude of sperm production. One of the important factors
that controls Sertoli cell numbers is activin A which stimulates proliferation and inhibits differentiation of Sertoli cells (Baker, 1989;
Kreuger et al., 1974). Increasing systemic levels of activin A using an adeno-associated virus expressing activin A (Russell, 1977)
stimulated proliferation and prevented differentiation of Sertoli cells in mice. This was associated with disruption of the blood testis
barrier formed by the inter-Sertoli cell junctions and resulted in a 23.5% decrease in testis weight due to diminished spermatogen-
esis linked to disordered Sertoli cell function. The latter was associated with increase in markers of juvenile Sertoli cells and
a decrease in claudin-11, a marker of mature Sertoli cells. These data are consistent with studies of the levels of activin A in mice
during normal post-natal development which established that activin A levels are elevated at birth but decline rapidly after day
4 postpartum (Meehan et al., 2000).

Other studies using treatment with FSH or thyroxine, a hormone secreted by the thyroid gland, can enhance Sertoli cell prolif-
eration and thus increase sperm output.

In part, the action of FSH on spermatogenesis is exerted directly via spematogonia which are the only germ cells that have FSH
receptors (Simoni et al., 1999). Germ cells also do not have androgen receptors and thus the requirement of testosterone for success-
ful spermatogenesis is dependent on the presence of androgen receptors on the Sertoli cells.

Since in the human, testicular sperm production continues from puberty throughout life, there is clearly a need for a pop-
ulation of stem cells to produce the precursor cells that develop into sperm. The cells forming this stem cell population are the
spermatogonia that undergo several mitotic divisions and have 46 chromosomes as do all other cells in organs throughout
the body (Amory et al., 2011). They develop from the gonocyte population found in the testes of prepubertal boys. The gono-
cytes are initially placed in the centre of the seminiferous cords and migrate to lie between the precursors of the Sertoli cells
and, as with the gonocytes, the spermatogonia are basally placed in contact with the basement membrane of the seminiferous
tubules. These cells undergo several stages of development and are designated by their cytological features before commencing
meiosis.
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Fig. 3 The efferent ducts draining from the rete testis to form the head of the epididymis is illustrated together with the distal regions of the epidid-
ymis termed the body and tail.
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The spermatogonia lose their contact with the basement membrane of the tubule when they begin another process of cell divi-
sion called meiosis by which the chromosome numbers in these cells are reduced from 46 to 23. These cells are called primary
spermatocytes.

During meiosis, the homologous chromosomes, derived originally from the fertilization of the egg, one provided by the
mother, and the other member of the pair, provided by the father via his sperm, pair and replicate their DNA (deoxyribonucleic
acid). The primary spermatocytes thus have nuclear features which enable the identification of the stages as the cells undergo the
first meiotic division during which, one of each homologous chromosome pair, moves to the opposite pole of the cell. These cell
types are named by the stage of meiosis that they have reached and can be identified by the chromatin pattern in their nucleus
associated with the chromosome replication. Leptotene, zygotene, pachytene, diplotene, and diakinesis stages can be identified
and, unlike cell division in somatic cells, these germ cells remain connected by intercellular bridges that link the cytoplasm of
these cells. These bridges enable the development of the “chains” of germ cells and remain in place in the primary and secondary
spermatocyte populations. This process requires the involvement of retinoic acid and androgens to proceed to completion.
(Amory et al., 2011).

The completion the first meiotic division gives rise to cells called secondary spermatocytes that have half the number of chro-
mosomes, 23, termed the haploid number, in contrast to their diploid precursor which had 46. The secondary spermatocytes then
divide by mitosis to give rise to a further population of cells called round spermatids that are still connected by the cytoplasmic
bridges.

Spermiogenesis

The round spermatids do not divide further but are transformed by a complex series of changes into a sperm, the process being
called spermiogenesis (de Kretser, 1969). The basic changes in the developing spermatids during spermiogenesis are common to
many mammalian species but the resulting sperm vary in their morphology especially in the shape of the head of the resulting
sperm. The structure of the sperm tail however has many features in common across species. In the round spermatids the nucleus,
which is centrally placed in the cell, is “capped” at one pole by a series of vesicles from the Golgi complex that coalesce to form
a “cap” that is called the acrosome and is applied to that part of the nucleus closest to the acrosome. The acrosome covers approx-
imately 30%–50% of the nuclear surface.

The nucleus, in the region of the acrosome, comes into close apposition with the cell membrane but remains separated from the
nucleus by the acrosome.

Subsequently, as spermatid development continues, the nuclear chromatin undergoes a progressive condensation forming
electron dense granules associated with stabilization of the DNA (Sassone-Corsi, 2002). That process involves the replacement
of lysine-rich histones with transitional proteins, subsequently replaced by arginine-rich proteins called protamines. The
nuclear chromatin granules condense as spermiogenesis progresses and it becomes more difficult to identify individual gran-
ules (Fig. 4).

At the pole of the nucleus opposite to the acrosome, a pair of centrioles, that participate in the development of the flagellum,
lodge in a small fossa or indentation that still lies external to the nuclear membrane. This whole complex is called the connecting
piece. The centriole closest to the nucleus, called the proximal centriole, lies at right angles to the plane of the distal centriole which
gives rise to the core of the sperm tail called the axoneme. The axoneme is composed of a core of microtubules which forms the basis
of the sperm tail sometimes called the axial filament (Fawcett, 1975).

The axial filament comprises nine pairs of doublet microtubules which surround two centrally placed single microtubules,
a structure that is identical to the structure of cilia which also exhibit motility similar to the sperm tail.

A second set of nine outer dense fibers surround the axial filament distal to a dense ring termed the annulus. The annulus marks
the distal end of the mid-piece and its mitochondrial sheath and defines the commencement of the fibrous sheath. The annulus
marks the commencement of the region of the sperm tail called the principal-piece and the axonemal core, distal to the termination
of the fibrous sheath, is termed the end-piece.

The final step, before sperm are released from the epithelium by a process called spermiation, is a movement of mitochondria,
that up to this point have been distributed around the periphery of the spermatid cell membrane, to surround the mid-piece to form
a “mitochondrial sheath” distal to the connecting-piece and ending at the annulus.

Spermiation, involves the release of sperm from the seminiferous epithelium. At this stage, the cytoplasm of the spermatid has
migrated to a caudal position around the tail. Projections of Sertoli cells invaginate this caudal cytoplasmic collection to “literally”
pull the residual cytoplasm off the spermatid, thereby releasing it into the lumen of the seminiferous tubule.

The residual bodies within the Sertoli cells, that contain the “unwanted” cellular components of the spermatids, are moved
toward the base of the Sertoli cells and progressively “digested” by lysosomes. There is some data to suggest that these cellular
components signal to the Sertoli cell that a “generation” of sperm have been released from that region of the epithelium.

The spermatozoa, that are released from the Sertoli cells are still immotile. They, together with fluid secreted by the Sertoli cells
into the lumen of the seminiferous tubules, are moved toward the rete testis by the contractions of the peritubular myoid cells and
enter the epididymis.
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Discussion 

 

Student 5:  Reference 1 above 

• What was the technology used? 

• What experimental design was used? 

• What insights were obtained on testis somatic cell and germ cell origins? 

 

 
Student 6:  Reference 2 above 

• What was the experimental design and culture system used? 

• What spermatogenic process occurred in vitro? 

• How could this technology be applied? 

 

 

Student 7:  Reference 3 above 

• What is the experimental and systems approach? 

• What single cell expression and epigenetic relationships exist? 

• What insights are provided on testis cell biology? 
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Single-cell analysis of the developing human testis reveals somatic niche cell specification 
and fetal germline stem cell establishment.

Guo J, Sosa E, Chitiashvili T, et al.
Cell Stem Cell. 2021 Apr 1;28(4):764-778.e4.

TCF21 + mesenchymal cells contribute to testis somatic cell development, homeostasis, and 
regeneration in mice. 
Shen Y-C, Shami AN, Moritz L, et al. 
Nat Commun. 2021 Jun 23;12(1):3876.
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Representations of Sertoli cells from the archives of the author. (A) The artistic representation of a Sertoli cell from the model built by Lonnie Russell 
from serial sections in the electron microscope [13,14]. (B) Diagram illustrating the filaments and microtubules in mammalian Sertoli cells was on the 
cover of the first book on Sertoli cells [1]. (C) Artistic representation of Sertoli cells and associated germ cells by Holstein and Schafer and first printed in 
The Sertoli Cell [1]. (D) Field of Sertoli cells in culture from testis of 20-day old rat showing epithelial nature of cells. (E) Cross section of rat 
seminiferous tubules stained by immunocytochemistry with antibody to clusterin highlighting Sertoli cells in the tissue.
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Cooke and Saunders, 2002
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Retinoic acid pulse across the cycle of the seminiferous epithelium. Red line shows the predicted RA pulse based on previous data, black line shows 
actual, relative RA values across the cycle in stage-synchronized testes (data from.21 RA levels peak at late stage VIII/early stage IX and reach a 
maximum value of 35 picomoles per gram testis (pmoles/g testis). Minimum RA values around 3 pmoles/g testis were observed in stages II through V. 
In unsynchronized adult testes where all stages of the seminiferous epithelium are present, RA values averaged around 8-12 pmoles/g testis 

Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells 
in mouse seminiferous epithelium.
Sugimoto R, Nabeshima Y, Yoshida S.
Mech Dev. 2012 Jan-Feb;128(11-12):610-24. 
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Cooke and Saunders, 2002
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Leydig cell differentiation: stem to adult cells. 
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Identification, proliferation, and differentiation of adult Leydig stem cells.
Stanley E, Lin CY, Jin S, Liu J, Sottas CM, Ge R, Zirkin BR, Chen H.
Endocrinology. 2012 Oct;153(10):5002-10.
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Classical and non-classical pathways of testosterone action. The classical pathway of testosterone action is shown on the left. Testosterone 
diffuses through the plasma membrane and interacts with AR sequestered in the cytoplasm by heat shock proteins (HSP). As a result, the AR 
undergoes a conformational change, is released from the HSPs and then travels to the nucleus due to an intrinsic nuclear localization domain. In 
the nucleus AR binds to specific DNA motifs (AREs) and recruits co-activators or co-repressors (not shown) to regulate testosterone-mediated 
transcription. The non-classical pathway shown in the center and on the right is initiated with testosterone binding to the classical AR either 
localized near the plasma membrane or in the cytoplasm. AR then interacts with and causes the phosphorylation (P) of Src kinase, which may be 
tethered to the plasma membrane or present in membrane-associated protein complexes. The activated Src then phosphorylates the epidermal 
growth factor receptor (EGFR) directly or via intermediary factors. The EGFR then activates the MAP kinase cascade likely through the Ras 
small G protein that causes the phosphorylation of Raf kinases that activate MEK kinase that in turn activates ERK kinase. ERK then activates the 
p90RSK kinase to phosphorylate CREB on serine 133 allowing CREB bound to cAMP response elements (CREs) to recruit coactivators and 
induce gene transcription. It should also be noted that the kinases that are activated by the non-classical pathway are capable of phosphorylating 
other spermatogenesis-regulating proteins in Sertoli cells as well as activating other transcription factors to regulate additional webs of gene 
expression.
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Sertoli-germ cell junctions in the testis: a review of recent data.
Kopera IA, Bilinska B, Cheng CY, Mruk DD.
Philos Trans R Soc Lond B Biol Sci. 2010 May 27;365(1546):1593-605.

Sertoli cells maintain Leydig cell number and peritubular myoid cell 
activity in the adult mouse testis.
Rebourcet D, O'Shaughnessy PJ, Monteiro A, et al.
PLoS One. 2014 Aug 21;9(8):e105687.
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Trends in Endocrinology and Metabolism 
Volume 15, Issue 7 , September 2004, Pages 345-350 

Lactate and energy metabolism in male germ cells 

Fayçal Boussouar and Mohamed Benahmed 

Inserm 407, Faculté de Médecine Lyon-Sud, 165 Chemin du Grand Revoyet, BP-12, F-
69921 Oullins Cedex, France 

Available online 30 July 2004. 

Various alterations in germ cell proliferation/differentiation, survival and energy 
metabolism are potentially involved in hypospermatogenesis leading to male infertility. 
Several reviews have been devoted to the different processes whose alteration might 
underlie hypospermatogenesis, except for energy metabolism in the testis. Energy 
metabolism in the testis exhibits some specificity in that lactate is the central energy 
metabolite used by germ cells. This metabolite is produced by somatic Sertoli cells, 
transported and used by germ cells in the context of an active cooperation under the 
control of the endocrine system and local cytokines. In this review, we present and 
discuss relevant published data on energy metabolism in male germ cells with a specific 
emphasis on lactate. 
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The germline stem cell niche unit in mammalian testes.
Oatley JM, Brinster RL.
Physiol Rev. 2012 Apr;92(2):577-95.

Schematic depicting the current understanding of determinants of the spermatogonial stem cell (SSC) niche in mammalian 
testes. Sertoli cells are known to dictate the formation of niche microenvironments and have been shown to produce the 
growth factors GDNF and FGF2 which regulate SSC proliferation and survival. Leydig cells are a source of CSF-1 which 
specifically regulates self-renewal of SSCs. The differentiation of SSCs is influenced by BMP4 and Neuregulin 1; however, 
the source of these factors is currently unknown. It is believed that upon differentiation from SSCs the resulting progenitor 
spermatogonia (i.e., Apr/Aal) migrate away from the niche and continue to develop as a cohort of maturing germ cells.

Molecular mechanisms of mouse SSC self-
renewal. After GDNF binds to a ligand binding 
receptor GFRA1, the complex activates RET 
receptor tyrosine kinase following activation of 
Akt and Src-family kinases. The GDNF stimuli 
induces expression of many genes in SSCs, 
including transcription factor-encoding genes, 
Etv5, Bcl6b, Lhx1, Brachyury, Ret, Cxcr4, 
Pou3f1, and Id4. These transcriptional factors 
are involved in SSC self-renewal. Plzf, Taf4b, 
and Foxo1 also play important roles on SSC 
self-renewal, but their expression is not 
regulated by GDNF. FGF2 is the second critical 
factor for SSC self-renewal, which induces Etv5 
expression through MEK activation. Etv5 
appears to be a key molecule, because this 
transcription factor upregulates other GDNF-
inducing genes. MicroRNA-21 (miR-21) 
expression is regulated by Etv5 and inhibits 
apoptosis in SSCs. GDNF and FGF2 are 
produced from Sertoli cells in the testis. 
Modified from [156].
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Cdc42 is required for male germline niche development in mice. 
Mori Y, Takashima S, Kanatsu-Shinohara M, et al. 
Cell Rep. 2021 Aug 17;36(7):109550.

Spermatogonial Stem Cell Numbers Are Reduced by Transient Inhibition of GDNF Signaling 
but Restored by Self-Renewing Replication when Signaling Resumes. 
Parker N, Laychur A, Sukwani M, et al. 
Stem Cell Reports. 2021 Mar 9;16(3):597-609.

Kit and spermatogenesis - 
ckit - oncogene, member PDGF receptor family
kit-ligand (i.e. Stem Cell factor, SMF) - growth factor ligand
 - increase stem cell growth/early embryogenesis

In Situ Hybridization
ckit - spermatogonia
kit-ligand - Sertoli
 

Comparative expression profiling of testis-enriched genes regulated during the 
development of spermatogonial cells
PLoS One. 2017 Apr 17;12(4):e0175787.
Ahn J, Park YJ, Chen P, Lee TJ, Jeon YJ, Croce CM, Suh Y, Hwang S, Kwon WS, Pang MG, Kim CH, Lee SS, Lee K.
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Developmental kinetics and transcriptome dynamics of stem cell specification in the spermatogenic lineage.
Law NC, Oatley MJ, Oatley JM.
Nat Commun. 2019 Jun 26;10(1):2787. 

The adult human testis transcriptional cell atlas.
Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, Guo Y, Takei Y, Yun J, Cai L, Kim R, Carrell DT, Goriely A, Hotaling JM, Cairns 
BR.
Cell Res. 2018 Dec;28(12):1141-1157.

Dissecting the spermatogonial stem cell niche using spatial transcriptomics
Rajachandran S, Zhang X, Cao Q.
Cell Rep. 2023 Jul 25;42(7):112737.

A spatially resolved ligand-receptor (LR) 
interaction map of the mouse testis
(A) Spatial mapping of major testicular cell types 
(left) and transcriptional states of spermatogonia 
(right) using a mouse testis Slide-seq dataset. ES, 
elongating/elongated spermatid; RS, round 
spermatid; SPC, spermatocyte; SPG, 
spermatogonium. Scale bar, 150 μm.
(B) Schematic of the method to calculate spatially 
resolved LR interactions between a set of cells. 
Cell-cell interactions are calculated by multiplying 
ligand expression on the sending cell with 
receptor expression on the neighboring receiving 
cell for each LR pair.
(C) Left: uniform manifold approximation and 
projection (UMAP) of seminiferous tubules in the 
transcriptome space colored by the stages of the 
cycle of the seminiferous epithelium. Right: spatial 
mapping of the stages of the cycle of the 
seminiferous epithelium. Scale bar, 150 μm.
(D) Differentially expressed LR pairs across the 
stages of the seminiferous epithelium cycle.
(E) Spatial expression patterns of selective LR 
pairs enriched in stages IV–VI of the seminiferous 
epithelium cycle. Scale bar, 160 μm.
(F) Differentially expressed LR pairs among cell 
type-SPG1 pairs. The heatmap shows 60 
representative LR pairs. Every other row of the 
heatmap is labeled because of space limitations. 
The full list of LR pairs is provided in Table S1.
(G) Spatial expression patterns of selective LR 
pairs enriched in the Leydig cell-SPG1 pair. 

https://www.cell.com/cms/10.1016/j.celrep.2023.112737/attachment/d789cc81-451b-4401-a400-774d427ffd06/mmc2
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Dissecting mammalian reproduction with spatial transcriptomics. 
Zhang X, Cao Q, Rajachandran S, Grow EJ, Evans M, Chen H.
Hum Reprod Update. 2023 Nov 2;29(6):794-810.

Representative spatial transcriptomics 
technologies. (A) Schematics of ISH-based 
ST technologies seqFISH+ and MERFISH. 
(B) Schematics of ISS-based ST 
technologies FISSEQ and STARmap. (C) 
Schematics of solid phase capture-based ST 
technologies Slide-seq and Stereo-seq. CID: 
co-ordinate identity; FISSEQ: fluorescent in 
situ sequencing; ISH: in situ hybridization; 
ISS: in situ sequencing; MERFISH: 
multiplexed error-robust fluorescence in situ 
hybridization; RCA: rolling circle 
amplification; RT: reverse transcription; 
seqFISH: sequential single-molecule 
fluorescence in situ hybridization; ST: spatial 
transcriptomics; STARmap: spatially 
resolved transcript amplicon readout 
mapping.

Androgen-induced Rhox homeobox genes modulate the expression of AR-regulated genes.
Hu Z, Dandekar D, O'Shaughnessy PJ, De Gendt K, Verhoeven G, Wilkinson MF.
Mol Endocrinol. 2010 Jan;24(1):60-75.
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Androgen action via testicular peritubular myoid cells is essential for male fertility.
Welsh M, Saunders PT, Atanassova N, Sharpe RM, Smith LB.
FASEB J. 2009 Dec;23(12):4218-30.

ATP activation of peritubular cells drives testicular sperm transport. 
Fleck D, Kenzler L, Mundt N, et al. 
Elife. 2021 Jan 27;10:e62885.
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Essential roles of interstitial cells in testicular development and function.
Heinrich A, DeFalco T.
Andrology. 2019 Aug 24. doi: 10.1111/andr.12703.

Role of interstitial cells in adult spermatogenesis. Illustration of a cross section of a seminiferous tubule and surrounding interstitium of a rodent testis, 
highlighting our current knowledge of the mechanisms through which testicular interstitial cells influence adult spermatogenesis. Text and receptors 
shown in red indicate interactions needing further study or are currently unclear. Arrows indicate a positive influence, and T-shaped lines indicate an 
inhibitory effect. ADH, vasopressin; AR, androgen receptor; CSF1/CSF1R, colony-stimulating factor 1/receptor; GDNF/GFRA1, glial cell-derived 
neurotrophic factor/receptor 1; IGF1/IGF1R, insulin-like growth factor 1/receptor; IL-1, interleukin-1; PG, prostaglandin; RA, retinoic acid; ROS, reactive 
oxygen species; T, testosterone; TGFa, transforming growth factor alpha; VEGFA/VEGFR, vascular endothelial growth factor/receptor.

Molecular regulation of spermatogonial stem cell renewal and differentiation.
Mäkelä JA, Hobbs RM.
Reproduction. 2019 Jun 1. pii: REP-18-0476.R2.

The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis.
Zhou R, Wu J, Liu B, Jiang Y, Chen W, Li J, He Q, He Z.
Cell Mol Life Sci. 2019 Jul;76(14):2681-2695.

Structural, cellular and molecular aspects of immune privilege in the testis.
Li N, Wang T, Han D.
Front Immunol. 2012 Jun 11;3:152.
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A schematic drawing illustrating intercellular communication via paracrine immunosuppressive molecules that favor immune 
privilege in the testis. Under the influence of follicle-stimulating hormone (FSH), androgens and germ cell antigens, Sertoli 
cells secrete immunosuppressive molecules that inhibit inflammatory responses of macrophages and T lymphocytes (T) in 
the interstitial compartments. Sertoli, Leydig cells and macrophages regulate activities of the other immune cells including 
dendritic cells (DC), T and mast cells (MC) via paracrine immunosuppressive molecules, favoring testicular immune 
privilege property.

Role of early life nutrition in regulating sexual development in bulls. 
Byrne CJ, Keogh K, Kenny DA. 
Animal. 2023 May:17 Suppl 1:100802.

Relationship between scrotal circumference and live weight 
of Holstein-Friesian bulls on differing diets in early life 
(source: Byrne et al., 2017, Byrne et al., 2018a). The solid 
lines represent predicted values from models, with scrotal 
circumference as the dependent variable. Dashed lines 
represent± SE. (y = −0.001x2 + 0.125x + 4.5912; 
R2 = 0.85).

Schematic representation illustrating 
differential transcriptional and protein 
expression in key metabolic, neural and 
testicular tissues, as well as on systemic 
concentrations of metabolic and reproductive 
hormones in response to plane of 
nutrition/metabolic status of bull calves. The 
proposed biochemical responses are based 
on global transcriptomic and protein data and 
on bioinformatic network analyses reported 
by Byrne et al., 2018a, Byrne et al., 2018b, 
Coen et al., unpubl, English et al., 2018a, 
English et al., 2018b, Keogh et al., unpubl. 
mRNA – closed boxes, miRNA – dash dot 
boxes, hormones – dashed boxes, biological 
processes altered –. Abbreviations: 
FSH = follicle stimulating hormone, 
GnRH = gonadotrophin-releasing hormone.

Two populations of self-maintaining monocyte-independent macrophages exist in adult 
epididymis and testis. 
Wang M, Yang Y, Cansever D, et al. 
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1):e2013686117.

The 3-LGS generates compartmentalised human gonadal organoids. A Schematic illustrating culture preparation and the 3-LGS 
setup. E Tissue reorganisation fails to occur when mesonephros is included in the testicular tissue digest (testicular mesonephric 
organoid (TMO); representative organoid image from a 7.5 wpc embryonic tissue sample). The inclusion of mesonephric tissue 
resulted in the formation of mesonephric-like tubules throughout the interstitial space, observed as small tubular lumens lined by a 
simple cuboidal epithelium (grey arrow) or larger ducts with a pseudostratified columnar epithelium (white arrow; inset). The 3-LGS 
can also be used to generate ovarian organoids (OO) from dissociated ovarian tissue (representative organoid image from a 10 wpc 
embryonic tissue sample)

A E
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Testicular organoids: a new model to study the testicular microenvironment in vitro?
Hum Reprod Update. 2017 Dec 21. (Epub ahead of print)
Alves-Lopes JP, Stukenborg JB.

Testicular organoids to study cell-cell interactions in the mammalian testis.
Sakib S, Goldsmith T, Voigt A, Dobrinski I.
Andrology. 2019 Jul 21. doi: 10.1111/andr.12680.

Schematic representation of the germ cell niche. Undifferentiated germ 
cells including spermatogonial stem cells are localized at the basement 
membrane and remain in close contact with the Sertoli cells inside the 
seminiferous epithelium. Peritubular myoid cells line the outer perimeter of 
the basement membrane, and Leydig cells, vascular cells, and testicular 
macrophages are located in the interstitium. As spermatogonia 
differentiate, they traverse the tight junctions and move from the basal to 
the adluminal compartment of the seminiferous epithelium.

Schematic representation of testicular organoids to study 
development. Different testicular cells can be derived from iPS 
cells to generate testicular organoids.

Human organoid systems in modeling reproductive tissue development, function, and disease. 
Haider S, Beristain AG. 
Hum Reprod. 2023 Aug 1;38(8):1449-1463.

3D culture systems for reproductive tissue organogenesis
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Organoids as tools to investigate the molecular mechanisms of male infertility and its treatments
Kanbar M, Vermeulen M, Wyns C. 
Reproduction. 2021 May;161(5):R103-R112. 

Different available options for germ cell in 
vitro maturation from intact or 
disaggregated testicular tissue. *: with or 
without scaffold – including testicular 
organoids; ▴: Microfluidic, shaking/rotating 
culture or shaken bioreactors; ST: 
seminiferous tubule; TCS: testicular cell 
suspension.

Organ culture of seminiferous tubules using a modified soft agar culture system.
Gholami K, Pourmand G, Koruji M, Ashouri S, Abbasi M.
Stem Cell Res Ther. 2018 Sep 26;9(1):249.

In-vitro spermatogenesis using culture of seminiferous tubules (STs) or testicular cells from 3- or 6-day-old mice. a Schematic 
presentation of experimental procedures. b Stereomicroscopic appearance of colony formation and seminiferous tubules. Arrow 
indicates complete canalization of seminiferous tubules in the fourth week. Scale bars in STs = 1 mm and in colonies = 50 μm

Self-organising human gonads generated by a Matrigel-based gradient system. 
Oliver E, Alves-Lopes JP, Femke Harteveld F., et al. 
BMC Biol. 2021 Sep 23;19(1):212. Abstract

Background: Advances in three-dimensional culture 
technologies have led to progression in systems used to 
model the gonadal microenvironment in vitro. Despite 
demonstrating basic functionality, tissue organisation is often 
limited. We have previously detailed a three-dimensional 
culture model termed the three-layer gradient system to 
generate rat testicular organoids in vitro. Here we extend the 
model to human first-trimester embryonic gonadal tissue. 
Results: Testicular cell suspensions reorganised into testis-
like organoids with distinct seminiferous-like cords situated 
within an interstitial environment after 7 days. In contrast, 
tissue reorganisation failed to occur when mesonephros, 
which promotes testicular development in vivo, was included 
in the tissue digest. Organoids generated from dissociated 
female gonad cell suspensions formed loosely organised 
cords after 7 days. In addition to displaying testis-specific 
architecture, testis-like organoids demonstrated evidence of 
somatic cell differentiation. Within the 3-LGS, we observed 
the onset of AMH expression in the cytoplasm of SOX9-
positive Sertoli cells within reorganised testicular cords. 
Leydig cell differentiation and onset of steroidogenic capacity 
was also revealed in the 3-LGS through the expression of 
key steroidogenic enzymes StAR and CYP17A1 within the 
interstitial compartment. While the 3-LGS generates a 
somatic cell environment capable of supporting germ cell 
survival in ovarian organoids germ cell loss was observed in 
testicular organoids. 
Conclusion: The 3-LGS can be used to generate organised 
whole gonadal organoids within 7 days. The 3-LGS brings a 
new opportunity to explore gonadal organogenesis and 
contributes to the development of more complex in vitro 
models in the field of developmental and regenerative 
medicine. 

In vitro transplantation of spermatogonial stem cells isolated from human frozen-thawed testis tissue can induce 
spermatogenesis under 3-dimensional tissue culture conditions.
Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N.
Biol Res. 2019 Mar 27;52(1):16.

Transplantation of SSCs to host testes and following in organ culture results. IVT of SSs to host testis and organ culture (a–c). H&E 
staining of tissue sections IVT group (d, e) and control group (g, h). Dynamic dissection of testis fragments after 8 weeks in IVT 
group (f) and control group (i). Black arrow: SCs, green arrow: spermatocyte and yellow arrow: long spermatid or sperm like cells
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In-vitro differentiation of early pig spermatogenic cells to haploid germ cells.
Yu K, Zhang Y, Zhang BL, Wu HY, Jiang WQ, Wang ST, Han DP, Liu YX, Lian ZX, Deng SL.
Mol Hum Reprod. 2019 Sep 1;25(9):507-518. 

Ibuprofen results in alterations of human fetal testis development
Sci Rep. 2017 Mar 10;7:44184. 
Ben Maamar M, Lesné L, Hennig K, et al.

E2F1 regulates testicular descent and controls spermatogenesis by influencing WNT4 signaling
Jorgez CJ, Seth A, Wilken N, et al. 
Development. 2021 Jan 13;148(1):dev191189.

Genetic dissection of spermatogenic arrest through exome analysis: clinical implications for 
the management of azoospermic men. 
Krausz C, Riera-Escamilla A, Moreno-Mendoza D, et al.
Genet Med. 2020 Dec;22(12):1956-1966.

Abstract 

Purpose: Azoospermia affects 1% of men and it can be the consequence of spermatogenic 
maturation arrest (MA). Although the etiology of MA is likely to be of genetic origin, only 13 genes 
have been reported as recurrent potential causes of MA. 

Methods: Exome sequencing in 147 selected MA patients (discovery cohort and two validation 
cohorts). 

Results: We found strong evidence for five novel genes likely responsible for MA (ADAD2, 
TERB1, SHOC1, MSH4, and RAD21L1), for which mouse knockout (KO) models are concordant 
with the human phenotype. Four of them were validated in the two independent MA cohorts. In 
addition, nine patients carried pathogenic variants in seven previously reported genes-TEX14, 
DMRT1, TEX11, SYCE1, MEIOB, MEI1, and STAG3-allowing to upgrade the clinical significance 
of these genes for diagnostic purposes. Our meiotic studies provide novel insight into the 
functional consequences of the variants, supporting their pathogenic role. 

Conclusion: Our findings contribute substantially to the development of a pre-testicular sperm 
extraction (TESE) prognostic gene panel. If properly validated, the genetic diagnosis of complete 
MA prior to surgical interventions is clinically relevant. Wider implications include the 
understanding of potential genetic links between nonobstructive azoospermia (NOA) and cancer 
predisposition, and between NOA and premature ovarian failure. 
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