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STUDY QUESTION: Is it possible to identify by mass spectrometry a wider range of proteins and key proteins involved in folliculogene-
sis and oocyte growth and development by studying follicular fluid (FF) from human small antral follicles (hSAF)?

SUMMARY ANSWER: The largest number of proteins currently reported in human FF was identified in this study analysing hSAF where
several proteins showed a strong relationship with follicular developmental processes.

WHAT IS KNOWN ALREADY: Protein composition of human ovarian FF constitutes the microenvironment for oocyte development.
Previous proteomics studies have analysed fluids from pre-ovulatory follicles, where large numbers of plasma constituents are transferred
through the follicular basal membrane. This attenuates the detection of low abundant proteins, however, the basal membrane of small
antral follicles is less permeable, making it possible to detect a large number of proteins, and thereby offering further insights in
folliculogenesis.

STUDY DESIGN, SIZE, DURATION: Proteins in FF from unstimulated hSAF (size 6.1§ 0.4 mm) were characterised by mass
spectrometry, supported by high-throughput and targeted proteomics and bioinformatics. The FF protein profiles from hSAF containing
oocytes, capable or not of maturing to metaphase II of the second meiotic division during an IVM (n¼ 13, from 6 women), were also
analysed.

PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected FF from hSAF of ovaries that had been surgically removed
from 31 women (�28.5 years old) undergoing unilateral ovariectomy for fertility preservation.

MAIN RESULTS AND THE ROLE OF CHANCE: In total, 2461 proteins were identified, of which 1108 identified for the first time in
FF. Of the identified proteins, 24 were related to follicular regulatory processes. A total of 35 and 65 proteins were down- and
up-regulated, respectively, in fluid from hSAF surrounding oocytes capable of maturing (to MII). We found that changes at the protein level
occur already in FF from small antral follicles related to subsequent oocyte maturation.

LIMITATIONS, REASONS FOR CAUTION: A possible limitation of our study is the uncertainty of the proportion of the sampled
follicles that are undergoing atresia. Although the FF samples were carefully aspirated and processed to remove possible contaminants, we
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cannot ensure the absence of some proteins derived from cellular lysis provoked by technical reasons.

WIDER IMPLICATIONS OF THE FINDINGS: This study is, to our knowledge, the first proteomics characterisation of FF from hSAF
obtained from women in their natural menstrual cycle. We demonstrated that the analysis by mass spectrometry of FF from hSAF allows
the identification of a greater number of proteins compared to the results obtained from previous analyses of larger follicles. Significant
differences found at the protein level in hSAF fluid could predict the ability of the enclosed oocyte to sustain meiotic resumption. If this
can be confirmed in further studies, it demonstrates that the viability of the oocyte is determined early on in follicular development and
this may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle ready to undergo
ovulation.

STUDY FUNDING/COMPETING INTEREST(S): The authors thank the financial support from ReproUnion, which is funded by the
Interreg V EU programme. No conflict of interest was reported by the authors.

TRIAL REGISTRATION NUMBER: N/A
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Introduction
A woman’s fertility is based on the pool of resting follicles in the ova-
ries, i.e. the ovarian reserve. This reserve ensures the generation of
menstrual cycles and release of fertilisable oocytes that may result in
new offspring. Follicular development is initiated by activation of resting
primordial follicles and is completed with ovulation of fully mature
oocytes approximately half a year later (Gougeon, 2010). During this
lengthy period of follicular development, the diameter of the follicle
increases from 45mm to �20 mm. This process involves several devel-
opmental stages, including the formation of the follicular fluid (FF)-filled
antrum that begins to form when human ovarian follicles reach a diam-
eter around 250mm (Rodgers and Irving-Rodgers, 2010). The FF is
comprised of secretions from the oocyte and granulosa cells (GC)
within the follicles and from theca cells (TC) surrounding the follicle as
well as transudates from circulation filtered through the basal mem-
brane. The basal membrane acts as a molecular filter, which means
that proteins with a relatively high molecular weight can only enter the
FF to a limited extent (Rodgers and Irving-Rodgers, 2010; Siu and
Cheng, 2012). This is the reason why FF contains low concentrations
of the high molecular weight protein fibrinogen and, therefore, does
not coagulate. Additionally, the basal membrane has been described
to be both charge and size selective in mouse ovaries (Hess et al.,
1998; Siu and Cheng, 2012). The composition of FF is highly variable
and is associated with the developmental stage of follicles. In particular,
FF reflects GC activity, which is regulated by gonadotropins, steroids,
peptide hormones and growth factors. Anti-Müllerian hormone
(AMH), part of the transforming growth factor b (TGF-b) superfamily,
is present at very high concentrations in small antral follicles with a
peak in follicular content around a diameter of 8 mm (Jeppesen et al.,
2013). Conversely, sex-steroids, such as estradiol and progesterone,
accumulate at very high concentrations in the pre-ovulatory follicles, in
orders of magnitude higher than in small antral follicles (Jeppesen
et al., 2013).

The FF constitutes the microenvironment in which oocytes develop
and as a consequence, the protein composition of FF has attracted
considerable interest and many proteomics studies have been con-
ducted (Spitzer et al., 1996; Anahory et al., 2002; Lee et al., 2005;
Schweigert et al., 2006; Angelucci et al., 2006; Hanrieder et al., 2008;
Estes et al., 2009; Gougeon, 2010; Jarkovska et al., 2010; Twigt et al.,
2012, 2015; Ambekar et al., 2013, 2015; Bianchi et al., 2013;

Jeppesen et al., 2013; Zamah et al., 2015; Oh et al., 2017). All of
these studies have focused on FF collected just prior to ovulation, in
connection with assisted reproduction techniques. The fluid from
pre-ovulatory follicles has a high dynamic range in terms of protein
concentrations, which reduces the possibility of detecting low abun-
dant proteins. At this follicular stage, the FF contains a high number
of plasma constituents transferred through the follicular basal mem-
brane during follicular expansion. For this reason, the number of pro-
teins identified in previous studies has been in the range of several
hundred. By using FF from human small antral follicles (hSAF), this
limitation would be avoided. Furthermore, the study of the FF prote-
ome by mass spectrometry (MS) allows the simultaneous analysis of
hundreds of proteins and the current bioinformatics advances can
provide, even from early follicular stages, the functional network of
the proteins and their role in the follicular development. Hence, the
larger the number of identified proteins, the greater the knowledge
acquired. In addition, an increased focus on the earlier stages of fol-
licles (i.e. small antral follicles), has shown that these could be a po-
tential source of immature oocytes for women with a low ovarian
reserve (Kristensen et al., 2017). Details on the composition of FF
from small antral follicles will provide essential knowledge about fac-
tors impacting the developmental capacity of the immature oocyte.
By contributing to a better understanding of basic follicular processes,
central proteins present in small antral follicles could be valuable in
creating new physiological and effective methods for maturing oocytes
in vitro and advancing culture conditions for human follicles, ultimately
advancing fertility treatment by augmenting the number and quality of
oocytes available for treatment.

The present study aimed to create a detailed fingerprint of proteins
present in FF from hSAF to identify from the early follicular stage,
candidate proteins that support follicular growth and development.

Materials and methods
An overview of the study workflow is presented in Supplementary
Fig. S1.

Reagents and solutions
Unless otherwise specified, all chemical reagents were purchased from
Sigma Aldrich (St. Louis, MO, USA). Modified porcine trypsin was
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obtained from Promega (Madison, WI, USA) and the water was from
a Milli-Q Ultrapure Water System (Millipore, Billerica, MA, USA).
Liquid chromatography-mass spectrometry (LC-MS) grade water and
organic solvents were supplied by Merck (Darmstadt, Germany). Prior
to use, all LC-MS solutions were degassed by sonication. Synthetic
peptides were provided by the University of Victoria-Genome BC
Proteomics Centre, British Columbia, Canada.

Strong cation exchange (SCX) chromatography microspin columns
(MA SEM HIL-SCX, 10–100 mg capacity) and silica C18 ultra-
microspin columns (SUM SS18V, 3–30 mg capacity) were purchased
from the Nest Group Inc. (South Borough, MA, USA). MARS 7 immu-
noaffinity spin columns were purchased from Agilent (Agilent
Technologies, Inc., CA, USA) and were used to deplete the top seven
most abundant proteins, i.e. albumin, IgG, antitrypsin, IgA, transferrin,
haptoglobin and fibrinogen.

FF samples acquisition from small antral
follicles
Samples of FF from hSAF were collected from ovaries that had been
surgically removed from 25 women (25.6§ 6.1 years old (mean §
SD)) undergoing unilateral ovariectomy for fertility preservation at the
Laboratory of Reproductive Biology, Rigshospitalet, Denmark.
Cryopreservation of the ovarian cortex was offered to women facing
a potentially gonadotoxic treatment and thereby at risk of becoming
sterile (Andersen et al., 2008; Schmidt et al., 2011). Cryopreservation
of the ovarian cortical tissue provides these women with the option
of later transplantation of the frozen-thawed tissue if they become
menopausal due to the gonadotoxic treatment. Only patients with
diseases unrelated to the ovary were included, and in all cases, the
ovary had a macroscopically normal appearance. The diagnosis of the
women included breast cancer (n¼ 11), Hodgkin’s lymphoma
(n¼ 3), sarcoma (n¼ 4), lymphoma (n¼ 4), brain cancer (n¼ 1),
cervical cancer (n¼ 1) and systemic lupus erythematous (n¼ 1). Even
though the women had a concurrent cancer diagnosis, they were eli-
gible for fertility cryopreservation after an evaluation of reproductive
parameters and ovarian reserve (AMH levels and antral follicle
count); therefore, we assumed that the women and their ovaries
were reproductively normal. Small antral follicles exposed on the sur-
face of the ovary or visible during the isolation of ovarian cortex
were aspirated with a 1-ml syringe fitted with a 26-gauge needle
(Becton Dickinson, Brøndby, Denmark). From each ovary, FF from
one small antral follicle was collected and the mean size of the fol-
licles was 6.1§ 0.4 mm (mean § SD). The diameter was calculated
based on the total volume of fluid drawn from the follicle using the
calculation of spherical shape (V¼ 4/3 * p * r3). Aspiration of FF had
no effect on the fertility preservation procedure. The FF samples had
no visible blood contamination but were immediately centrifuged to
remove debris and cells. The FF were collected at random times dur-
ing the menstrual cycle as the dynamics of the hSAF appears to be
similar throughout the menstrual cycle (Mcnatty et al., 1983;
Westergaard, 1985; Kuang et al., 2014). From 15 of the follicles, 50-
ml FF was pooled whilst the remaining 10 follicles were analysed
individually.

Furthermore, six women were selected (women with breast cancer
(n¼ 4, sarcoma (n¼ 1) and multiple sclerosis (n¼ 1) and an average
age of 31.4§ 1.8 (mean § SD)) and from each one, fluid from two or

three hSAF (size 6§ 1.5 mm (mean § SD)) was obtained. Each follicle
contained an oocyte that underwent IVM. From each woman, at least
one follicle contained an oocyte that matured to metaphase II of the
second meiotic division after IVM and another that contained an oo-
cyte unable to mature. Oocytes were matured during a 48 h culture
period using the MediCult IVM medium (Origio A/S, Denmark) sup-
plemented with 75 mIU/ml rFSH (Puregon, MSD, the Netherlands),
100 mIU/ml rLH (Luveris, Serono, Germany) and 10 mg/ml human
serum albumin. Oocytes were cultured individually in 25-ml drops
and separate data for each oocyte was obtained. At the end of the
culture period, all oocytes were denudated, and the developmental
stage was classified as either germinal vesicle, metaphase I (MI) or
metaphase II (MII).

The study was approved by the ethics committee of the municipali-
ties of Copenhagen and Frederiksberg (H-2-2011-044). Informed con-
sent was obtained from all participants.

Sample preparation to MS
A schematic representation of the general strategy followed for the
analysis of the samples is shown in Supplementary Fig. S2. For all
experiments, the quantitation of total proteins was performed using
the bicinchoninic acid (BCA) assay.

Preparation of samples without depletion
Samples were dissolved in 1.6% sodium deoxycholate (SDC) in 50 mM
NH4HCO3. The disulphide bonds were reduced by adding dithiothrei-
tol (DTT) to a final concentration of 10 mM and incubated at 37�C
for 1 h. The free thiol groups were alkylated by adding iodoacetamide
(IAA) to a final concentration of 25 mM and incubated for 30 min at
room temperature in the dark. The SDC was diluted to 0.5% before
digestion with trypsin at an enzyme-to-substrate ratio of 1:100 (w/w)
for 16 h at 37�C. The SDC was precipitated by adding 20% formic
acid to a polypropylene filter plate with a hydrophilic polyvinylidene
difluoride (PVDF) membrane (mean pore size 0.45 lm, Porvair
Filtration Group, Fareham, UK).

Sample depletion
To deplete the top 7 or 14 (Supplementary Fig. S2) most abun-
dant proteins, 10 or 25ml of FF were used per sample, respec-
tively. The depletions, with MARS 7 (spin columns) or MARS 14
column (Human-14 (4.6 � 100 mm) coupled to an 1260 Infinity
LC System) both from Agilent technologies, were carried out
according to instructions supplied by the manufacturer. After deple-
tion, the buffer was exchanged to SDC 1.6%, 50 mM of Ambic us-
ing Amicon Ultra Centrifugal filter (0.5 ml – 10 kDa, Millipore,
Tullagreen, Ireland).

Samples were reduced and alkylated as done with non-depleted
samples and it took place in the Amicon filter. The buffer was ex-
changed to Ambic 50 mM and the samples were re-suspended in
100ml of 50 mM AmBic (30mg of proteins after BCA quantification).
Then samples were digested with trypsin at an enzyme-to-substrate
mass ratio of 1/30 for 16 h at 37 �C. The remaining SDC precipitated
by adding 20% of formic acid prior to filtering the samples through a
polypropylene filter plate with hydrophilic PVDF membrane (mean
pore size 0.45 lm, Porvair Filtration Group, Fareham, United
Kingdom).
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.Fractionation of peptides by strong cation exchange
chromatography
For SCX chromatography, three aliquots (10ml each) from the pool
were depleted and separately digested. The digests were combined
before fractionation. Mainly, a step-wise gradient of potassium chlo-
ride: 20, 40, 60, 100, 500 mM and 1 M KCl in 10 mM potassium phos-
phate, pH 2.8 (or 0.01% phosphoric acid) containing 20% acetonitrile
was used to fractionate the peptides.

According to the instructions from the manufacturer, salt was
removed from the samples by silica C18 ultra-microspin columns
(SUM SS18V, 3–30 mg capacity, The Nest Group Inc., South Borough,
MA, USA). After elution with 50% acetonitrile/0.1% TFA, the fractions
were dried in a centrifugal evaporator and re-suspended in 0.1%
formic acid prior to analysis by LC-MS/MS.

Fractionation of peptides by basic reversed-phase chromatography
Three aliquots (10ml each) from the pooled FF were depleted and
digested separately. We performed a Filter Aided Sample Preparation
for protein digestion (Wi�sniewski et al., 2009). The digestions were
combined prior to drying the sample. The sample was reconstituted in
100ml ammonium formate/20% acetonitrile, pH 10, loaded on the
column and fractionated using an Agilent 1100 series HPLC instrument
by reversed-phase chromatography (RP-HPLC) at a flow rate of
50ml/min. The mobile phase consisted of 20 mM ammonium formate,
pH 10 (buffer A) and 20 mM ammonium formate, 80% acetonitrile,
pH 10 (buffer B). The peptides were separated using the following
gradient: 15 min isocratic hold at 1% solvent B, 1–20% solvent B in
1 min; 20–60% solvent B in 44 min; 60–80% solvent B in 5 min; finally,
15 min isocratic flow at 80% solvent B. Using 96� 2 ml well plates,
fractions were collected every 2 min for a total of 20 fractions. Finally,
the fractions were recombined by pooling, and 12 were analysed
by LC-MS.

MS acquisition methods
The samples were analysed by data-dependent acquisition (DDA),
parallel reaction monitoring (PRM) and multiple reaction monitoring
(MRM). Three different mass spectrometers from Thermo Fisher
Scientific (San José, CA, USA) were used for the analyses: The
Q-Exactive Plus (DDA and PRM, see Supplementary Fig. S2a and b),
the Q-Exactive HF-X (DDA) and TSQ Quantiva (MRM) equipped
with an easy-spray NG ion source. The spectrometers were con-
nected to an easy-nLC 1000 pump (Thermo Scientific, San José, CA,
USA).

In the Q-Exactive Plus mass spectrometer, a top 10 method was
used for DDA. Full MS1 spectra were acquired in the Orbitrap mass
analyser from m/z 400–1600 at a resolution of 70 000 (at m/z 200),
a target automatic gain control (AGC) value of 1e6 and a maximum
injection time (IT) of 100 ms over a 60-min HPLC gradient. The
10 most intense peaks with charge state �2 were fragmented in the
HCD collision cell with a normalised collision energy of 26%. Tandem
MS2 spectra were acquired in the Orbitrap mass analyser at a resolu-
tion of 35 000 (at m/z 200), a target AGC value of 5e4 and a maxi-
mum IT of 100 ms. The underfill ratio was set to 10% and dynamic
exclusion was 45 s.

For the Q-Exactive HF-X mass spectrometer, the full MS scans
were set with an acquisition range of m/z 375-1500, resolution of

120 000 (at m/z 200), target AGC value as 3� 106, maximum injec-
tion time of 100 ms and normalised collision energy of 28. The top
20 precursors were selected for fragmentation. For the MS2 acquisi-
tion, we used a resolution of 15 000 (at m/z 200), target AGC value
of 1� 106, maximum injection time of 50 ms, isolation window of
1.2 m/z and fixed first mass at 110 m/z. Peptide elution was
performed with a gradient of 2% of 80% acetonitrile/0.1% formic acid
(Solvent B) and 98% of 0.1% formic acid (Solvent A) with a flow of
0.300ml/min during the first 3 min. This step was followed by an in-
crease in the percentage of solvent B to 25% in 112 min, to 32% in
10 min, and to 45% in 7 min. After 132 min of the gradient, the solvent
B percentage was increased to 90% in 8 min and kept constant for
5 min. Finally, the solvent B content was reduced to 2% in 1 min and
kept constant for 14 min.

For targeted proteomics (PRM and MRM), we built a spectral library
using the MS/MS spectra from synthetic peptides. In addition, we
measured a ‘reference sample’ by adding the synthetic peptides to a
pool of all samples.

For PRM, 1mg in 2ml was loaded per sample onto the column. The
MS2 resolution was 70 000 with an AGC value of 5e5 and a maximum
IT of 200 ms. The normalised collision energy was 26%. Peptides were
separated on an easy-spray column (25 cm � 75 lm ID, PepMap C18
2 lm, 100 Å) with the flow rate of 300 nl/min and the column
temperature at 35�C. Solvent A (0.1% formic acid) and solvent B
(0.1% formic acid in acetonitrile) were used to create a non-linear
gradient to elute the peptides (60 min).

In the MRM method, a scheduled mode was used with 5-min
detection windows. Peptides (1mg) were loaded onto an Acclaim
PepMap 100 pre-column (100 lm � 2 cm, Thermo Scientific, San
José, CA, USA). Peptides were separated on an easy-spray column
(15 cm � 75 lm ID, PepMap C18 3 lm, 100 Å) with the flow rate set
to 300 nl/min and the column temperature at 35�C. Solvent A (0.1%
formic acid) and solvent B (0.1% formic acid in acetonitrile) were used
to create a non-linear gradient to elute the peptides (60 min). Selected
reaction monitoring (SRM) transitions were acquired in Q1 and Q3
operated at unit resolution (0.7 fwhm); the collision gas pressure in
Q2 was set to 1.5 mTorr. The cycle time was 2 s, and calibrated RF
and S-lens values were used. At least three transitions per precursor
were monitored.

MS data analysis
Raw files were analysed with Proteome Discoverer v2.2 or 2.4
(Thermo Scientific, San José, CA, USA). To identify the peptides, the
MS data were searched against the UniProtKB human database
(Released 20180207, 42213 sequences including isoforms). For the
analysis of the data generated from FF that contained oocytes capable
of maturing or not, we combined an FF spectral database built from
the LC-MS/MS analysis of a top 14 depleted pool (hSAF MS1 spectral
library) and the MSPepSearch node plus SEQUEST HT. We used the
human spectral library ‘ProteomeTools_HCD28_PD’ and UniprotKB
human database (Date: 28 January 2020), respectively. The search was
performed with the following parameters: carbamidomethylation of
cysteine residues and oxidation of methionine residues as static
and dynamic modifications, respectively. Precursor and fragment ion
tolerances were 10 ppm and 0.02 Da, respectively. Up to one missed
cleavage site for tryptic peptides was allowed. The filters applied were
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high (false discovery rate (FDR)< 1%) and medium (FDR< 5%) confi-
dence at peptide and protein level, respectively. The peptide/protein
quantification was based on the MS peptide signals (label-free quantifi-
cation). For label-free quantification, the ‘Minora Feature Detector’
node was included in the processing workflow, and the nodes
‘Precursor Ions Quantifier’ and ‘Feature Mapper’ were included in the
consensus workflow.

Comparison of the identified proteins with
previous studies
The total number of proteins identified in the current study was com-
pared to 30 previous proteomics studies performed in human FF. Out
of 30, 20 studies were found after performing a PubMed and Embase
searching using the term ‘human follicular fluid proteome’. Considering
that one of the previous papers (Bianchi et al., 2016) summarised pro-
teins identified up to 2014 (including 10 proteomics studies), we
looked for proteomic studies published between 2013 and 2020. Only
proteins reported as ‘reviewed’ in the UniProtKB/Swiss-Prot protein
sequence database were selected. The studies were: Severino et al.
(2013), Bayasula et al. (2013), Regiani et al. (2015), Twigt et al. (2015),
Zamah et al. (2015), Ambekar et al. (2015), Chen et al. (2016),
Bianchi et al. (2016), Shen et al. (2017), Oh et al. (2017), Lim et al.
(2017), Lewandowska et al. (2017), Lewandowska et al. (2019),
Poulsen et al. (2019), Li et al. (2019) , Zhang et al. (2019), Domingues
et al. (2019), Liu et al. (2020a,b) and Zakerkish et al. (2020).

Furthermore, the list of identified proteins was compared with a list
of proteins from oocytes reported by Virant-Klun et al. (2016) and
with transcripts from GC published by K~oks et al. (2010).

Bioinformatics and statistical analyses
Gene Ontology (GO) and functional enrichment analyses were per-
formed utilising the bioinformatics tool FunRich (Pathan et al., 2015).
The bioinformatics web tool DAVID (https://david.ncifcrf.gov/)
(Huang et al., 2009) was employed to perform a functional annotation
clustering using as input 226 proteins from the high abundant prote-
ome (163 only identified in hSAF, 28 only identified in pre-ovulatory
follicles and 35 non-plasma proteins identified in both hSAF and large
follicles). This tool was also employed to perform functional annotation
clustering of the top 100 dysregulated proteins in FF that contained
oocyte capable of reaching MII. Protein relationship networks were
generated and analysed using the Ingenuity Pathway Analysis (IPA)
software (QIAGEN, Germany).

To perform proteomics quantitative analyses, the intensities of the
protein were normalised by log2 transformation and then standardised
by subtracting the median of the sample. Statistical analyses were per-
formed in RStudio software (R Core Team, 2016; RStudio Team,
2016). Coefficient of correlation between MDK, vimentin (VIM) and
other proteins was determined by Pearson correlation test using the
log2 intensities values of the protein quantified across 10 individual
samples. The P-values were adjusted to control the FDR produced by
multiple testing. Correlations with �0.7� r� 0.7 and adjusted P-value
<0.10 were considered significant. Proteins that significantly correlated
with MDK/VIM were subjected to a biological pathway enrichment
analysis in FunRich (background: FunRich database) and pathways with
a significant enrichment score (BH method: adj. P-value <0.05) were

selected. A comparative enrichment analysis based on ‘cellular compo-
nents’ annotations was performed between positively and negatively
correlated protein and a Q-value (Storey-Tibshirani method) <0.05
was considered significant.

To assess whether there were differences at protein level between
FF that surrounded oocytes that matured or remained immature, a
sparse partial least squares discriminant analysis (sPLS-DA) (Chung and
Keles, 2010) was performed using ‘mixOmics’ R package. This is a
multivariate analysis that classifies the samples by performing a multi-
variate regression using the protein expression matrix (749 proteins
quantified in all samples) as predictors and the sampling origin (FF sur-
rounding oocytes mature or immature) as the response. To select the
top 100 most informative predictors (e.g. proteins) for discriminating
samples, an LASSO penalisation was applied. With the top 100 pro-
teins, a hierarchical clustering plus heatmap was performed using
‘ComplexHeatmap’ R library. In addition to the multivariable analysis,
a Student t-test (two-tails) followed by FDR correction was
performed to determine differentially expressed proteins. Proteins
with an adjusted P-value <0.05 were considered significant. Since FF
samples surrounding the immature oocyte and FF samples surround-
ing the MII oocyte originated in the same woman, the analyses (the
multivariable and univariate) were performed considering the paired
nature of the samples. This was achieved by subtracting from the
protein intensity of a given sample the mean of the two or three
samples belonging to the woman from which they were extracted.
In this analysis, the expression values of VIM were determined by
MRM. Differences between groups in term of follicular size were
assessed by performing a paired Student t-test (two-tails). Secreted
proteins dysregulated in FF that contained oocyte capable of reach-
ing MII were correlated with the remaining proteins using a Pearson
correlation test and adjusted P-values <0.05 were considered
significant.

Selection of proteins potentially more
concentrated and accessible by MS in FF
from hSAF
The selection of proteins potentially more concentrated and accessible
by MS in FF from hSAF is presented in the workflow in Supplementary
Fig. S3. Proteins identified in the analysis of pool were filtered by pro-
teins identified in the non-depleted samples and those also identified
by another method, e.g. SCX or basic RP. Then 368 resulting proteins
were compared against the proteins identified in the two largest previ-
ous data sets that used similar MS strategies (Zamah et al., 2015;
Oh et al., 2017). From the resulting 35 proteins unique to our study,
those known as ‘classical plasma proteins’ (Anderson and Anderson,
2002) (mainly immunoglobulins and complement components)
were excluded. Then the resulting proteins were compared with the
list of proteins identified in FF by MS up to 2020.

Results

General protein characterisation
In this study, a total of 2461 proteins were identified in FF from hSAF
(Supplementary Table SI). A pool of 15 FF samples was first evaluated
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..to deepen the protein identification and subsequently, 23 separated
samples (10 from different women and 13 from six other women)
were analysed. Supplementary Tables SII, SIII and SIV contain the list
of proteins identified in each case. Detailed information on the protein
identification is described in Supplementary File S1 (Supplementary Figs
S4, S5 and S6). The list of identified proteins was compared with pre-
vious human FF proteomics studies conducted up to 2020
(Supplementary Table SV). A total of 1108 proteins were detected for
the first time in our study (Venn diagram: Fig. 1).

The entire set of proteins identified in this study was analysed to de-
termine GO annotations. Figure 2 shows the protein distribution
according to biological process, molecular function, cellular compart-
ment and protein class of the FF proteome in hSAF. The generic
terms: metabolic process and biological regulation were the most rep-
resented biological presses with 26% and 16%, respectively, whilst
almost half of the identified proteins were related to catalytic (36%)
and binding (43%) molecular functions. The classification based on
cellular compartment indicated that 38% of the proteins were mainly
nucleus and cytosolic (cell part), whilst 19% were extracellular.

To detect proteins possibly secreted from GC or oocyte, we com-
pared our results with data obtained by transcriptomics in human GC
and by proteomics in human oocytes (K~oks et al., 2010; Virant-Klun

et al., 2016). In those studies, samples were obtained from pre-
ovulatory follicles from women undergoing IVF. A total of 1940
proteins (94%) were found at the transcript level in GC whilst 793
proteins (39%) were identified in oocytes (Supplementary Table SI).

Comparing FF proteome from hSAF and
large follicles: high abundance proteome
To our knowledge, this is the first proteomic study of FF from hSAF
(<8 mm). To detect proteins possibly more accessible by MS in hSAF,
a comparison in terms of the most abundant proteins identified in FF
from hSAF and large follicles was carried out. The ‘high abundance
proteome’ (non-depleted samples) identified in our study (413 pro-
teins, Supplementary Table SVI) was compared to the ‘high abundance
proteome’ (400 proteins) of a recent proteomics study performed by
our group in large, pre-ovulatory follicles (>14 mm) (Poulsen et al.,
2019). Out of the 413 proteins from hSAF, 231 (56%) were also iden-
tified in FF from large pre-ovulatory follicles. From these, 196 are com-
monly detected in plasma (as compared with the human plasma
proteome database) and may, therefore, represent plasma-filtrated
proteins. According to the GO analysis, the remaining 35 proteins are

Figure 1. Dynamic rank of proteins identified in our study and Venn diagram of total proteins identified in human follicular fluid
(FF) studies. In the Venn diagram, ‘literature’ (yellow) denotes proteins identified in previous FF studies (up to 2020). The circles in light blue and
green colour, represent the two FF studies that currently have identified the highest number of proteins (Zamah et al., 2015; Zhang et al., 2019).
In total, 3565 proteins have been identified in FF samples by proteomics. The colours in the pyramid correspond to the colours in the dynamic
rank plot. When a more complex method is applied (SCX and basic RP), the results yield a greater number of identifications in total and, in particular,
increased identifications of low abundance proteins. Proteins highlighted are known to be relevant in the reproductive system.
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distributed across the cell and almost half were secreted proteins
(Fig. 3a).

Proteins only identified in hSAF and completely missing in FF from
large follicles (163 proteins referred as ‘on in hSAF’ in Fig. 3a (red
colour)) were mostly intracellular proteins (e.g. cytoplasmic and/or
nuclear) whilst the extracellular proteins were distributed indistinctly
in FF from small follicles and large follicles. However, proteins only
identified in large follicles (28 proteins referred as ‘off in hSAF’ in
Fig. 3b) are mostly allocated in the intracellular part. Interestingly,
the proportion of secreted proteins was higher in proteins not iden-
tified in small follicles, i.e. only identified in large follicles (35/163
versus 13/28).

Furthermore, from the list of proteins identified in hSAF, a group of
24 proteins were highlighted (Supplementary Table SVII). This was car-
ried out following a designed work-flow (see Materials and methods
section, Supplementary Fig. S3), which allowed us to access proteins
possibly more concentrated or accessible in FF from hSAF. Figure 3c
shows the cellular compartments where these proteins are allocated
according to the GO analysis. More than 90% of these proteins are
intracellular (nucleus and cytosol).

The presence of the 24 proteins in FF from hSAF was verified in
23 samples analysed in this study (10 from different women and
13 from six other women). All of the 24 proteins were identified
across the samples (Supplementary Fig. S7, Supplementary Table SVII),
with the majority present in more than 70% of the samples.

Interestingly, four of the proteins (AMH, HTRA1, LOXL2 and
MDK) are secreted by cells, which could indicate that they play an im-
portant role in hSAF, as it is well-known in the case of AMH
(Jeppesen et al., 2013). In order to inquire about the function of these

proteins, a functional annotation clustering was performed on DAVID
(Huang et al., 2009) using an enriched list of proteins from the high
abundant proteome that includes the 24 above selected proteins (see
Materials and methods section). A cluster of 18 proteins involved in
the ovarian follicle development came out (cluster 19 Supplementary
Table SVIII, Fig. 3d). AMH and inhibin-B (associated to growth factor
activity) are well-known to be present in small follicles at a high con-
centration (Andersen and Byskov, 2006), which was corroborated in
this study by MS. Conversely, among others, the proteins inhibin-A
and amphiregulin (AREG) were not identified in the ‘high abundance
proteome’ of hSAF. Two of the four previously mentioned secreted
proteins were involved in this cluster: the first one is the well-known
AMH and the second one is midkine (MDK).

According to the bioinformatics analyses, specifically, MDK showed
relevant evidence that indicated that this protein plays an important
role in the follicle. MDK appears to be, out of 24 proteins, the only
cell-secreted protein that functionally clusters together with well-
known proteins involved in the ovarian follicle development (e.g.
inhibin proteins (A and B), AREG, AMH) (Fig. 3d). On the other hand,
MDK is involved in biological processes such as growth factor activity
and cell differentiation. In a previous study, this protein was suggested
to play a role in oocyte maturation in pre-ovulatory follicles (Poulsen
et al., 2019). Also, the addition of MDK in the culture medium during
IVM seems to improve the maturation rate of oocytes (Nikiforov
et al., 2020). Apart from MDK, VIM was another of the 24 proteins
more accessible in hSAF that came out in the cluster of ovarian follicle
development. This protein is involved in the nuclear reprogramming
(Kong et al., 2014; Zhao et al., 2015) and is well-known its function in
the cytoskeletal organisation.

Figure 2. Gene ontology analysis for all follicular fluid (FF) proteins. Distribution of all proteins identified in this study according to three
different GO categories and protein class.
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Figure 3. High abundance proteome identified in follicular fluid (FF) from human small antral follicles (hSAF) compared
with proteins identified by Poulsen et al. (2019) in large follicles. In the two studies, protein identification was carried out following the same
methodology. (a) Red: 163 proteins identified in FF from hSAF and not identified in large follicles. Grey: 35 proteins identified in both studies.
(b) Proteins identified in FF from large follicles and not identified in hSAF. (c) Proteins more concentrated or accessible in hSAF. (d) Cluster of
18 proteins grouped by DAVID according to their functional role in the ovarian follicle development.

Proteome of fluid from human small antral follicles 763

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article/36/3/756/6032763 by guest on 16 D
ecem

ber 2021



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.Functional relationship of MDK and
selected proteins
To deepen our understanding of the role that MDK plays in hSAF for
follicular development, we focus on proteins strongly correlated with
this protein. Expression correlation is known as an indication of a func-
tional association between genes or proteins (Pita-Juárez et al., 2018).
Accordingly, we set out to identify proteins and pathways that would
likely act together with MDK during follicle development and oocyte
maturation using the protein expression quantified in the individual
samples. Interestingly, a significant positive strong correlation was
found between MDK and VIM (r¼ 0.727, P¼ 0.017). These two pro-
teins, apparently more accessible in hSAF, were also functionally clus-
tered in the previous analysis. Considering the functionality that VIM
has in the nuclear reprogramming and the cytoskeletal organisation,
we also looked for proteins significantly correlated with VIM. A set of
proteins significantly correlated (Pearson correlation: �0.7� r� 0.7,
P< 0.02) with MDK and VIM was generated to explore the functional
network related to these proteins. The set included 72 and 25

positively and negatively correlated proteins, respectively
(Supplementary Table SIX). The proteins that correlated negatively
with MDK and VIM were primarily extracellular and cytosolic (Fig. 4b).
The proteins that showed a positive correlation were predominantly
nuclear proteins.

Proteins that significantly correlated with MDK/VIM
(Supplementary Table SIX) were subjected to a biological pathway
enrichment analysis. The analysis showed a significant enrichment of
proteins positively correlated with MDK and VIM which are associ-
ated with gene regulation processes, such as transcription, chromo-
some maintenance and meiosis (Fig. 4a). These proteins are also
associated with processes related to the development and normal
function of female reproductive organs (ovaries and uterus), e.g. the
epithelial-to-mesenchymal transition (EMT) process (Bilyk et al.,
2017). Taken together, these results suggest that MDK and the
MDK/VIM protein pair could play a fundamental role in follicle de-
velopment from early antral follicles and in oocyte maturation at
later stages.

Figure 4. Functional enrichment analysis among proteins correlated positively or negatively with MDK and VIM. (a) Biological
pathways significantly enriched (BH method: adjusted P-value <0.05). (b) Comparative enrichment analysis between positively and negatively
correlated proteins based on ‘cellular components’ annotations. Bars represent the percentage of genes in each cellular component. VIM, vimentin.
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..Proteomic changes in FF from small antral
follicles related to subsequent oocyte
maturation
We set out to evaluate possible proteomics changes in FF from hSAF
related to oocyte maturation. The protein profile of FF that surrounded
oocytes capable of reaching MII (n¼ 7) with the protein profile of FF

that surrounded oocytes that remained immature after IVM (n¼ 6)
were compared. The samples were collected from hSAF extracted
from six women, from which two or three samples were extracted
(see Materials and methods section). The comparison was based on
both, a multivariate (sPLS-DA) and univariate analyses (t-test). The
sPLS-DA method perfectly classified the samples according to their

Figure 5. Proteins from human small antral follicles (hSAF) associated with upcoming oocyte maturation. (a) Sparse partial squares
discriminant analysis performed with 750 proteins quantified in 13 paired FF samples extracted from small antral follicles coming from six women.
The analysis discriminated between FF surrounding oocytes capable of achieving metaphase II (MII) after IVM (n¼ 7, blue) and FF surrounding
oocytes unable to mature (n¼ 6, orange) after IVM. (b) Top 100 proteins that contributed to Component 1 of sPLS-DA to discriminate between
FF samples. Positive and negative sPLS-DA scores values mean that the protein is up- and down-regulated in FF surrounding oocytes capable to reach
M2, respectively. The bar chart indicates the contribution that each protein had in Component 1 (sPLS-DA) to discriminate between groups.
(c) Comparative enrichment analysis between down- and up-regulated proteins in MII based on ‘cellular components’ annotations. Bars represent
the percentage of genes in each cellular component. (d) Functional cluster of secreted proteins involved in development, growth factors and Wnt
signal functions (clustered by DAVID software). These proteins were highlighted in red colour in the heat map shown in (b). sPLS-DA, sparse partial
least squares discriminant analysis.
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sample origin (i.e. FF surrounding oocytes mature or FF surrounding im-
mature) (see Fig. 5a). The top 100 most informative proteins involved
in the sample discrimination (shown by Component 1) are displayed in
Fig. 5b. Since FF is composed of secretions from granulosa-theca
cells and the oocyte, we looked for secreted proteins according to
‘The human protein atlas’ (https://www.proteinatlas.org/). Out of
100, 42 proteins were secreted (Fig. 5b). The t-test also revealed
these proteins (Supplementary Table SIV) as significantly dysregulated
(adjusted P-value <0.05) and the fold changes of the
intensities matched with the sPLS-DA scores changes (heat map).
Both, down- (35) and up-regulated (65) proteins in FF from small
follicles containing oocytes capable of reaching MII were primarily
exosome and extracellular proteins (Fig. 5c), however, the per cent
of down-regulated proteins was higher. On the other hand, unlike
down-regulated proteins, the up-regulated were significantly enriched
in several nuclear compartments (Fig. 5c).

As we expected, MDK (adj. P¼ 0.003) and VIM (adj. P¼ 0.016)
were included in the top 100 most dysregulated proteins. Within the
groups of up-regulated proteins, there were 11 proteins significantly
correlated to MDK and VIM as evaluated above (MDH2, LMNA,
FN1, SFRP4, XRCC6, HIST1H4A, ANG, LGALS3BP, HNRNPD,
SPON1 and PTK7).

To inquire into the functionality of the top 100 proteins, we per-
formed a functional annotation clustering on the DAVID bioinformatics
tool (https://david.ncifcrf.gov/) (Supplementary Table SX). Figure 5d
shows one of the functional clusters integrated of secreted proteins
(SFRP1, SFRP4, FRZB, MDK, AGT, PCOLCE, ANG, OLFM1, VCAN)
involved in development, growth factors and Wnt signal processes.
Two and seven of these secreted proteins were down- and up-
regulated, respectively.

To further understand the role that these secreted proteins play in
the follicle, we performed a biological pathways analysis not only with
these proteins, but also with proteins that correlate to them
(Supplementary Table SXI). In this case, we wanted to include IGF
family proteins since they are stimulators of ovarian follicular develop-
ment (Mazerbourg and Monget, 2018). IGF1 was included for the
correlation since it was significantly up-regulated (adj. P¼ 0.018,
FC ¼ 0.28) in FF containing oocytes capable of maturation.
Interestingly, IGF2 (more commonly related to human folliculogenesis)
did not change significantly. The pathways enrichment analysis revealed
biological pathways such as transcription, signalling by NOTCH
andepitelial-to-mesenchymal transition, among others (see Fig. 6).
Proteins involved in the analysis were mostly enriched in the metabo-
lism of protein pathway.

Discussion
This study is to our knowledge, the first proteomics analysis of FF
from hSAF obtained from women in their natural menstrual cycle. We
were able to identify 2461 proteins of which more than 1108 were
new to FF. The data generated constitute the largest number of pro-
teins reported to date in human FF. We present an up-to-date compi-
lation of proteins found in FF (Supplementary Table SV). Furthermore,
we identified a signature of FF proteins significantly associated with
the ability of the enclosed oocytes to sustain meiotic resumption. This
suggests that oocyte viability is affected by the FF already at the early

antral stage of follicular development. These results open up for a
better understanding of the regulation of human folliculogenesis at
earlier stages.

We demonstrated that the analysis by MS of FF from hSAF allows
the identification of a greater number of proteins compared to the
results obtained from previous analyses of larger follicles. It is well-
known that in large follicles, there are more abundant proteins, due to
the transfer of plasma constituents through the follicular basal mem-
brane as the follicle expands during the late part of folliculogenesis
(Anderson and Anderson, 2002; Zamah et al., 2015). This fact makes
the access to low abundance proteins more difficult in large follicles.
Most of the new proteins identified in this study come from the cyto-
sol and the nucleus of the cells that surround the antrum.

Follicles used in this study were obtained from ovaries removed sur-
gically from women undergoing fertility preservation. These women
did not have diseases related to the ovary and, overall, the ovaries
appeared normal at surgery. Thus, we anticipate that the identified
proteins could provide relevant physiological information related to fol-
liculogenesis. A possible limitation of our study is the uncertainty of
the proportion of the sampled follicles that are undergoing atresia.

On the other hand, we confirmed by MS that AMH and inhibin-B
are more concentrated in FF from hSAF compared to large follicles as
previously described in an ELISA experiment (Andersen and Byskov,
2006). Conversely, some proteins which were over-represented in the
large pre-ovulatory follicles compared to hSAF, may play physiological
roles for ovulation rather than for early follicular development. These
proteins included inhibin-A and AREG, which are well-known for their
determinant functional role in pre-ovulatory follicles (Zamah et al.,
2010; Poulsen et al., 2019). Several of these proteins were even up-

Figure 6. Pathways analysis of proteins that correlate
(adjusted P < 0.05) to secreted proteins involved in develop-
ment, growth factors and Wnt signal processes. Rows
represent the pathways in which the proteins were enriched. The
heat map represents the per cent of enriched proteins that corre-
lated to each secreted protein (columns). Proteins that significantly
correlate with the secreted proteins are mostly enriched in the me-
tabolism of proteins pathways. Most of the proteins correlated with
SFRP4 were enriched in transcription pathways. To see if the corre-
lation is positive or negative, see Supplementary Table SXI. Secreted
proteins coloured in red and blue were up- and down-regulated in
metaphase II, respectively.
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regulated during ovulation, including TNFAIP6, AREG, SERPINE1 and
ACPP, further highlighting their role in ovulation (Poulsen et al., 2019).

Furthermore, it was possible to identify several signalling pathways
and critical components affecting follicular growth and development.
Similar biological pathways and processes were identified when we
analysed proteins well-correlated to MDK/VIM and proteins well-
correlated to those secreted and dysregulated in FF that contain
oocytes capable of reaching MII. The biological pathways involved
processes linked to follicular development. The chromosome mainte-
nance and nucleosome assembly pathways appeared as part of the
chromosome organisation of the GC that supports the progression of
follicular growth and maturation. In addition, the EMT process is
important for folliculogenesis (Kim et al., 2014) and VIM is a well-
known marker of the EMT process (Mirantes et al., 2013). Numerous
signalling pathways participate together in EMT up-regulation including
PI3K-Akt, EGF, TGF-b, hepatocyte growth factor, MAPK-ERK, NF-kb,
Wnt, Notch, estrogen-receptor-a (ER-a) and HIF-1a. A similar analy-
sis can be performed for the family of frizzled-related proteins (SFRP1,
SFRP3, SFRP4) which in addition were up-regulated in FF surrounding
oocytes capable of maturing to MII. SFRPs family function as modula-
tors of Wnt signalling through direct interaction with Wnts. This is a
targeted pathway that involves secreted glycoproteins that control
development in organisms (Mikels and Nusse, 2006) and is also up-
regulated in EMT. Thus, the observation of the extracellular matrix
protein 2 (ECM2) in the enriched EMT pathway is not surprising.
These ECM proteins regulate EMT via interactions with specific integ-
rin receptors (Chen et al., 2013).

Specifically, MDK has been reported to have a pro-survival effect
on cumulus-GC (Ikeda and Yamada, 2014). This could explain why
proteins significantly correlated (positively) with MDK were enriched in
the caspase cascade in the apoptosis pathway. Generally, proteins
involved in this pathway are commonly degraded and become markers
for apoptosis (VIM, PARP1, LAMNB2 and TOP1). For example, the
caspase proteolysis of VIM promotes apoptosis by dismantling
intermediate filaments (Byun et al., 2001).

For its part, VIM is a protein responsible for maintaining cell shape
and cytoplasm integrity, as well as stabilising cytoskeletal interactions
(Eriksson et al., 2009). In addition, VIM was found to be expressed in
mouse GC during folliculogenesis and the strongest expression was at
earliest stages of follicle growth (Mora et al., 2012). Other studies
demonstrated that VIM is required for successful nuclear reprogram-
ming in porcine cloned embryos (Kong et al., 2014).

With the significant dysregulation of 100 proteins, it was demon-
strated that changes occur at early follicular stages that could affect
the subsequent oocyte maturation process. Interestingly, within the
IGF family proteins, IGF1, well-known to be mainly active in non-
human species, was up-regulated in this study in FF containing oocytes
capable of reaching MII. This finding could be linked with the effect
that IGF1 has at early follicular stages. Stubbs et al. (2013) demon-
strated that IGF-1 stimulates the initiation of follicle growth in cultured
ovarian tissue from the normal human ovary (Stubbs et al., 2013). On
the other hand, IGF1 has been described to play an important role in
mouse oocyte competence and IVM (Toori et al., 2014).

The dysregulated secreted proteins and their correlated network of
proteins were involved in pathways such as EMT, extracellular matrix
organisation, transcription and metabolism of proteins, among others.
In this case, MDK appeared to be up-regulated in FF surrounding

oocytes capable of maturing (to MII), which is a piece of valuable infor-
mation to add to the wide range of studies conducted on this protein
in the field of reproductive medicine.

MDK is a member of a family of neurotrophic factors that functions in
the central nervous system, and which has been discovered to be
expressed in ovarian follicles (Muramatsu et al., 1993; Hirota et al., 2005,
2007; Rauvala, 1989). It has been suggested that MDK is involved in cyto-
plasmatic maturation of bovine ovarian oocytes and it has been related to
the promotion of oocyte developmental competence (Ikeda and Yamada,
2014). This protein acts indirectly via GCs, as no effect is observed in na-
ked oocytes (Ikeda et al., 2006). This is the first time that MDK has been
identified in hSAF. Previously, it has been identified in FF from large fol-
licles by western blotting (Hirota et al., 2007) and recently it was identified
in large follicles by MS (Poulsen et al., 2019; Zhang et al., 2019; Li et al.,
2020). In the study performed by Poulsen et al. (2019), MDK was sug-
gested to play a role in oocyte maturation and, recently, the direct impact
of MDK in oocyte maturation was assessed by Nikiforov et al. (2020). In
their study, it was shown that the addition of MDK in the culture medium
during IVM significantly improved the maturation rate of oocytes collected
from surplus ovarian tissue after fertility preservation (Nikiforov et al.,
2020). On the other hand, Özdemir et al. found that the MDK levels in
FF and serum may lead to an increase in blastocyst development. They
also found that the level of MDK is higher in pregnant than in non-
pregnant IVF-ICSI patients (Özdemir et al., 2020).

Collectively, we present in this study, the first characterisation of
proteins from hSAF in their natural state by MS. Several proteins ob-
served in this study may have a strong relationship with the follicular
developmental process. Furthermore, these data enforce that MDK
and VIM are intimately involved in the regulation of oocyte perfor-
mance in connection with meiotic resumption as observed close to
ovulation. Most importantly, however, is that these results demon-
strate that profound and significant differences exist in FF from follicles
already at a non-selected stage with a diameter of below 9 mm,
predicting the ability of the enclosed oocyte to sustain meiotic re-
sumption. If this can be confirmed in further studies, it demonstrates
that the viability of the oocyte is determined early on in follicular de-
velopment and may open up new pathways for augmenting or attenu-
ating subsequent oocyte viability in the pre-ovulatory follicle when
ready to undergo ovulation.
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Supplementary data are available at Human Reproduction online.
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DNA methylome profiling of granulosa cells
reveals altered methylation in genes
regulating vital ovarian functions in
polycystic ovary syndrome
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Abstract

Background: Women with polycystic ovary syndrome (PCOS) manifest a host of ovarian defects like impaired
folliculogenesis, anovulation, and poor oocyte quality, which grossly affect their reproductive health. Addressing the
putative epigenetic anomalies that tightly regulate these events is of foremost importance in this disorder. We
therefore aimed to carry out DNA methylome profiling of cumulus granulosa cells and assess the methylation and
transcript expression profiles of a few differentially methylated genes contributing to ovarian defects in PCOS. A
total of 20 controls and 20 women with PCOS were selected from a larger cohort of women undergoing IVF, after
carefully screening their sera and follicular fluids for hormonal and biochemical parameters. DNA extracted from
cumulus granulosa cells of three women each, from control and PCOS groups was subjected to high-throughput,
next generation bisulfite sequencing, using the Illumina HiSeq 2500® platform. Remaining samples were used for
the validation of methylation status of some identified genes by pyrosequencing, and the transcript expression
profiles of these genes were assessed by quantitative real-time PCR.

Results: In all, 6486 CpG sites representing 3840 genes associated with Wnt signaling, G protein receptor,
endothelin/integrin signaling, angiogenesis, chemokine/cytokine-mediated inflammation, etc., showed differential
methylation in PCOS. Hypomethylation was noted in 2977 CpGs representing 2063 genes while 2509 CpGs within
1777 genes showed hypermethylation. Methylation differences were also noted in noncoding RNAs regulating
several ovarian functions that are dysregulated in PCOS. Few differentially methylated genes such as aldo-keto
reductase family 1 member C3, calcium-sensing receptor, resistin, mastermind-like domain 1, growth hormone-
releasing hormone receptor and tumor necrosis factor, which predominantly contribute to hyperandrogenism,
premature luteolysis, and oocyte development defects, were explored as novel epigenetic candidates in mediating
ovarian dysfunction. Methylation profiles of these genes matched with our NGS findings, and their transcript
expression patterns correlated with the gene hypo- or hypermethylation status.

Conclusion: Our findings suggest that the epigenetic dysregulation of genes involved in important processes
associated with follicular development may contribute to ovarian defects observed in women with PCOS.
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Background
Polycystic ovary syndrome (PCOS), one of the leading
causes of anovulatory infertility, is characterized by ovar-
ian, neuroendocrine, and metabolic perturbations in
women of reproductive age group. With a global preva-
lence of 6–15% [1], it generally features irregularity or
absence of menses and presence of multiple ovarian
cysts on ultrasonography, in addition to hyperandrogen-
emia and systemic insulin excess. Increased pulsatility of
GnRH neurons at the hypothalamo-hypophyseal inter-
face elevates gonadotropic secretion of LH over FSH,
which alongside co-gonadotropic actions of insulin, pro-
motes increased production of androgens from ovarian
folliculo-thecal cells [2, 3]. Adding to the pool of free an-
drogens in circulation is the insulin-mediated suppres-
sion of hepatic sex hormone binding globulin (SHBG),
which increases the bioavailability of testosterone,
thereby affecting its clearance [4]. The cumulative ac-
tions of all these events trigger a series of physiological
defects including ovarian cyst formation, amenorrhoea,
anovulation, infertility, hyperandrogenism, insulin resist-
ance, hyperinsulinemia, obesity, glucose intolerance,
lipid abnormalities, type 2 diabetes mellitus (T2DM),
hypertension, and cardiovascular disease. In parallel,
there is an intrinsic elevation of anti-Mullerian hormone
(AMH) due to the presence of cystic follicles arrested in
preantral to antral stages [5]. These key events dictate
the principal dogma behind the pathophysiology of
PCOS understood so far.
Although genetic factors impacting the development

and progression of PCOS have been amply investigated,
identification and experimental corroboration of cognate
epigenetic factors that may contribute to the pathophysi-
ology of this multifaceted disorder remain enigmatic. Both
environmental and physiological factors serve as strong
determinants for epigenetic alterations. Factors such as in-
trinsic hormonal aberrations, dysregulation of intrauterine
milieu by endocrine disruptors (EDCs) during gestational
periods, and lifestyle modifications in subsequent phases
of growth and development have been recently implicated
in epigenetic predisposition to this disease. Pioneering in-
vestigations on epigenetic alterations in PCOS began with
studies on peripheral blood leukocytes (PBLs) [6]. How-
ever, tissue specificity of epigenetic modifications renders
it difficult to extrapolate epigenetic data derived from cir-
culating cells like PBLs, to organs such as ovaries or adi-
pose tissues that are highly affected in PCOS [7]. This
necessitates the undertaking of clinical epigenetic studies
at a tissue-specific level. Ovary withstands most of the
hormonal assaults triggered by systemic aberrations in the
neuroendocrine-ovarian axis. It is therefore a primary hot-
spot for epigenetic perturbations, which may contribute to
the multiple follicular and oocyte defects observed in
women with PCOS. Defects related to steroidogenesis,

follicular growth and dominance, ovulation, oocyte devel-
opmental competence, cumulus-oophorus complex
(COC) expansion, luteal maintenance, etc., which are
under stringent control of gonadotropins and other hor-
mones, have been well documented so far. Therefore,
identification of locus/gene-specific epigenetic alterations
in the ovaries of these women is of prime significance to
understand the pathophysiology of this disorder.
So far, few studies conducted to identify global DNA

methylation differences in PBLs and mural as well as cu-
mulus granulosa cells (CGCs) of women with PCOS have
yielded ambiguous findings [6, 8, 9]. Also, promoter
methylation profiles of a few established candidate genes
of PCOS including yes-associated protein (YAP1), follista-
tin (FST), aromatase (CYP19A1) and luteinizing hormone
chorionic gonadotropin receptor (LHCGR) have been in-
vestigated in these cells, and ovarian tissues by some
groups till date [10–14]. Among these genes, LHCGR has
been consistently reported to be hypomethylated in
women with PCOS and in animal models of PCO [14, 15].
Subsequently, a few high-throughput attempts were made
to identify some differentially methylated genes (DMGs)
in women with PCOS. These included the use of diverse
approaches such as methylated DNA immunoprecipita-
tion (MeDIP) [16] and Illumina platform-based methyla-
tion microarray [17] in peripheral blood leukocytes;
MeDIP coupled with methyl promoter enrichment micro-
array [18], as well as methylation microarray combined
with microarray-based transcriptome analysis [19] in ovar-
ian tissue biopsies and adipose tissue samples [20]; total
RNA sequencing (RNA-seq) coupled with methylation
measured by base cleavage and mass spectrometry (Epi-
TYPER) [21]; and lastly, methylation microarray in mural
granulosa cells (MGCs) collected from women undergo-
ing controlled ovarian hyperstimulation (COH) [22].
However, next generation sequencing (NGS)-based
methylome studies spanning individual CpG sites, specif-
ically in CGCs which participate in extensive cross talk be-
tween the developing oocyte and surrounding follicular
milieu while facilitating meiotic maturation and ovulation
of competent oocytes, are yet to be reported in women
with PCOS. In this study, we have carried out comparative
genome-wide bisulfite sequencing of CGCs obtained from
women with PCOS and normovulatory healthy controls,
using a NGS-based, multiplexed Methyl-Capture Sequen-
cing (MC-Seq) approach. MC-Seq is advantageous over
reduced representative bisulfite sequencing (RRBS) and
MeDIP-Seq, in that it avoids the over-representation of
recurring reads and also over Infinium 450 K
methyl-microarray wherein it enables the user to opt for
much greater coverage of the epigenome (3.4 million CpG
sites and 20.8 million non-CpG sites, as opposed to
4,50,000 CpG sites and 3091 non-CpG loci, respectively)
[23]. Also, Infinium microarrays target only those genes
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that are known to be differentially methylated in some
cancers while MC-Seq differentiates between any genomic
region bearing altered methylation marks. Additionally,
compared to whole-genome bisulfite sequencing (WGBS),
MC-Seq is cost effective and can identify novel genomic
loci while reducing the processing time associated with
WGBS. This study provides insights on genome-wide data
on CpG sites that show altered methylation at a single
base resolution in CGCs of women with PCOS.

Results
Hormonal characterization and oocyte quality parameters
of the study participants
All study participants were subjected to stringent anthropo-
metric, hormonal, and biochemical characterization prior
to further investigation (Table 1). Baseline hormonal and
biochemical profiling of 20 controls and 20 women with
PCOS (days 3–5 of the follicular phase of menstrual cycle)
showed that the baseline levels (day 3 follicular phase esti-
mates in serum) of luteinizing hormone (LH), LH/follicle-s-
timulating hormone (FSH) ratio, and of AMH were high,
while the levels of FSH were low in women with PCOS,
compared to controls. Prolactin and thyroid-stimulating
hormone (TSH) levels were similar in both groups. Serum
levels of estradiol (E2) and progesterone (P4) measured be-
fore the administration of recombinant human chorionic
gonadotropin (rhCG) were comparable between controls
and PCOS. Serum E2 levels on the day of rhCG administra-
tion were high in women with PCOS while P4 levels were
similar between these groups. Analysis of oocyte parame-
ters revealed that the total numbers of follicles, oocytes
(mature + immature), mature MII oocytes, %MII oocytes,
and number of fertilized oocytes were unchanged between
controls and women with PCOS. However, the rates of
fertilization of MII oocytes were low in women with PCOS
compared to controls. In serum and follicular fluid (FF)
samples collected on the day of oocyte pick up (d-OPU),
total testosterone (TT) levels were high and sex hormone
binding globulin (SHBG) levels were low in PCOS.
Androgen-excess indices such as free testosterone (Free-T),
bioavailable testosterone (Bio-T), and free androgen index
(FAI) were high in FF, while in serum, only Bio-T and FAI
were high in PCOS.

Identification of differentially methylated targets and
their gene ontology analysis
MC-Seq of CGCs of women with PCOS and controls
identified a total of 6486 differentially methylated CpG
sites associated with 3403 unique genes across the gen-
ome, of which 2977 CpG sites were hypomethylated and
2509 CpG sites were hypermethylated. Hypomethylated
CpG sites were representative of 2063 (Additional file 1)
genes in all, while the hypermethylated sites were linked
to a total of 1777 genes (Additional file 2). Of the total

DMGs, 438 genes harbored both hyper- and hypomethy-
lated CpG sites. Additionally, many noncoding RNAs in-
cluding 44 microRNAs (miRs) and 121 pseudogenes also
showed differential methylation in women with PCOS
(Additional files 1 and 2). Of the 44 differentially methyl-
ated miRs, several miRs (miR23A, miR127, miR10B,
miR193A mir200B, miR182, and miR140) have been re-
ported to be implicated in impaired follicle growth and
steroidogenesis, anovulation, obesity, glucose metabolism,
and so on [24]. In pathway enrichment and gene ontology
(GO) analyses of the hypomethylated, hypermethylated,
and combined gene lists, 227 (11%), 210 (11.82%), and 396
(11.64%) genes from the three respective categories could
not be annotated. Among the identified pathways, those
for Wnt signaling (Panther-GO-ID, P00057), integrin sig-
naling (P00034), endothelin signaling (P00019), and cad-
herin signaling (P00012) were enriched in both the hypo-
and hypermethylated gene sets (Fig. 1). Other prominent
pathways included the platelet-derived growth factor
(PDGF) signaling (P00047), inflammation mediated by
chemokine and cytokine signaling (P00031), angiogenesis
(P00005) and vascular endothelial growth factor (VEGF)
signaling (P00056), fibroblast growth factor (FGF) signal-
ing (P00021), G protein signaling (P00026, P00027), T cell
activation (P00053), and nicotinic acetylcholine receptor
signaling pathways (P00044).

Validation of genes showing differential methylation in
regions upstream to transcription start sites
Among the DMGs selected for validation, the upstream
CpG sites of five genes, namely aldo-keto reductase 1 fam-
ily C3 (AKR1C3), calcium-sensing receptor (CASR), growth
hormone-releasing hormone receptor (GHRHR), resistin
(RETN), and mastermind-like domain 1 (MAMLD1) were
hypomethylated while those of transferrin (TF) and tumor
necrosis factor (TNF) were hypermethylated in PCOS in
our methylome analysis. We first investigated whether
these seven genes are expressed in CGCs, and whether they
are differentially expressed in women with PCOS using
qPCR (Fig. 2). Apart from GHRHR, which was expressed
only at baseline levels, the remaining six genes were abun-
dantly expressed in CGCs. Transcripts of AKR1C3, CASR,
GHRHR, RETN, and MAMLD1 were upregulated while
those of TF and TNF were downregulated in CGCs of
PCOS women (Fig. 2). To verify whether our NGS findings
were replicative in a larger study cohort, we performed py-
rosequencing to assess the average percent methylation of
these genes in 17 controls and 17 women with PCOS. Hy-
pomethylation of AKR1C3, CASR, GHRHR, RETN, and
MAMLD1 genes at the indicated CpG sites was confirmed
by pyrosequencing (Fig. 3). Decreased methylation in these
genes was consistent with the upregulation of their respect-
ive transcripts in women with PCOS (Fig. 2), and the two
variables showed an inverse correlation with one another

Sagvekar et al. Clinical Epigenetics           (2019) 11:61 Page 3 of 16



(Table 2). Also, hypermethylation of TNF was correlated
with downregulation of its transcript expression in women
with PCOS (Table 2). However, TF which showed

hypermethylation in NGS data was found to be hypo-
methylated upon pyrosequencing, though its transcript was
downregulated in PCOS (Figs. 2 and 3). Also, there was no

Table 1 Clinical characteristics of study participants undergoing controlled ovarian hyperstimulation (COH) assessed before and after
oocyte retrieval

Parameters assessed Control (n = 20) median (IQR) PCOS (n = 20) median (IQR) P value

Age in years 30.0 (27.0–31.0) 31.5 (28.0–33.0) 0.124

BMI (kg m−2) 23.03 (20.97–25.06) 24.65 (22.24–27.76) 0.173
#Basal FSH (μU/mL) 7.64 (5.52–9.39) 5.71 (4.39–6.61) 0.037*
#Basal LH (μU/mL) 6.19 (3.0–7.66) 9.13 (5.58–12.24) 0.02*
#LH:FSH 0.75 (0.55–1.04) 1.74 (1.15–2.04) 0.0001***
#Prolactin (ng/mL) 14.2 (12.0–18.27) 14.48 (11.72–24.3) 0.43
#TSH (mIU/mL) 1.8 (1.14–2.75) 2.36 (1.55–4.08) 0.0577
#AMH (ng/mL) 3.4 (1.94–7.86) 7.99 (5.21–9.74) 0.0094**

Regular cycle 20 (100%) 3 (15%)

Oligomenorrhea 0 (0%) 15 (80%) <0.0001***

Secondary amenorrhea 0 (0%) 2 (5%)

rFSH (IU) 1600 (1528–2313) 1706 (1350–2025) 0.788

E2 (ng/mL) before hCG administration 1.49 (1.247–2.24) 2.03 (1.22–2.47) 0.367

E2 (ng/mL) on hCG administration day 1.71 (1.436–2.32) 2.56 (1.82–3.72) 0.038*

P4 (ng/mL) before hCG administration 0.3 (0.2–0.55) 0.25 (0.17–0.525) 0.522

P4 (ng/mL) on hCG administration day 2.65 (2.07–4.05) 4.6 (1.95–6.32) 0.200

Total follicles (n) 15.0 (12.0–20.5) 18.5 (15.0–29.25) 0.099

Total oocytes (n) 13.5 (10.0–17.25) 16.5 (14.5–26.75) 0.059

MII oocytes (n) 10.5 (8.0–13.5) 15.0 (9.0–19.75) 0.057

MII oocytes (%) 82.84 (70.24–90.71) 86.85 (74.2–95.31) 0.366

Total fertilized oocytes (n) 6.0 (4.5–9.25) 6.5 (3.75–14.5) 0.464

Rate of MII oocyte fertilization (ROF) 65.63 (51.92–88.13) 52.27 (34.8–67.) 0.039*
$E2 (ng/mL) Serum 0.2 (0.15–0.6) 0.43 (0.15–0.76) 0.418
$E2 (ng/mL) FF 374 (178.6–541.7) 280.3 (125–819) 0.586
$P4 (ng/mL) Serum 1 (3–9) 3.9 (0.3–7.) 0.903
$P4 (ng/mL) FF 8170 (4760–15,880) 6000 (3280–10,140) 0.325
$TT (ng/dL) Serum 126 (89–178.5) 172.6 (140–311.3) 0.020*
$TT (ng/dL) FF 300 (140.2–372.6) 405.8 (222.6–639.3) 0.030*
$SHBG (nmol/L) Serum 130 (103.0–150.0) 95 (79–134.5) 0.041*
$SHBG (nmol/L) FF 158 (127.8–205.5) 127.7 (103.3–148.8) 0.024*
$Free T (pmol/L) Serum 3.53 (2.07–4.85) 6.03 (3.93–9.73) 0.066
$Free T (pmol/L) FF 4.24 (1.55–7.87) 7.5 (5.28–11.74) 0.050*
$Bio-T (nmol/L) Serum 0.82 (0.48–1.14) 1.09 (0.8–1.9) 0.033*
$Bio-T (nmol/L) FF 0.99 (0.58–1.84) 1.75 (1.24–2.74) 0.050*
$FAI serum 3.03 (2.38–6.48) 6.03 (3.93–9.73) 0.035*
$FAI FF 3.7 (2.32–7.17) 6.93 (5.48–13.42) 0.050*

Data are represented as median (inter-quartile range) for anthropometric and hormonal characteristics compared been controls and women with PCOS using
Mann-Whitney U tests. Parameters marked with asterisk (#) denote those measured between days 3–5 of the menstrual cycle (early follicular phase) before
initiating the controlled ovarian hyperstimulation (COH) procedure. Parameters marked by “$” were measured in sera and follicular fluids obtained on the day of
ovum pick up (d-OPU). Menstrual characteristics were assessed using the chi-square analysis. P values < 0.05 are considered significant for all statistical tests. *P <
0.05, **P < 0.01, ***P </= 0.0001 have been indicated. BMI body-mass index, E2 estradiol, P4 progesterone, TT total testosteronem, SHBG sex hormone binding
globulin, Bio-T bioavailable testosterone, Free-T free testosterone, FAI free androgen index.
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correlation between TF transcript levels and its methylation
status (Table 2). As supporting evidence, we also evaluated
the transcript expression of additional genes such as prosta-
glandin E receptor (PTGER1), leukemia inhibitory factor
(LIF), and hyaluronan and proteoglycan link protein 1
(HAPLN1) which showed hypermethylation in NGS ana-
lysis. Transcripts of these genes were downregulated in
PCOS (Fig. 2).

Discussion
Tissue-specific DNA methylation changes sired by alter-
ations in the environmental or physiological milieu of an
individual can bring about significant changes in gene and
protein expression, and therefore predispose them to
disease development. Alterations in both transcriptome and
proteome profiles of ovarian cells/tissues and FF have been
previously reported in PCOS [25–28]. With this

Fig. 1 Pathway analysis of differentially methylated genes identified by MC-Seq of cumulus granulosa cells (CGCs). Pie charts displaying gene
ontology (GO) and pathway analyses for the lists of hypomethylated genes (a), hypermethylated genes (b), and all differentially methylated genes
(DMGs) (c) between CGCs of controls (C-CC, n = 3) and women with PCOS (P-CC, n = 3) have been shown in the figure. Analysis was carried out
using the GeneCodis3 web tool. Each chart represents the top ten pathways enriched in each of the three datasets
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background information, we had initially conducted a
pilot study to screen for the tissue-specific global DNA
methylation changes in PBLs and CGCs of controls and
women with PCOS. Here, subtle alterations were detected
in CpG methylation profiles of long interspersed nucleo-
tide element 1 (LINE1) in PCOS, and these changes were
found to be more prominent in CGCs of women with
PCOS, compared to PBLs [8]. Since LINE1s are
self-replicating transposons and occupy ~ 17% of the hu-
man genome, even slight changes in their methylation
patterns can be reflective of genomic dysregulation.
Therefore, the primary goal of this study was to identify
the genome-wide methylation differences in CGCs of
women with PCOS, at a single base resolution. GO ana-
lysis of the current methylome data revealed that genes
regulating cell growth, adhesion, differentiation, prolifera-
tion, cell polarity and fate determination, apoptosis, signal
transduction, transcription, post-translational modifica-
tions, protein binding, metal and nonmetal ion binding,
ATP binding, vesicular transport, etc., were differentially
methylated in PCOS (Additional file 3). The implications

of differential methylation observed in few of these identi-
fied genes, which may contribute to hyperandrogenism,
defects in COC expansion, oocyte maturation/and ovula-
tion, premature luteolysis, and oxidative stress observed in
PCOS, have been discussed here.

Androgen overproduction
CpG hypomethylation in genes such as AKR1C3, GHRHR,
MAMLD1 and RETN, and hypermethylation in TNF, which
can indirectly contribute to androgen excess, were consistent
with increased and decreased levels of the respective gene
transcripts (Figs. 2 and 3). AKR1C3 is a steroidogenic en-
zyme that converts androstenedione (A4) to biologically ac-
tive testosterone in non-testicular tissues [29]. In PCOS, the
increased expression of AKR1C3 and AKR1C3-mediated an-
drogen production, have been reported in the adrenal cortex
and visceral adipose tissues [29, 30]. This enzyme is also
expressed by GCs (both mural and cumulus granulosa cells)
of periovulatory follicles [31]. Since AKR1C3 expression
was found to be high in CGCs of women with PCOS, it
may contribute to the high androgen production in

A

B

Fig. 2 Transcript expression profiling of few differentially methylated genes identified by MC-Seq. Bar graphs representing transcript expression
profiles of 10 differentially methylated genes (DMGs) between CGCs (C-CCs) of controls (n = 17) and women with PCOS (P-CCs, n = 17) are shown in
the figure. Panel (a) represents transcript expression data of genes identified as hypomethylated in PCOS by NGS analysis while (b) shows transcript
profiling of hypermethylated genes. Fold change was evaluated using the 2-ΔΔCt method, where the expression was normalized to 18s levels, using a
CGC calibrator sample. Data are presented as “mean + SEM.” *P < 0.05, **P < 0.01, 'ns' denotes no significant change. Data are analyzed using the
Mann-Whitney U test.
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Fig. 3 Validation of CpG methylation status of a few differentially methylated genes identified by MC-Seq. The figure depicts “box and whisker”
plots for genes whose single CpG site was validated or “bar graphs” for genes in which validation was performed for CpG sites > 1. The plots
compare percent (%) methylation for the stated CpG sites between cumulus granulosa cells (CGCs) of controls (C-CC, n = 17) and women with
PCOS (P-CC, n = 17). Data for box plots are presented as whiskers ranging from minimum to maximum values and data for bar graphs are
presented as “mean + SEM” using the Mann-Whitney U test. *P < 0.05, **P < 0.01, 'ns' denotes no significant change.

Table 2 Correlation analysis of CpG methylation levels of selected genes with their transcript expression profiles

Gene name CpG site/s P value/FDR cutoff Methylation and transcript status by
pyrosequencing and qPCR

Correlation coefficient (R2); P value

AKR1C3 CpG-880 < 0.05 Hypomethylated upregulated − 0.53; 0.02*

CASR CpG-680 < 0.05 Hypomethylated upregulated − 0.74; < 0.0001*

GHRHR CpG-809 < 0.025 Hypomethylated upregulated − 0.669; 0.002*

CpG-721 − 0.501; 0.034

RETN CpG-177 < 0.05 Hypomethylated upregulated − 0.603; 0.029*

MAMLD1 CpG-129 < 0.016 Hypomethylated upregulated − 0.759; < 0.0001*

CpG-116 − 0.596; 0.007*

CpG-113 − 0.612; 0.005*

TNF CpG-242 < 0.025 Hypermethylated downregulated − 0.582; 0.011*

TF CpG-358 < 0.05 Hypomethylated downregulated − 0.162; 0.507

CpG sites that showed significant difference between controls and PCOS in Fig. 3 were analyzed. P values < FDR cutoff values are marked as significant (*)
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their ovaries. Next, GHRHR is a gene encoding the class B
GPCR subfamily receptor, which regulates the release of
somatotropin (GH) in the brain and other tissues includ-
ing the ovary, via binding to the hypothalamic neuropep-
tide GHRH [32, 33]. Although the classical ovarian
function of GH is to enhance sexual maturation at puberty
via binding to its receptors (GHRs) [34], the GH-GHR
interaction also stimulates the release of insulin-like
growth factor (IGF1) via transcriptional activation [34].
IGF1, like insulin, can increase LH production from the
pituitary and augment ovarian androgen synthesis in
PCOS [35, 36]. Additionally, hyperinsulinemia in PCOS is
known to increase the bioavailability of IGF1 via the
downregulation of its carrier protein, i.e., IGFBP1 [25, 34].
High levels of GH and IGF1 also increase the sensitivity of
developing follicles to gonadotropins [37, 38], and PCOS
follicles have been reported to exhibit increased sensitivity
and responsiveness to FSH [39]. As a result, the expres-
sion of LHCGR which is under the direct control of FSH
is found to be elevated in the follicles of women with
PCOS [13]. This can further augment LH-mediated ovar-
ian androgen production in PCOS. Thus, hypomethyla-
tion and overexpression of GHRHR observed in CGCs can
be an indirect mediator of androgen excess in PCOS
(Fig. 4). Further, the pro-inflammatory cytokine TNF,
which suppresses FSH-induced LHCGR promoter activa-
tion via NF-κB p65, was hypermethylated and low in
PCOS [40], thus also making it an additional factor con-
tributing to hyperandrogenemia.
Mutations in MAMLD1, a transcriptional coactivator,

have been reported to result in compromised androgen
synthesis during male fetal sexual development [41, 42].
However, information regarding a definite role of
MAMLD1, its regulation and mechanisms of action in
the context of other reproductive functions, is limited.
In a murine study, MAMLD1 knockout male mice
showed a reduced testosterone production in Leydig
tumor cells while the activation of MAMLD1 promoter
by the transcription factor, SF1, augmented testosterone
production via transactivation of the hairy/enhancer of
split 3 HES3 promoter [43]. We therefore propose that
MAMLD1 hypomethylation and upregulation of its tran-
script in CGCs may be important in contributing to an-
drogen excess in PCOS ovaries (Fig. 4). Next, increased
circulatory levels of the adipokine, RETN, which modu-
lates glucose tolerance and insulin action, have been
linked to a higher incidence of insulin resistance and
PCOS [44, 45]. However, there is some ambiguity re-
garding the role of RETN in PCOS, since its serum and
FF levels have been either found to be high or un-
changed in PCOS [46–48]. In theca cells, the
dose-dependent increase in RETN showed augmented
androgen production [49], while a RETN-like molecule
β impaired the glucose tolerance and insulin actions in

HEK293T cells and adipocytes [50]. Thus, the overex-
pression of RETN due to the hypomethylation of its pro-
moter may be an important factor contributing to the
androgen excess in PCOS (Fig. 4).

Oocyte development, ovulation, and COC matrix
expansion defects
Enrichment of calcium (Ca2+) signaling pathway and
pathways for regulation of cytoskeletal and focal adhe-
sion elements in our NGS analysis indicated impairment
of calcium homeostasis and cellular architecture in
CGCs of women with PCOS (Fig. 1, Additional file 3).
Ca2+ signaling pathways are crucial for the development
and maturation of healthy oocytes and CASR, which
is an important mediator of this pathway, responds to
subtle changes in extracellular Ca2+ concentrations and
activates or ameliorates the mobilization of intracellular
Ca2+ stored in tissues [51]. Expression and localization
of CASR have been reported in human oocytes and
CGCs, wherein it supposedly facilitates bidirectional
communication between these cells to either keep oo-
cytes arrested in MI phase, or assist in the full re-
sumption of their cytoplasmic and nuclear maturation
upon entering the MII phase [52]. Therefore, alter-
ations in CASR expression may affect oocyte matur-
ation and yield poor quality oocytes as seen in PCOS
(Fig. 4). In PCOS, so far, a single report exists on the
association of a CASR polymorphism (Hin1I) with al-
tered global calcium homeostasis [53]. Altered methy-
lation has been previously reported in human CASR
promoter in a few cancer conditions [54–56]. Our re-
sults indicate that altered CASR expression in CGCs
of PCOS women can be also influenced by altered
methylation.
TNF expression in CGCs has been reported to be ei-

ther unchanged or reduced in CGCs of women with
PCOS [57, 58]; however, its circulating levels have been
found to be high in their serum and FF [59, 60]. Few
studies demonstrated that treatment with high levels of
TNF increased GC apoptosis, impaired P4 production
from GCs, and caused other steroidogenic defects in
these cells [61–63]. However, these studies utilized TNF
at 10–20-fold higher doses relative to its physiological
levels. In alternate studies, optimal TNF levels have been
reported to impart a protective function in the mainten-
ance of bovine GCs and oocytes [64], facilitate ovulation
[65], and increase the GC proliferation in animal models
[66]. Decreased levels of endogenous TNF in GCs has
been attributed to diminished oocyte competence due to
a reduction in its downstream effector, i.e. tumor necro-
sis factor-inducible gene 6 (TNFAIP6) [25], as well as
compromised ovulation, and GC proliferation in ovarian
follicles [67]. Thus, lowered TNF in CGCs of women
with PCOS owing to hypermethylation, may hamper
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COC expansion and compromise ovulation. LIF, which
was hypermethylated and downregulated in our study,
has been reported to be low in FF and serum of women
with PCOS [68, 69]. LIF has demonstrated embryo-
trophic effects in mice and humans [70, 71], and de-
crease in its levels has shown a positive association with
low implantation rates and poor IVF outcome [68, 69].
Since dose-dependent administration of LIF also
showed induction of COC expansion and improvement
in oocyte competence in humans, it is imperative to in-
vestigate the role of epigenetics in the regulation of LIF
expression in women with PCOS. Our earlier data on
proteomics of FF in women with PCOS demonstrated
the downregulation of COC matrix proteins including

amphiregulin, TNFAIP6, and bikunin, whose diminished
expression is implicated in COC matrix expansion defects
[25]. Supporting these findings, we also observed hyper-
methylation and downregulation of HAPLN1, which is
also a COC matrix-associated protein. HAPLN1 facilitates
the expansion of COC matrix and imparts stability to the
COC complex by binding to other matrix proteins and
proteoglycans like hyaluronic acid, versican, aggrecan, and
IαI [72]. Exogenous treatment with HAPLN1 increased
the CGC viability in vitro and enabled their transform-
ation into granulosa lutein cells, while knockdown of
HAPLN1 decreased the cell viability [72]. Therefore, al-
tered HAPLN1 methylation may contribute to changes in
COC expansion dynamics in PCOS (Fig. 4).

Fig. 4 Altered gene methylation can contribute to ovarian dysfuncion. The figure summarizes some of the processes that could be dysregulated in
the follicular compartment of women, due to hypomethylation (indicated by green boxes) or hypermethylation (indicated by red boxes) of
genes in cumulus granulosa cells (CGCs). AKR1C3, aldo-keto reductase family 1 member C3; AR, androgen receptor; CASR, calcium-sensing receptor;
COC, cumulus-oophorus complex; FF, follicular fluid; FSH, follicle-stimulating hormone; FSHR, follicle-stimulating hormone receptor; GC, granulosa cells;
IGF1; insulin-like growth factor 1; INS, insulin; MGC, mural granulosa cells; GHRHR, growth hormone-releasing hormone receptor; HAPLN1, hyaluronan
and proteoglycan link protein 1; LH, luteinizing hormone; LHCGR, luteinizing hormone chorionic gonadotropin receptor; LIF, leukemia inhibitory factor;
MAMLD1, mastermind-like domain containing 1; PTGER1, prostaglandin receptor E1; RETN, resistin; TC, theca cells; TF, transferrin; TNF, tumor necrosis
factor alpha

Sagvekar et al. Clinical Epigenetics           (2019) 11:61 Page 9 of 16



Luteal insufficiency/premature luteolysis
Apart from being an androgen synthesizing enzyme,
AKR1C3 also acts as a prostaglandin F synthase (PGFS),
which catalyzes the conversion of the luteotrophic pros-
taglandins, PGD and PGE2, to a luteolytic form, i.e.,
PGF2α to facilitate luteolysis [29]. Luteal insufficiency
and premature luteolysis are frequent occurrences in
PCOS [73], and these have been linked to aberrations in
angiogenic mechanisms at the ovarian level [74]. Angio-
genesis is largely under the control of prostaglandins
[75, 76], and AKR1C family of enzymes are some major
regulators of prostaglandins [77]. Disparities in levels of
pro and anti-angiogenic factors in the ovary are largely
responsible for defects in follicle development, prema-
ture degeneration of oocytes, and regression of CL due
to an inefficient supply of oxygen and nutrients to the
growing follicles [74]. Both, our present data and FF
proteome study provide compelling evidence supporting
angiogenic dysregulation in the ovarian compartment
[25]. Since AKR1C3 has been implicated as a trigger for
premature luteolysis [78] and was found to be hypo-
methylated and high in PCOS follicles, it may serve as
an important epigenetic target to investigate this
phenomenon in PCOS, Till now, no clear evidence exists
on whether PGE2 or PGF2α levels are altered in PCOS.
However, our data shows that the receptor for PGE2
gene, i.e., PTGER1, was hypermethylated in NGS and its
transcript was low in CGCs of women with PCOS. Since
activation of PTGER1 by specific agonists has demon-
strated increased sprout formation in capillaries, both in
vivo and in vitro [79, 80], it can be an important factor
for the restoration of follicular angiogenesis. Also,
PTGER1 has been shown to stimulate progesterone bio-
synthesis in human GCs [81]. Since the follicles of PCOS
women lack optimum levels of progesterone required
for maintenance of CL, low levels of PTGER1 in PCOS
caused by promoter hypermethylation may explain this
shortcoming.

Oxidative stress
Lastly, TF, which maintains the oxido-reductive homeo-
stasis in proliferating cells and showed hypermethylation
in our NGS data, was found to be hypomethylated by
pyrosequencing, though its mRNA was downregulated
in PCOS. Therefore, methylation changes at other CpG
sites in TF promoter need to be analyzed. TF primarily
transports iron released from hepatic, intestinal, and re-
ticuloendothelial stores to the target tissues via its recep-
tor endocytosis while also alleviating local oxidative
stress, acting as a growth factor, and promoting follicle
and oocyte maturation [82, 83]. Low levels of TF in fol-
licular fluid of PCOS women have been previously re-
ported [84], which may lead to a higher prevalence of
unbound Fe2+; trigger oxidative damage to DNA, lipids,

and proteins; and contribute to oxidative stress, which is
reported in PCOS ovaries [85]. Figure 5 depicts a sum-
mary of biological processes which may be affected in
PCOS due to the altered methylation of genes in follicles
of women with PCOS.

Limitations
The primary limitation of this study was the low sample
size. A number of controls and women with PCOS ori-
ginally recruited for the study had to be excluded due to
the presence of confounding factors such as hyperpro-
lactinemia or thyroid dysfunction, and contamination of
FF with blood, or due to recent treatment with metfor-
min or thyroid medications. Further, women having low
CGC counts were also excluded as the quantities of nu-
cleic acids were insufficient for methylation and expres-
sion analyses. Also, since PCOS is a heterogeneous
disorder, investigation of epigenetic changes in a large
population based on phenotypic subgrouping of women
with PCOS (A, B, C, and D phenotypes) as per the Rot-
terdam consensus may provide more accurate informa-
tion on the effect of epigenetic components on PCOS
development. Due to our limited sample size, it was not
possible to carry out such subgrouping and subsequent
analyses.
Our findings highlight that MC-Seq could identify sev-

eral functionally important loci in CGCs, many of which
were either known to be functionally dysregulated in
PCOS ovary or have a compelling potential to be estab-
lished as novel candidates influenced by epigenetic
changes. The molecular sequelae of these alterations lead-
ing to ovarian dysfunction need to be further addressed
via robust functional studies in women with PCOS.

Materials and methods
Study design, participants, sample collection, and
estimated parameters
This study was carried out at the ICMR-National Insti-
tute for Research in Reproductive Health (NIRRH) as
per ethical norms. All participants were recruited from
the “Fertility Clinic and IVF Center” (Mumbai) after
obtaining written informed consents and underwent IVF
using a long, GnRH agonist protocol as reported earlier
[8]. We initially recruited 35 women with PCOS and 38
age-BMI-matched, healthy, and regularly menstruating
controls as per the Rotterdam consensus criteria [86].
Women showing normal ovarian morphology on ultra-
sound with no signs of hyperandrogenism or insulin re-
sistance, and undergoing COH strictly owing to
indications of male factor infertility in their spouses were
recruited as controls. Women recruited as PCOS had at
least 2 of the following 3 features, i.e., polycystic ovaries
(PCO) on ultrasound, irregularity/absence of menses,
and/or signs of hyperandrogenism during clinical
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screening, however the presence of PCO morphology
was used as a mandate for all women recruited as PCOS.
These women were carefully screened for their baseline
hormonal estimates and biochemical characteristics
using serum and follicular fluid samples (Table 1). Fur-
ther, we had to exclude samples of women who were on
metformin or thyroid medications, whose follicular fluid
had blood contamination and whose CGC counts were
low, since substantial amounts of DNA were required
for high-throughput methylome sequencing and bisulfite
PCRs. After this, 20 controls and 20 women with PCOS
were selected for the study (Table 1). Baseline hormonal
estimates (between days 3–7 of menstrual cycle) for LH,
FSH, prolactin, TSH, and AMH could be obtained from
IVF clinical records, while fasting serum and macroscop-
ically clear FF collected on d-OPU were assayed for E2,
P4, TT, and SHBG using commercial ELISA kits (Diag-
nostics Biochem Canada Inc., Dorchester, Ontario,
Canada). Androgen excess indices were calculated using
TT and SHBG values [8]. Upon follicle maturation, the
levels of E2 and P4, which are routinely measured 1 day
prior to and 1 day after rhCG administration (10,000 IU)
to monitor ovarian response, were also recorded. COCs

suspended in FF aspirates were separated from FF and
manually stripped off to dissociate the cumulus granu-
losa cells (CGCs) from their oocytes. CGCs were
washed, resuspended in ovum buffer, and transported
from IVF center to the lab at 37 °C for further process-
ing. The numbers of total retrieved oocytes and mature
oocytes (in the MII phase of meiosis) were obtained
from clinical records, and rates of fertilization of MII oo-
cytes were calculated.

Methyl-capture sequencing (MC-Seq) by NGS approach
and analysis of DMRs
From among the 20 women with PCOS and 20 controls
selected for the study, individual DNA samples of CGCs
from 3 PCOS women and 3 age-BMI-matched controls
having a total yield of > 2 μg were subjected to MC-Seq
using the NGS approach. Whole genomic DNA was ex-
tracted from CGCs of these women using QIAamp
DNA mini kit (Qiagen, Hilden, Germany) and processed
for library preparation. 1 μg of genomic DNA per sample
was sheared in fragments of approximately 150 bp using
the Covaris S220 ultrasonicator and further processed
for DNA end repair, 3′-adenylation, methylated adapter

Fig. 5 Summary of the genes and their associated processes found to be affected in PCOS due to altered DNA methylation. The figure
represents sa preovulatory follicle of women with PCOS, showing a few differentially methylated genes involved in the perpetuation of androgen
excess, premature luteolysis, impaired calcium signaling, COC defects, oxidative stress and angiogenic defects in the follicles of women with
PCOS as observed in our study. AKR1C3, aldo-keto reductase family 1 member C3; CASR, calcium-sensing receptor; COC, cumulus-oophorus
complex; FF, follicular fluid; FSH, follicle-stimulating hormone; FSHR, follicle-stimulating hormone receptor; GC, granulosa cells; IGF1; insulin-like
growth factor 1; INS, insulin; MGC, mural granulosa cells; GHRHR, growth hormone-releasing hormone receptor; HAPLN1, hyaluronan and
proteoglycan link protein 1; LH, luteinizing hormone; LHCGR, luteinizing hormone chorionic gonadotropin receptor; LIF, leukemia inhibitory factor;
MAMLD1, mastermind-like domain containing 1; PTGER1, prostaglandin receptor E1; RETN, resistin; TC, theca cells; TF, transferrin; TNF, tumor
necrosis factor alpha
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ligation, and hybridization to the Methyl-Seq library
probes using the SureSelect Methyl-Seq Library Prep
Kit (Agilent Technologies, CA, USA) as per the manu-
facturer’s instructions. The hybrids were captured using
streptavidin beads (Dynabeads) and subjected to bisulfite
conversion using the EZ-DNA Methylation Gold Kit
(Zymo Research, CA, USA). The library was PCR ampli-
fied, indexed using SureSelectXT Methyl-Seq indexing
primers (Agilent Technologies, CA, USA), and pooled
for 100 bp paired-end multiplexed sequencing on Illu-
mina HiSeq 2500 platform.

Processing and alignment of reads
Whole-genome targeted methylation sequencing reads
of the above six samples were aligned to human refer-
ence genome hg19 assembly. The hg19 reference gen-
ome was converted to a DNA methylation reference
genome, and genome indexing was performed using Bis-
mark genome preparation utility (v.14.3). The adapter
trimmed sequencing reads were aligned to the converted
methylation reference genome using Bismark tool with
two allowed mismatches. The remaining parameters
from Bismark were used as default. Further, deduplica-
tion of aligned reads was performed using “deduplicate_-
bismark” utility of Bismark tool.

Methylation analysis and functional annotation
Methylation extractor utility of Bismark tool was used to
extract the methylation call for every methylated cyto-
sine (C) in all three contexts: CpG, CHG, and CHH
(where H is A or C or T). Differential methylation ana-
lysis was performed using “calculateDiffMeth” function
of R-based methylKit package at q value cutoff threshold
of ≤ 0.01 and methylation difference ≥ 25%. Hierarchical
clustering of samples based on the similarity of their
methylation profile was performed using the euclidean
distance metric, and ward method clustering approaches
of methylKit package. Further, enrichment and annota-
tion of both hypo- and hypermethylated sites within up
10 kb of annotated transcription start site (TSS) to tran-
scription end site (UCSC hg19) were performed using
in-house perl scripts. GeneCodis3 web-based tool [87]
was used for gene ontology (GO) and pathway enrich-
ment analysis of the DMGs.

Selection of genes for validation studies
Genes showing differential methylation at CpG sites up-
stream up to 1000 bases relative to their TSS in our NGS
data were selected for validation. These included a total of
354 hypermethylated and 397 hypomethylated genes (total
n = 735 unique genes). The lists of these 735 genes, and
the 4354 genes enlisted in Ovarian Kaleidoscope (OKdb),
were compared using a Venn analysis, and a total of 132
genes that were common to both datasets could be

identified. OKdb is an online search tool based on
microarray-based transcriptome profiling and independ-
ent study reports on genes and proteins identified in ovar-
ian tissues and cells [88]. Upon identification of genes
common to our NGS dataset and OKdb, and a careful re-
view of literature, 7 genes participating in the perpetration
of androgen excess, impaired angiogenesis, luteal insuffi-
ciency, COC matrix defects, and oocyte defects, namely
AKR1C3, CASR, GHRHR, MAMLD1, RETN, TF, and TNF,
were selected for validation by both pyrosequencing and
qPCR. Additionally, the transcript expression profiles of
prostaglandin E receptor (PTGER1), leukemia inhibitory
factor (LIF), and hyaluronan and proteoglycan link protein
1 (HAPLN1), were evaluated in CGCs of controls and
PCOS women as supporting evidence for pathways associ-
ated with the above genes.

Extraction of nucleic acids from CGCs for qPCR and
pyrosequencing
Total DNA and RNA were extracted from CGCs of 17
controls and 17 women with PCOS using the NucleoS-
pin TriPrep kit (Macherey-Nagel, Düren, Germany) for
validation of the NGS data. The quality and yield of nu-
cleic acids were assessed by agarose gel electrophoresis
and by evaluating their spectrophotometric ratios at 260
and 280 nm. DNA samples were stored at − 20 °C while
RNA was stored at − 80 °C until further use.

cDNA synthesis and quantitative real-time PCR
cDNA was synthesized from 500 ng of RNA (n = 34) using
a first strand cDNA synthesis kit (Takara Bio USA Inc.).
Transcript levels of DMGs selected for validation
(Additional file 4) were assayed by TaqMan chemistry
using the TaqMan™ Universal Master Mix II with UNG,
and FAM-labeled probes (ThermoFisher Scientific, MA,
USA). Assay containing VIC-labeled 18s rRNA probe was
used as the housekeeping control. qPCR was carried out
using cDNA dilutions ranging between neat to 1:100. Fold
change in gene expression between controls and PCOS
was evaluated using the 2-ΔΔCt method, where the expres-
sion was normalized to 18s levels, using a CGC calibrator
sample.

Bisulfite primer design and pyrosequencing
Primers for the validation of selected genes were de-
signed on the Pyromark Q96 ID machine using the
PyroMark® Assay Design SW 2.0 software (Qiagen), the
list of which has been provided in Additional file 4.
Primers were procured from Sigma-Aldrich. The reverse
pyrosequencing primers were tagged with biotin at the
5′-end and HPLC purified. Approximately 300–500 ng
DNA from CGCs of 17 controls and 17 women with
PCOS was bisulfite converted using the MethylCode
bisulfite conversion kit (Invitrogen-ThermoFisher
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Scientific, MA, USA). The region of interest was ampli-
fied by two rounds of PCR. PCR product (1–3 μL from
total volume of 20 μL) from the first round was used as
template for the 2nd PCR round, which was scaled up to
45 μL. For both PCRs, initial denaturation was per-
formed at 95 °C for 15 min followed by 40 rounds of
amplification at 94 °C for 30s, annealing at the respective
optimized temperatures for 10s, and 72 °C for 60s with a
final extension at 72 °C for 10 min. Product amplification
after both rounds was confirmed by agarose gel electro-
phoresis. For pyrosequencing, 40 μL of the PCR product
was subjected to clean up on the Pyromark Q96ID se-
quencing workstation as per the manufacturer’s instruc-
tions and sequenced using 1.6 μL (16 picomoles) of each
of the gene-specific sequencing primers.

Statistical analysis
Mann-Whitney U tests were employed for all univariate
assessments of continuous variables including hormonal
and biochemical parameters, DNA methylation, and
transcript expression levels assessed between CGCs of
controls and women with PCOS. Correlation between
the CpG methylation status of genes and their respective
transcripts was determined using a two-tailed Spear-
man’s correlation coefficient. FDR cutoffs were applied
for genes showing multiple CpG sites as significant after
Mann-Whitney testing.

Additional files

Additional file 1: Hypomethylated CpG sites were representative of
2063 genes. (XLSX 408 kb)

Additional file 2: Hypermethylated sites were linked to a total of 1777
genes (XLSX 354 kb)

Additional File 3: Figure includes horizontal bar charts showing
components such as A) molecular functions, B) biological processes, and C)
cellular components that were most highly enriched in datasets obtained
for all differentially methylated, hypomethylated, and hypermethylated
genes identified in the NGS analysis. X-axis represents the number of genes
present within each annotated category. (TIF 901 kb)

Additional File 4: The table enlists pyrosequencing primer sets
designed to evaluate upstream/promoter CpG methylation in
differentially methylated genes (DMGs) selected for validation in controls
(C-CC, n = 17) and women with PCOS (P-CC, n = 17) and commercial
TaqMan Assay IDs used for validating the transcript expression levels of
selected DMGs in controls and women with PCOS. (DOCX 13 kb)
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Abstract

Ovarian primordial follicles are critical for female reproduction and comprise a finite pool of gametes arrested in
development. A systems biology approach was used to identify regulatory gene networks essential for primordial follicle
development. Transcriptional responses to eight different growth factors known to influence primordial follicles were used
to construct a bionetwork of regulatory genes involved in rat primordial follicle development. Over 1,500 genes were found
to be regulated by the various growth factors and a network analysis identified critical gene modules involved in a number
of signaling pathways and cellular processes. A set of 55 genes was identified as potential critical regulators of these gene
modules, and a sub-network associated with development was determined. Within the network two previously identified
regulatory genes were confirmed (i.e., Pdgfa and Fgfr2) and a new factor was identified, connective tissue growth factor
(CTGF). CTGF was tested in ovarian organ cultures and found to stimulate primordial follicle development. Therefore, the
relevant gene network associated with primordial follicle development was validated and the critical genes and pathways
involved in this process were identified. This is one of the first applications of network analysis to a normal developmental
process. These observations provide insights into potential therapeutic targets for preventing ovarian disease and
promoting female reproduction.
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Introduction

An emerging concern in the field of biomedical research is that

the common reductionist approach to studying biological

processes may not be adequate to fully understand the complex

interplay of cellular signaling, gene expression, and other complex

molecular processes that occur within a tissue or organ. Examples

of reductionist studies that have driven much of our understanding

of biological processes associated with complex phenotypes like

disease include the knockout mouse experiments and in vitro

cytokine treatment to assess the effects of gene-specific perturba-

tions on cell or tissue biology. Results from these types of studies

provide information on candidate regulatory factors, but typically

do not elucidate the network of factors or processes required for a

normal developmental biology or pathobiology. A holistic, systems

biology, approach to studying normal developmental processes

can be a powerful tool that is complementary to the more

reductionist experiments. In the spirit of a systems-based approach

to development, the current study was designed to identify gene

networks involved in ovarian primordial follicle development and

to characterize critical regulatory factors involved in this

development process.

In mammals, all the oocytes (eggs) that will be used over a

female’s lifetime are present in the ovary at birth in a finite pool.

These oocytes are arrested in prophase of the first meiotic division

and are each surrounded by flattened pre-granulosa cells to form a

structure called a primordial follicle [1]. During the reproductive

lifespan of a female, follicles gradually leave the arrested pool to

undergo a primordial to primary follicle transition. A follicle

undergoing follicle transition has an increase in oocyte diameter

and the associated granulosa cells proliferate and change from a

flattened to cuboidal in shape. Once primordial to primary follicle

transition has occurred the follicle either continues to develop to

the point of ovulation or undergoes atresia [1,2,3,4]. Previously

cell-to-cell communication with extra-cellular growth factors has

been shown to regulate the initiation of primordial follicle

development. These studies have primarily used a reductionist

approach to test candidate growth factors one at a time for their

ability to affect follicle transition. A number of paracrine growth

factors have been identified as having a role in early follicle

development (reviews [4,5]).

To move beyond examining single gene effects on this

development process, gene network analysis can be employed to

identify groups (e.g. modules) of genes whose expression is

regulated in a coordinated manner (gene network) [6,7,8]. In this

type of analysis, a biological system is surveyed in the context of

disease (or other interesting phenotypes) with microarrays multiple

times with and without perturbations that cause the system to

change. A novel bioinformatics analysis is used to identify modules

of genes associated with biological systems (bionetwork). The great

majority of network analyses have focused on disease states and

been used to better understand the systems biology of disease

processes and identify potential therapeutic targets [9,10,11,

12,13,14,15]. The current study was designed to determine if
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network analysis can be applied to study a normal development

process.

The current study used whole rat ovaries cultured in vitro in a

manner that allowed primordial to primary follicle transition. The

ovaries were treated with one of eight different growth factors

previously shown to regulate primordial follicle transition in

comparison to untreated control cultures. The mRNA was isolated

from the ovaries and used for microarray transcriptome analysis to

globally survey gene expression under these different treatment

conditions. The effects of each growth factor on gene expression

were analyzed to determine similarities and differences in gene

expression between the different growth factor treatments. Those

genes whose mRNA expression changed with any treatment were

subjected to network analysis to identify pathways and genes with

a high degree of connectivity between other genes and pathways.

From the networks constructed from these data we identified a list

of critical modules of regulated genes forming gene sub-networks

that were used to identify regulatory genes involved in primordial

follicle development. Not only were previously identified regula-

tory factors/genes associated with this process identified from this

network analysis, but a number of putative regulators of follicle

transition not previously associated with this process were also

determined. One of the new candidate genes, connective tissue

growth factor (Ctgf) [16], was tested experimentally and found to

promote primordial to primary follicle transition. Observations

demonstrate the utility of this network analysis to be used as a

systems biology approach to study normal developmental

processes in complex systems.

Results

Primordial Follicle Transcriptome Analysis
A number of regulatory factors have been shown to affect

primordial to primary follicle transition, including Amh [17,18],

Fgf2 [19,20,21], Bmp4 [22,23], Gdnf [24], Fgf7/KGF [25], Kitlg

[19,26,27], Lif [28] and Pdgfa [29]. In order to determine the

underlying gene networks and processes involved in primordial

follicle development, microarray analysis was performed on RNA

from whole rat ovaries treated for two days in vitro with each of

the above listed growth factors independently. There were three

independent RNA samples of pooled ovaries for each growth

factor treatment (except for GDNF, which had only two sample

replicates), and corresponding control samples for a total of 38

RNA samples. These were evaluated using 38 Affymetrix Rat

Gene 1.0 ST microarrays. The array data were analyzed together

using normalization and pre-processing described in the Methods.

Each growth factor treatment resulted in 79 to 349 genes with

altered expression compared to controls (Figure 1). The lists of the

genes affected by each treatment are presented in Table S1. There

were relatively few genes with altered expression in common

between the different treatments (Figure 1). Less than 10% of the

genes changed by any one growth factor treatment were found to

be changed in any other treatment. The exception was Fgf7/KGF,

which had a more than 30% overlap of altered genes with Amh.

There were no individual genes that changed expression levels

in response to more than three of the eight original treatments

(Table S1).

The complete list of genes whose expression levels changed with

any of the treatments was compared to curated lists of genes from

the KEGG database to identify processes that may be important

for primordial follicle development. Automated unbiased match-

ing of lists of affected genes to KEGG pathways was performed

with Pathway Express (Intelligent Systems and Bioinformatics

Laboratory; http://vortex.cs.wayne.edu/ontoexpress/). Pathways

heavily impacted by genes whose expression altered in response to

the growth factor treatments (Table 1) included pathways involved

in cell surface and extracellular matrix regulation (cell adhesion

molecules, adherens junction, focal adhesion, tight junction, gap

junction, regulation of actin cytoskeleton), known signaling

pathways (MAPK, notch, B-cell receptor, adipocytokine, toll-like

receptor, ErbB, GnRH, Wnt, hedgehog, VEGF, Jak-STAT, TGF-

beta, p53, insulin, PPAR), the complement cascade, axon

guidance, glycan structure biosynthesis and pathways listing cell

communication ligand-receptor interactions (cytokine-cytokine

receptor, neuroactive ligand-receptor, ECM-receptor). There

was a high degree of overlap of affected pathways between

different growth factor treatments (Figure 1). For the list of

pathways containing altered genes, from 70% to 82% of those

pathways are shared with at least one other treatment. Application

of the hypergeometrical Fisher Exact Test to assess whether the

number of overlapped pathways was significantly greater than

expected by chance, revealed that the majority were statistically

significant. The pathways containing altered genes from several

growth factor treatments are presented in Table 1. Although few

altered genes were found to overlap between different treatments

(Figure 1), each growth factor treatment influenced similar

pathways, Table 1 and Table S1. Therefore, each growth factor

affects similar pathways via different genes.

Bionetwork Analysis
The complete list of genes whose expression levels changed with

any growth factor treatment was subjected to a network analysis as

described in Methods. Potential batch effects for culture date,

RNA processing data and microarray performance date were

corrected during the analysis, with no major effect on the analysis.

The data were fit using a robust linear regression model (rim

function from R statistical package), and then the residuals with

respect to the model fit were carried forward in all subsequent

analysis. The network analysis scores each gene according to how

Figure 1. Number of genes and pathways overlapped between
signature (growth factor treatment group) lists. Total number of
differentially expressed genes for each growth factor is shown in dark
yellow column, number of genes overlapped between each pair of
signature lists – in light yellow columns. Total number of KEGG
pathways affected by each growth factor is shown in dark green row;
number of KEGG pathways overlapped for each pair of growth factors is
shown in light green row. CTGF analysis separate from the network
analysis.
doi:10.1371/journal.pone.0011637.g001
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well, under different treatments, its changes in gene expression are

correlated with the changes in expression of every other gene. This

gives a connectivity score for each gene. High connectivity scores

indicate that expression of this gene changes in concert with that of

many other genes. In addition, the network analysis identifies gene

modules in which the member genes have similar changes in

expression in response to the various growth factor treatments.

Gene modules are functional components of the network that are

often associated with specific biological processes. To identify

modules comprised of highly interconnected expression traits

within the co-expression network, we examined the topological

overlap matrix [30] associated with this network. The topological

overlap between two genes not only reflects their more proximal

interactions (e.g., two genes physically interacting or having

correlated expression values), but also reflects the higher order

interactions that these two genes may have with other genes in the

network. Figure 2 depicts a hierarchically clustered topological

overlap map in which the most highly interconnected modules in

the network are readily identified. The specific details of the gene

co-expression network analysis (Figure 2) are presented in the

Methods section. To identify gene modules (sub-networks)

formally from the topological overlap map, we employed a

previously described dynamic cut-tree algorithm with near optimal

performance on complicated dendrograms [31] (see Methods for

details). Figure 2 shows the topological overlap map of the co-

expression network with gene modules color-coded for the 16

modules identified. The membership of each module can be found

in Table S1. The sixteen modules contained 1,383 genes with the

remaining 157 genes (colored as gray) not failing into any module.

The pathways containing genes whose expression changed with

growth factor treatment were compared to the genes from each

module that were associated with specific pathways (Table 1 and

Table S1 for full list). For most pathways genes from several

network modules were present. However, several pathways were

associated with selected modules. For example, out of 19 altered

genes present in the focal adhesion pathway, seven were from the

turquoise module and seven from the brown. Similarly, of the five

altered genes in the Wnt signaling pathway three were from the

turquoise module. For the fifteen changed genes in the cell

adhesion molecule pathways three were from blue and three from

magenta modules. Those genes whose expression changed with

specific growth factor treatments were cross-matched with the

genes assigned to each network module to determine if specific

modules were heavily influenced by particular growth factors.

Interestingly, each module was biased toward having many genes

in common with selected growth factors (Table S1). In contrast,

some growth factor treatments induced changes in genes that were

distributed among several different modules.

In order to identify genes that could be key regulators of

primordial follicle development, a shorter list of candidate genes

was generated from the results of the network analysis. Six

modules were chosen for having the highest numbers of known

Figure 2. The ovary gene co-expression network and corresponding gene modules. A topological overlap matrix of the gene co-
expression network consisting of the 1540 genes regulated by the various growth factors. Genes in the rows and columns are sorted by an
agglomerative hierarchical clustering algorithm (see Methods). The different shades of color signify the strength of the connections between the
nodes (from white signifying not significantly correlated to red signifying highly significantly correlated). The hierarchical clustering (top) and the
topological overlap matrix strongly indicate highly interconnected subsets of genes (modules). Modules identified are colored along both column
and row and are boxed. The number of genes in each module is listed as size of module.
doi:10.1371/journal.pone.0011637.g002
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regulatory genes and pathways (yellow, turquoise, blue, brown,

red, purple). The top 10% of most connected transcripts in each of

the six modules were identified as potential important regulators

[13,15], except for the blue module for which the top 20% were

chosen since so many of that module’s most highly connected

transcripts were not annotated as genes. The compiled list

included 55 transcripts annotated as genes (Table 2), and these

genes were subjected to more intensive investigation.

An automated unbiased analysis of published scientific literature

was applied to the lists of differentially expressed genes described

above using Genomatix/BiblioSphere software, as described in the

Methods. Figure 3 shows a small integrated gene network among

the short list of the 55 candidate regulators (Table 2). These

relationships in literature raise the possibility that physiological

interactions exist between these genes. The gene Ctgf (Connective

tissue growth factor) was seen to relate to several other genes with

high connectivity, Figure 3. Interestingly, two of the identified

genes were previously shown to influence primordial follicle

development, Pdgfa [29] and Fgfr2 [19,20,21].

The entire set of 1540 transcripts differentially expressed with

growth factor treatment was also subjected to analysis using

BiblioSphere. Only 632 were recognized by BiblioSphere and 613

were connected. A diagram of literature relationships between

these genes is presented in Figure S1. Five major gene clusters

were identified as associated with Nfkb1, Vegfa, Gadd45a, Esr1

and Egfr1. This analysis is useful to compare with the expression

network analysis, but is biased toward the literature and finding

relationships among more heavily studied factors.

Analysis of CTGF Actions
Critical regulatory candidates for primordial follicle develop-

ment were selected due to their being differentially expressed in

response to treatment with growth factors, having a high

connectivity score, and being related in literature to other highly

connected genes. For the purpose of the current study, candidate

regulatory genes that were also extracellular growth factors were

considered. Therefore, CTGF was selected based on all these

criteria for further analysis. Experiments were performed to see if

CTGF could regulate primordial to primary follicle transition.

Ovaries from four-day old rats were treated with 50ng/ml CTGF

protein for ten days in an organ culture system as described in the

Methods (Figure 4A and 4B). Transforming growth factor beta 1

(TGFB1), which is known to interact with CTGF [32,33], was also

tested. Untreated cultured ovaries were used as a negative control,

and ovaries treated with 50ng/ml each of Kit ligand (KITL) and

Fibroblast growth factor 2 (FGF2) were used as a positive control.

CTGF treatment resulted in a significant (p,0.05) increase in

developing follicles compared to untreated controls, as did

treatment with the combination of KITL and FGF2 (Figure 4C).

TGFB1 had no effect, either alone or in combination with CTGF.

RNA was collected from CTGF and control cultured ovaries as

described in the Methods from three replicate experiments. The

RNA was used for microarray analysis using the same criteria as

for the other growth factors used in the network analysis. One

hundred fifty-five transcripts were differentially expressed in

CTGF-treated ovaries, Table S1. As was seen for the other

growth factors used in the network analysis, there was little overlap

of these changed genes with the genes showing changed expression

in response to any other growth factor treatment, Figure 1.

However, as seen among the other growth factors, there was a

high degree of overlap between the pathways impacted by CTGF

treatment and treatment with other growth factors (Figure 1).

Therefore, a critical regulatory gene predicted from the network

analysis was confirmed to regulate primordial follicle development.

Discussion

A systems biology approach was used to elucidate the changes in

gene expression that are important for ovarian primordial to

primary follicle transition. A gene network analysis was performed

on the ovarian transcriptomes following treatment with 8 different

growth factors. The rat ovary was used as a model system to test

the utility of this approach in investigating a normal developmen-

tal process. This is one of the first applications of network analysis

to a normal developmental process. The objective was to identify

critical regulatory factors and pathways in primordial follicle

development following a bionetwork analysis.

Microarray analysis determined the alterations in the ovarian

transcriptome that occurred in response to treatment of ovaries with

AMH, FGF2, BMP4, GDNF, FGF7, KITL, LIF, and PDGFB. All of

these have previously been shown to effect follicle transition

[17,18,19,20,21,22,23,24,25,26,27,28,29,34]. All these factors stimu-

late primordial follicle development except AMH that inhibits follicle

development. The presence of both positive and negative factors

provides a wider diversity of gene regulation to facilitate the network

analysis. As expected the AMH regulated gene set is more distinct

from the others. Surprisingly, there were few altered genes in

common between all these growth factors and there were no genes

that significantly changed in expression level in response to more than

three of the eight growth factors. In contrast, the physiological

processes impacted by these altered genes were found to have a

higher level of overlap. Since a pathway includes groups of genes, it is

expected that the overlap of pathways between growth factor

treatments will be higher. The overlap of pathways was markedly

high (70% to 82%) and statistically different, suggesting pathway

associations provide a predicted capacity to identify regulatory

factors. Certain pathways were significantly over-represented in the

pool of genes with changed expression. This suggests that there are

selected physiological pathways that are influenced by all the different

growth factors (Figure 5), but that each growth factor affects different

genes at different points in these pathways (Table 1). Multiple input

points into these physiological pathways could allow for more precise

regulation and more effective compensation between the growth

factors. Since many growth factors are acting in parallel to regulate

these pathways, any one pathway system is robust and maintains

function if one growth factor becomes inoperative. Since primordial

follicle development is essential for female reproduction, a complex

network of regulatory factors influencing different aspects of critical

signaling pathways has evolved.

For the eight growth factors evaluated the cellular processes

affected in common (Figure 5) included changes in cell contact,

morphogenesis, and cell proliferation and differentiation. These

are processes that are necessary for the morphological changes

that occur with primordial to primary follicle transition. During

follicle transition granulosa cells change from squamous to

cuboidal and the oocyte starts to grow in diameter (Figure 4B).

Unexpectedly, what was also seen as an important affected cellular

process was regulation of several key components of the

complement and coagulation cascades (Figure S2). These genes

are not known for having roles in ovary or follicle development,

and merit further investigation.

Gene networks provide a convenient framework for exploring the

context within which single genes operate. For gene networks

associated with biological systems, the nodes in the network typically

represent genes, and edges (links) between any two nodes indicate a

relationship between the two corresponding genes. An important

end product from the gene co-expression network analysis is a set of

gene modules which member genes are more highly correlated with

each other than with genes outside a module. It has been

Primordial Follicle Bionetwork
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Table 2. List of 55 Candidate Regulatory Genes.

Function GeneSymbol GeneBank Probeset k.in* Module
Regulation by
Growth Factor GeneTitle

Apoptosis Bcl2l10 NM_053733 10911690 10.0 red KL-dwn BCL2-like 10

Cell Cycle Cdkn2c NM_131902 10878705 7.6 red KL-dwn CDK4 inhibitor 2C

ECM Cdh3 NC_005118 10807525 28.0 turq AMH-dwn cadherin 3, type 1, P-cadherin

Col11a1 AJ005396 10818502 20.6 brown KL-dwn collagen, type XI, alpha 1

Krt19 NM_199498 10747262 25.2 turq AMH-dwn keratin 19

Lama5 NC_005102 10852270 30.9 turq AMH-dwn laminin, alpha 5

Development Bnc2 NM_001106666 10877880 26.5 turq AMH-dwn basonuclin 2

Emx2 NM_001109169 10716454 27.5 turq KGF-dwn empty spiracles homeobox 2

Usmg5 NM_133544 10730633 13.5 blue AMH, GDNF-dwn muscle growth 5 homolog (mouse)

Epigenetics Dnmt1 NM_053354 10915437 22.9 brown KL-dwn DNA (cytosine-5-)-methyltransferase 1

Golgi B4galt6 NM_031740 10803394 11.7 blue AMH-dwn, KGF-dwn galactosyltransferase, polypeptide 6

Growth Factors Ctgf NM_022266 10717233 8.2 blue KGF-up, LIF-dwn connective tissue growth factor

Il16 NM_001105749 10723351 31.9 turq AMH-dwn, KGF-dwn interleukin 16

Pdgfa NM_012801 10757129 27.0 turq AMH-dwn, KGF-dwn platelet-derived growth factor

Immune LOC287167 NM_001013853 10741765 21.6 brown KL-dwn globin, alpha

Metabolism Cacna2d3 NM_175595 10789819 19.9 brown KL-dwn calcium channel

Hbq1 XM_001061675 10741761 24.0 brown KL-dwn hemoglobin, theta 1

Hhatl NM_001106868 10914424 15.7 yellow PDGF-up hedgehog acyltransferase-like

Hmgcs2 NM_173094 10817759 19.5 brown KL-dwn Coenzyme A synthase 2

Hsd11b1 NM_017080 10770795 17.0 yellow BMP4-dwn hydroxysteroid 11-beta dehydro

Kirrel NM_207606 10824123 14.1 yellow AMH-dwn kin of IRRE like (Drosophila)

Plod2 NM_175869 10912255 18.3 brown KL-dwn procollagen lysine, 2-oxoglutarate

Podxl NM_138848 10861662 26.6 turq AMH-dwn, KGF-dwn podocalyxin-like

Scn3a NM_013119 10845809 17.4 brown KL-dwn sodium channel, type III, alpha

Slc4a4 NM_053424 10775997 29.0 turq AMH-dwn, KGF-dwn solute carrier family 4

Slc7a5 NM_017353 10811531 15.6 yellow PDGF-up solute carrier family 7

Slc29a1 NM_031684 10921833 15.4 yellow PDGF-up solute carrier family 29

Eno1 NM_012554 10874152 9.0 purple PDGF-up enolase 1, (alpha)

Receptors Axl NM_031794 10719900 15.4 yellow BMP4-dwn Axl receptor tyrosine kinase

Ednrb NM_017333 10785724 20.7 brown KL-dwn endothelin receptor type B

Fgfr2 NM_012712 10726172 30.8 turq AMH-dwn, KGF-dwn fibroblueast growth factor receptor 2

Itgb3bp NM_001013213 10878272 11.0 blue GDNF-dwn integrin beta 3 binding protein

Plxna4a NM_001107852 10861678 30.9 turq AMH-dwn, KGF-dwn plexin A4, A

Tmem151a NM_001107570 10727725 26.2 turq AMH-dwn, KGF-dwn transmembrane protein 151A

Signaling Nrgn NM_024140 10916228 16.1 yellow AMH, KGF-dwn, PDGF-up neurogranin

Dusp4 NM_022199 10792035 17.3 yellow AMH-dwn dual specificity phosphatase 4

Dusp6 NM_053883 10895144 16.6 yellow BMP4-dwn dual specificity phosphatase 6

Efna5 NM_053903 10930204 15.0 yellow AMH, GDNF-dwn ephrin A5

Map3k1 NM_053887 10821276 26.8 turq KGF-dwn mitogen activated protein kinase

Pde7b NM_080894 10717069 17.8 brown KL-dwn phosphodiesterase 7B

Rem1 NM_001025753 10840861 14.5 yellow PDGF-up RAS (RAD and GEM)-like

Shc4 NC_005102 10849423 17.0 yellow AMH-dwn SHC family, member 4

Ubash3b AC_000076 10916476 16.9 yellow PDGF-up ubiquitin associated

Transcription Btg4 NM_001013176 10909937 7.4 red KL-dwn B-cell translocation gene 4

Etv5 NM_001107082 10752034 14.4 yellow AMH-dwn ets variant 5

Fbxo15 NM_001108436 10803025 11.9 red KL-dwn F-box protein 15

Misc. & Unknown Depdc2 NM_001107899 10875023 29.5 brown KL-dwn DEP domain containing 2

Fam154a AC_000073 10877890 11.4 red KL-dwn similarity 154, member A

LOC686725 AC_000076 10915208 25.9 turq AMH-dwn hypothetical protein LOC686725
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demonstrate that these types of modules are enriched for known

biological pathways for genes that associate with disease traits and

for genes that are linked to common genetic loci [6,35].

The current study employed a weighted gene co-expression

network approach that has been extensively used for uncovering

biologically meaningful gene modules [7,13,15] to explore novel

pathways involved in primordial follicle development. An unsuper-

vised and unbiased approach was used to nominate potential

regulatory candidates for these modules based on gene network

connectivity. The connectivity score shows how well under different

treatments the changes in gene expression for a gene are correlated

with the changes in expression for every other gene. In the current

study, the gene co-expression network analysis helped select 55

highly connected genes for further functional analysis. An

automated literature search of these 55 genes revealed a sub-

network relationship among them as presented in Figure 3. This

sub-network suggested regulatory roles for Pdgfa and Fgfr2 (the

receptor) for Fgf2 and Fgf7 (KGF). PDGF, KGF/FGF7 and FGF2

proteins have previously been shown to regulate primordial to

primary follicle transition [29,34]. Therefore, the bionetwork

predicted to be involved in the regulation of primordial follicle

development identified two previously known regulatory factors

which validated the utility of the network analysis for identifying

candidate regulatory genes, consistent with previous network studies

[13,15]. This sub-network also identified connective tissue growth

factor (Ctgf) [16,36] as a putative regulator of primordial follicle

development. An ovarian organ culture experiment confirmed that

CTGF promotes primordial to primary follicle transition. There-

fore, a regulatory factor predicted to be important for primordial

follicle development was confirmed to be involved which further

validated the bionetwork approach. A microarray analysis of

CTGF-treated ovaries showed an altered gene set similar to those of

the other growth factors known to regulate follicle transition. These

observations validate the network-based systems biology approach

to elucidate the regulation of a complex developmental process.

Consideration of the 55 intra-module hub genes from critical

regulatory modules revealed a number of signaling and cellular

processes were influenced, Figure 5 and Figure S3. In the growth

factor/chemokine family Pdgfa and Ctgf were confirmed to be

involved. The IL16 identified is currently being investigated as a

potential regulatory candidate. The specific genes identified in

Table 2 and associated regulatory processes provide potential

therapeutic targets to regulate primordial follicle development.

The ability to inhibit or stimulate primordial follicle development

with a therapeutic treatment has a number of clinical applications.

A delay in primordial follicle development and maintenance of the

primordial pool could delay the onset of menopause and extend

the reproductive life span of a female. In addition, the ability to

therapeutically inhibit primordial follicle development would

provide a treatment for premature ovarian failure, a disease when

the primordial pool is lost early in life causing female infertility. In

contrast, the therapeutic stimulation of primordial follicle

development could treat forms of female infertility [4]. The

induction of primordial follicle development also could promote

the loss of the primordial pool and induce female sterility. The

bionetwork identified in the current study produced a number of

potential therapeutic targets to manipulate primordial follicle

development and female reproductive capacity.

The systems biology approach taken with this network analysis

of primordial follicle development identified clusters and modules

of genes involved in this critical development process. A number of

the growth factors previously shown to be involved (e.g. PDGF

and bFGF) were identified, but other factors known to be

important for ovarian development were not identified. Often a

reductionist approach such as a knockout mouse model can

Function GeneSymbol GeneBank Probeset k.in* Module
Regulation by
Growth Factor GeneTitle

RGD1306186 BC090317 10881318 9.2 red KL-dwn similar to RIKEN cDNA 4930569K13

RGD1306622 XM_001074493 10728647 32.6 turq AMH-dwn, KGF-dwn similar to KIAA0954 protein

RGD1308023 XR_006437 10850490 17.6 brown KL-dwn, LIF-dwn similar to CG5521-PA

RGD1566021 AC_000086 10800122 19.6 brown KL-dwn similar to KIAA1772

Short list of 55 genes that are the most connected genes with known functions in the modules of interest.
Selected from the top 10% most connected genes in each module (except blue module for which considered top 20% as many hubs are not annotated. Abbreviations
used: dwn - down-regulated; up - up-regulated; (*)- k in. is connectivity coefficient obtained/calculated in network analysis.
doi:10.1371/journal.pone.0011637.t002

Table 2. Cont.

Figure 3. Sub-network connection scheme for the most highly
connected 55 candidate genes obtained by global literature
analysis. Only 15 connected genes from the list of 55 are shown, while
the rest are not connected and not shown. Red and yellow colors
represent up-regulated genes, blue and turquoise colors – down-
regulated genes.
doi:10.1371/journal.pone.0011637.g003
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identify a factor as being important for the maintenance of tissue

development or function, but this does not mean the factor is

regulated during the process. In addition, critical developmental

processes such as primordial follicle development often have a set

of compensatory factors that have evolved such that loss of any one

will still allow the process to proceed. Therefore, knockout models

often do not have phenotypes for these factors. This does not mean

the factor is not important, but instead that the developmental

process is essential and thus multiple factors compensate to assure

the developmental process occurs. The current study takes a

systems biology approach to identify networks of genes involved in

the process without the bias of a reductionist model. Therefore,

novel groups of factors and cellular processes were identified that

now require further investigation.

The integrative analysis revealed a gene sub-network involved

in primordial follicle development to elucidate the basic develop-

mental biology of this process and provide potential therapeutic

targets for ovarian disease and function. This sub-network was

validated by the presence of two genes previously identified as

being important. A new gene identified, Ctgf, was tested and

found to regulate primordial follicle development. Therefore, the

network based systems biology approach was partially validated

for a normal developmental process. This type of approach will

likely be invaluable to study development on a systems biology

level in the future.

Materials and Methods

Ovarian organ culture
Four-day old female Sprague-Dawley rats (Harlan Laborato-

ries, Inc., USA) were euthanized according to the laboratories

Washington State University IACUC approved (#02568-014)

Figure 4. Analysis of the role of CTGF in primordial follicle transition. A) Hematoxylin-eosin stained ovary sections showing a representative
arrested primordial follicle (left), and a developing primary follicle after having undergone primordial to primary follicle transition (right). B) Graphic
representation of primordial and primary follicles. C) Effect of CTGF on cultured ovaries. Ovaries were cultured for 10 days with the treatments
indicated. Ovarian histological analysis determined the percentage of primordial versus developing follicles for each ovary. Bars are the mean percent
developing follicles 6 SEM. N = 5–7 per treatment from four different replicate experiments. Asterisks indicate a significant (*p,0.05 or ***p,0.01)
difference from control by Dunnet’s post-hoc test after a significant result of ANOVA.
doi:10.1371/journal.pone.0011637.g004
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protocols and the ovaries removed and cultured whole as

described previously [24]. Four-day old rat ovaries contain

almost exclusively primordial follicles. For ovary culture

experiments in which ovarian RNA was collected, 2–3 ovaries

per well were cultured with media changes every 24 hours for

two days in the absence (controls) or presence (treated) of either

AMH (human Anti-Mülerian hormone)(50ng/mL, R&D Sys-

tems Inc., USA), FGF2 (rat Fibroblast growth factor 2)(50ng/

mL, R&D Systems Inc., USA), BMP4 (human Bone morpho-

genetic protein 4)(50ng/mL, R&D Systems Inc., USA), GDNF

(rat Glial derived neurotrophic factor)(50ng/mL, Calbiochem,

USA), FGF7 (human fibroblast growth factor 7/keratinocyte

growth factor)(50ng/mL, R&D Systems Inc., USA), KITLG

(mouse Kit ligand)(50ng/mL, R&D Systems Inc., USA), LIF (rat

leukemia inhibitory factor)(50ng/mL, Chemicon/Millipore,

USA), PDGF-AB (rat platelet derived growth factor AB

heterodimer)(50ng/mL, R&D Systems Inc., USA), TGFb1

(human transforming growth factor beta 1)(50ng/mL, R&D

Systems Inc., USA) or CTGF (human connective tissue growth

factor)(50ng/mL, PeproTech Inc., NJ USA). After only two days

of culture there are no morphological differences between

control and growth factor-treated ovaries, so measurements of

whole-ovary gene expression reflect differences in RNA tran-

scription, rather than differing proportions of cell types due to

differing cell proliferation between treatments.

In order to determine the effect of CTGF on primordial to

primary follicle development, ovaries were cultured as above for

ten days in the absence or presence of CTGF (50ng/mL), alone or

in combination with TGF-beta1 (50ng/mL). After culture ovaries

were fixed with Bouin’s solution, paraffin embedded, sectioned

onto microscope slides and stained with hematoxylin and eosin as

described previously [24].

Morphometric Analysis
The number of follicles at each developmental stage was counted

and averaged in two serial sections from the largest cross-section

through the center of the ovary. Total follicle number has not been

found to change between treatment groups. Rather, only the

percentage of follicles at each developmental stage changes with

treatment [28,34]. KL was used as a positive control for the organ

culture experiments. Follicles in ovarian cross sections were

classified as primordial (stage 0), or developing (stages 1–4: early

primary, primary, transitional and preantral) as previously de-

scribed [37]. Primordial follicles consist of an oocyte arrested in

prophase I of meiosis that is partially or completely encapsulated by

flattened squamous pregranulosa cells. Early transition primary

follicles have initiated development (i.e., undergone primordial to

primary follicle transition) and contain at least two cuboidal

granulosa cells. Primary and preantral follicles exhibit one or more

complete layers of cuboidal granulosa cells. Four-day old ovaries

Figure 5. Scheme of direct connections to cellular processes for the 55 candidate regulatory genes obtained by global literature
analysis. Only 19 connected genes from the list of 55 are shown, the rest are not connected and not shown. Node shapes code: oval and circle –
protein; crescent – protein kinase and kinase; diamond – ligand; irregular polygon – phosphatase; circle/oval on tripod platform – transcription factor;
ice cream cone – receptor. Red color represents up-regulated genes, blue color – down-regulated genes, grey rectangles represent cell processes;
arrows with plus sign show positive regulation/activation, arrows with minus sign – negative regulation/inhibition.
doi:10.1371/journal.pone.0011637.g005
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contain predominately primordial follicles [26,38]. Hematoxylin/

eosin stained ovarian sections were analyzed at 4006magnification

using light microscopy. Follicles containing degenerating red eosin-

stained oocytes were not counted.

RNA preparation
RNA was isolated from whole rat ovaries after homogenization

in one ml TrizolTM reagent (Sigma-Aldritch, USA), according to

manufacturer’s instructions. Two or three ovaries from the same

culture well (from different rat pups out of the same litter) and

receiving the same treatment were pooled and homogenized

together. On any given day a culture experiment was performed,

the treatment groups included untreated control ovaries and one

to three different growth factor treatments. Homogenized samples

were stored at 270 C until the time of RNA isolation. After

isolation from Trizol, RNA was further purified using RNeasy

MinElute Cleanup Kits (Qiagen, USA) and stored in aqueous

solution at 270 C.

Microarray Analysis
The microarray analysis was performed by the Genomics Core

Laboratory, Center for Reproductive Biology, Washington State

University, Pullman, WA using standard Affymetrix reagents and

protocol. Briefly, mRNA was transcribed into cDNA with random

primers, cRNA was transcribed, and single-stranded sense DNA

was synthesized which was fragmented and labeled with biotin.

Biotin-labeled ssDNA was then hybridized to the Rat Gene 1.0 ST

microarrays containing 27,342 transcripts (Affymetrix, Santa

Clara, CA, USA). Hybridized chips were scanned on Affymetrix

Scanner 3000. CEL files containing raw data were then pre-

processed and analyzed with Partek Genomic Suite 6.3 software

(Partek Incorporated, St. Louis, MO) using an RMA GC-content

adjusted algorithm. Raw data pre-processing was performed in 2

groups. The first group containing 38 samples CEL files were pre-

processed in Partek all together as one experiment. Comparison of

all array histogram graphs demonstrated the data for all 38 chips

were similar and appropriate for further analysis. The second

group of samples for microarray analysis consisting of 3 CTGF-

treated and 3 corresponding control ovaries was run, pre-

processed and analyzed post factum, separately from the rest of

the samples as a result of a discovery from network analysis. Partek

pre-processing algorithm for these 6 CEL files used the same

criteria as used for the first group.

The microarray quantitative data involves over 10 different

oligonucleotides arrayed for each gene and the hybridization must

be consistent to allow a statistically significant quantitative

measure of gene expression and regulation. In contrast, a

quantitative PCR procedure only uses two oligonucleotides and

primer bias is a major factor in this type of analysis. Therefore, we

did not attempt to use PCR based approaches as we feel the

microarray analysis is more accurate and reproducible without

primer bias such as PCR based approaches.

All microarray CEL files (MIAME compliant raw data) from

this study have been deposited with the NCBI gene expression and

hybridization array data repository (GEO, http://www.ncbi.nlm.

nih.gov/geo) (GEO Accession number: GSE20324), all arrays

combined with one accession number, and can be also accessed

through www.skinner.wsu.edu. For gene annotation, Affymetrix

annotation file RaGene1_0stv1.na30.rn4.transcript.csv was used

unless otherwise specified.

Network analysis
The network analysis was restricted to genes differentially

expressed between the control and the treatment groups based on

previously established criteria: (1) fold change of group means

$1.2 or #0.83; (2) T test p-value #0.05; and (3) absolute

difference of group means $10. The union of the differentially

expressed genes from the different treatments resulted in 1,540

genes being identified and used for constructing a weighted gene

co-expression network [7,8]. Unlike traditional un-weighted gene

co-expression networks in which two genes (nodes) are either

connected or disconnected, the weighted gene co-expression

network analysis assigns a connection weight to each gene pair

using soft-thresholding and thus is robust to parameter selection.

The weighted network analysis begins with a matrix of the Pearson

correlations between all gene pairs, then converts the correlation

matrix into an adjacency matrix using a power function f(x) = xb.

The parameter b of the power function is determined in such a

way that the resulting adjacency matrix (i.e., the weighted co-

expression network), is approximately scale-free. To measure how

well a network satisfies a scale-free topology, we use the fitting

index proposed by Zhang & Horvath [7] (i.e., the model fitting

index R2 of the linear model that regresses log(p(k)) on log(k) where

k is connectivity and p(k) is the frequency distribution of

connectivity). The fitting index of a perfect scale-free network is

1. For this dataset, we select the smallest b ( = 7) which leads to an

approximately scale-free network with the truncated scale-free

fitting index R2 greater than 0.75. The distribution p(k) of the

resulting network approximates a power law: p(k),k21.29.

To explore the modular structures of the co-expression network,

the adjacency matrix is further transformed into a topological

overlap matrix [30]. As the topological overlap between two genes

reflects not only their direct interaction, but also their indirect

interactions through all the other genes in the network. Previous

studies [7,30] have shown that topological overlap leads to more

cohesive and biologically meaningful modules. To identify

modules of highly co-regulated genes, we used average linkage

hierarchical clustering to group genes based on the topological

overlap of their connectivity, followed by a dynamic cut-tree

algorithm to dynamically cut clustering dendrogram branches into

gene modules [39]. A total of sixteen modules were identified and

the module size was observed to range from 20 to 194 genes.

To distinguish between modules, each module was assigned a

unique color identifier, with the remaining, poorly connected

genes colored grey. The hierarchical clustering over the topolog-

ical overlap matrix (TOM) and the identified modules is shown. In

this type of map, the rows and the columns represent genes in a

symmetric fashion, and the color intensity represents the

interaction strength between genes. This connectivity map

highlights that genes in the ovary transcriptional network fall into

distinct network modules, where genes within a given module are

more interconnected with each other (blocks along the diagonal of

the matrix) than with genes in other modules. There are a couple

of network connectivity measures, but one particularly important

one is the within module connectivity (k.in). The k.in of a gene was

determined by taking the sum of its connection strengths (co-

expression similarity) with all other genes in the module which the

gene belonged.

Gene Co-expression Network Analysis Clarification
Gene networks provide a convenient framework for exploring

the context within which single genes operate. Networks are

simply graphical models comprised of nodes and edges. For gene

co-expression networks, an edge between two genes may indicate

that the corresponding expression traits are correlated in a given

population of interest. Depending on whether the interaction

strength of two genes is considered, there are two different

approaches for analyzing gene co-expression networks: 1) an
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unweighted network analysis that involves setting hard thresholds

on the significance of the interactions, and 2) a weighted approach

that avoids hard thresholds. Weighted gene co-expression

networks preserve the continuous nature of gene-gene interactions

at the transcriptional level and are robust to parameter selection.

An important end product from the gene co-expression network

analysis is a set of gene modules in which member genes are more

highly correlated with each other than with genes outside a

module. Most gene co-expression modules are enriched for GO

functional annotations and are informative for identifying the

functional components of the network that are associated with

disease [6].

This gene co-expression network analysis (GCENA) has been

increasingly used to identify gene sub-networks for prioritizing

gene targets associated with a variety of common human diseases

such as cancer and obesity [11,12,13,14,15]. One important end

product of GCENA is the construction of gene modules comprised

of highly interconnected genes. A number of studies have

demonstrated that co-expression network modules are generally

enriched for known biological pathways, for genes that are linked

to common genetic loci and for genes associated with disease

[6,7,11,13,14,15,40,41,42]. In this way, one can identify key

groups of genes that are perturbed by genetic loci that lead to

disease, and that define at the molecular level disease states.

Furthermore, these studies have also shown the importance of the

hub genes in the modules associated with various phenotypes. For

example, GCENA identified ASPM, a hub gene in the cell cycle

module, as a molecular target of glioblastoma [15] and

MGC4504, a hub gene in the unfolded protein response module,

as a target potentially involved in susceptibility to atherosclerosis

[13].

Pathway Analysis
Resulting lists of differentially expressed genes for each growth

factor treatment as well as for each module generated in the

network analysis were analyzed for KEGG (Kyoto Encyclopedia

for Genes and Genome, Kyoto University, Japan) pathway

enrichment using Pathway-Express, a web-based tool freely

available as part of the Onto-Tools (http://vortex.cs.wayne.edu)

[43]. Global literature analysis of various gene lists was performed

using BiblioSphere PathwayEdition (Genomatix Software GmbH,

Munchen, Federal Republic of Germany) software which performs

pathway and interaction analysis and labels genes which belong to

certain known metabolic and signal transduction pathways. A

program based on literature analysis Pathway Studio (Ariadne,

Genomics Inc. Rockville MD) was used to evaluate cellular

processes connected to differentially expressed genes.

Supporting Information

Figure S1 Network scheme for 1540 differentially expressed

genes obtained by global literature analysis using BiblioSphere

Pathway Edition Software (Genomatix Software GmbH,

Munchen, Federal Republic of Germany). Different node colors

represent different modules. A - the whole scheme clearly indicates

5 distinguished groups of genes (each group is shown separately on

pp. 2–6) connected to 5 central genes: Nfkb1 (B, page 2), Vegfa (C,

page 3), Egfr (D, page 4), and Gadd45a (F, page 6). Only

connected genes are shown.

Found at: doi:10.1371/journal.pone.0011637.s001 (2.07 MB

PDF)

Figure S2 KEGG Pathway ‘‘Complement and Coagulation

Cascades’’ enriched by regulated genes from 1,540 gene list. Red

nodes represent up-regulated genes, blue - down-regulated, green -

not affected genes.

Found at: doi:10.1371/journal.pone.0011637.s002 (0.07 MB

PDF)

Figure S3 Scheme of shortest connections to cellular processes

for 55 candidate regulatory genes, as obtained by global literature

analysis using Pathway Studio 7.0 (Ariadne Genomics, Inc.,

Rockville, MD; trial version). Only 22 connected genes from the

list out of 55 are shown, the rest from the list are not connected

and not shown. Node shapes code: oval and circle - protein;

crescent - protein kinase and kinase; diamond - ligand; irregular

polygon - phosphatase; circle/oval on tripod platform - transcrip-

tion factor; ice cream cone - receptor. Red color represents up-

regulated genes, blue color - down regulated genes, grey nodes

represent genes closely connected (next neighbor) to the list genes;

grey rectangles represent cell processes; arrows color: grey solid or

dotted - regulation, blue - expression, green - promoter binding;

arrows with plus sign show positive regulation/activation, arrows

with minus sign - negative regulation/inhibition.

Found at: doi:10.1371/journal.pone.0011637.s003 (0.35 MB

PDF)

Table S1 Rat Genes Expressed Differentially After Growth

Factor Treatment of Ovary. Legends: * - absolute value of

difference between means of Control and GF Treatment

expression values ** - abbreviations used for modules’ color: trq

-turquoise; brw - brown; blu- blue; ylw- yellow; prp - purple; gr -

grey; grn - green; grlw - green-yellow; blc- black; mbl - midnight-

blue; slm - salmon; lcn - light cyan; ***- k in. is connectivity

coefficient determined in network analysis.

Found at: doi:10.1371/journal.pone.0011637.s004 (1.37 MB

PDF)
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