Spring 2024 – Systems Biology of Reproduction Lecture Outline – Ovarian Systems Biology Michael K. Skinner – Biol 475/575 CUE 418, 10:35-11:50 am, Tuesday & Thursday February 27, 2024 Week 8

Ovarian Systems Biology

Cell Biology of the Ovary -Cell types/organization -Developmental stages (Folliculogenesis) -Atresia/apoptosis -Oogenesis

Regulation of Folliculogenesis -Growth properties of ovarian follicles -Local production and action of growth factors -Growth regulations during development -Primordial follicle transition

Endocrine Regulation of Tissue Function -Gonadotropin actions (Pituitary/Gonadal Axis) -Steroid production and action -Two cell theory modifications -Hormone actions during development

Cell-Cell Interactions -Categorization of different cell-cell interactions in the ovary -Growth factor regulation follicle development -Oogenesis and systems biology

Required Reading

Bahr JM. (2018) Ovary, Overview. in: Encyclopedia of Reproduction 2nd Edition, Ed: MK Skinner. Elsevier. Vol 2: 3-7.

REFERENCES

Hammami B, Mostafavi FS, Akbari A, Mousavi SR, Kazemi M. Evaluation of the expression profile of mRNAs and lncRNAs in cumulus cells associated with polycystic ovary syndrome and pregnancy. Iran J Basic Med Sci. 2023;26(10):1144-1154.

- Ghafouri F, Sadeghi M, Bahrami A, et al. Construction of a circRNA- lincRNA-lncRNA-miRNAmRNA ceRNA regulatory network identifies genes and pathways linked to goat fertility. Front Genet. 2023 Jul 21:14:1195480.
- Hossain Md A, Ashik SAA, Mahin MR, et al. Systems biology and in silico-based analysis of PCOS revealed the risk of metabolic disorders. Heliyon. 2022 Dec 22;8(12):e12480.
- Das A, Destouni A. Novel insights into reproductive ageing and menopause from genomics. Hum Reprod. 2023 Feb 1;38(2):195-203.
- Machlin JH, Shikanov A. Single-cell RNA-sequencing of retrieved human oocytes and eggs in clinical practice and for human ovarian cell atlasing. Mol Reprod Dev. 2022 Dec;89(12):597-607.
- Bongrani A, Plotton I, Mellouk N. High androgen concentrations in follicular fluid of polycystic ovary syndrome women. Reprod Biol Endocrinol. 2022 Jun 14;20(1):88.
- Pierson Smela MD, Kramme CC, Fortuna PRJ, et al. Directed differentiation of human iPSCs to functional ovarian granulosa-like cells via transcription factor overexpression. Elife. 2023 Feb 21;12:e83291.
- Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev. 2023 Oct 1;103(4):2623-2677
- Zhang X, Cao Q, Rajachandran S, Grow EJ, Evans M, Chen H. Dissecting mammalian reproduction with spatial transcriptomics. Hum Reprod Update. 2023 Nov 2;29(6):794-810. doi: 10.1093/humupd/dmad017.
- Guarnieri G, Iervolino M, Cavallone S, Unfer V, Vianello A. The "Asthma-Polycystic Ovary Overlap Syndrome" and the Therapeutic Role of Myo-Inositol. Int J Mol Sci. 2023 Apr 9;24(8):6959
- Xiao C, Wang J, Zhang C. Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod Sci. 2023 Feb;30(2):350-360. doi: 10.1007/s43032-022-00932-z.
- Reiter RJ, Sharma R, Romero A, Manucha W, Tan DX, Zuccari DAPC, Chuffa LGA. Aging-Related Ovarian Failure and Infertility: Melatonin to the Rescue. Antioxidants (Basel). 2023 Mar 11;12(3):695.
- Bizzarri M, Monti N, Piombarolo A, Angeloni A, Verna R. Myo-Inositol and D-Chiro-Inositol as Modulators of Ovary Steroidogenesis: A Narrative Review. Nutrients. 2023 Apr 13;15(8):1875.
- Fedeli V, Catizone A, Querqui A, Unfer V, Bizzarri M. The Role of Inositols in the Hyperandrogenic Phenotypes of PCOS: A Re-Reading of Larner's Results. Int J Mol Sci. 2023 Mar 27;24(7):6296.
- Ben Yaakov T, Wasserman T, Aknin E, Savir Y. Single-cell analysis of the aged ovarian immune system reveals a shift towards adaptive immunity and attenuated cell function. Elife. 2023 Apr 25;12:e74915.
- Beresniak A, Russo M, Forte G, Laganà AS, Oliva MM, Aragona C, Chiantera V, Unfer V. A Markovmodel simulation of IVF programs for PCOS patients indicates that coupling myo-Inositol with rFSH is cost-effective for the Italian Health System. Sci Rep. 2023 Oct 18;13(1):17789.
- Kaboli Kafshgiri S, Farkhondeh T, Miri-Moghaddam E. Glyphosate effects on the female reproductive systems: a systematic review. Rev Environ Health. 2021 Jul 15;37(4):487-500.
- Oliver E, Alves-Lopes JP, Harteveld F, et al. Self-organising human gonads generated by a Matrigelbased gradient system. BMC Biol. 2021 Sep 23;19(1):212.
- Mao Z, Li T, Zhao H, Wang X, Kang Y, Kang Y. Methylome and transcriptome profiling revealed epigenetic silencing of LPCAT1 and PCYT1A associated with lipidome alterations in polycystic ovary syndrome. J Cell Physiol. 2021 Sep;236(9):6362-6375.
- Greaney J, Subramanian GN, Ye Y, Homer H. Isolation and in vitro Culture of Mouse Oocytes. Bio Protoc. 2021 Aug 5;11(15):e4104.

- Kaboli Kafshgiri SK, Farkhondeh T, Miri-Moghaddam E. Glyphosate effects on the female reproductive systems: a systematic review. Rev Environ Health. 2021 Jul 15.
- Bizzarri M, Logoteta P, Monastra G, Laganà AS. An innovative approach to polycystic ovary syndrome. J Obstet Gynaecol. 2021 Jun 25;1-11.
- Place NJ, Prado AM, Faykoo-Martinez M, et al. Germ cell nests in adult ovaries and an unusually large ovarian reserve in the naked mole-rat. Reproduction. 2021 Jan;161(1):89-98.
- McEvoy MJ, Sinderewicz E, Creedon L, et al. Death Processes in Bovine Theca and Granulosa Cells Modelled and Analysed Using a Systems Biology Approach. Int J Mol Sci. 2021 May 5;22(9):4888.
- Luciano AM, Barros RG, Soares ACS, et al. Recreating the Follicular Environment: A Customized Approach for In Vitro Culture of Bovine Oocytes Based on the Origin and Differentiation State. Methods Mol Biol. 2021;2273:1-15.
- Subramani E, Frigo DE. Mitochondria in Metabolic Syndrome, Reproduction and Transgenerational Inheritance-Ongoing Debates and Emerging Links. Endocrinology. 2021 Jan 1;162(1):bqaa182.
- Patil K, Shinde G, Hinduja I, Mukherjee S. Compromised Cumulus-Oocyte Complex Matrix Organization and Expansion in Women with PCOS. Reprod Sci. 2021 Nov 8. Online ahead of print.
- Slaidina M, Gupta S, Banisch TU, Lehmann R. A single-cell atlas reveals unanticipated cell type complexity in Drosophila ovaries. Genome Res. 2021 Oct;31(10):1938-1951.
- Li M, Zeng Z, Zhang A, et al. WGCNA Analysis Identifies Polycystic Ovary Syndrome-Associated Circular RNAs That Interact with RNA-Binding Proteins and Sponge miRNAs. Int J Gen Med. 2021 Nov 23;14:8737-8751.
- Rydze RT, Patton BK, Briley SM, et al. Deletion of Gremlin-2 alters estrous cyclicity and disrupts female fertility in mice[†]. Biol Reprod. 2021 Nov 15;105(5):1205-1220.
- Bao Y, Yao X, Li X, et al. INHBA transfection regulates proliferation, apoptosis and hormone synthesis in sheep granulosa cells. Theriogenology. 2021 Nov;175:111-122.
- Ford EA, Frost ER, Beckett EL, et al. Transcriptomic profiling of neonatal mouse granulosa cells reveals new insights into primordial follicle activation[†]. Biol Reprod. 2021 Oct 21;ioab193.
- França MM, Mendonca BB. Genetics of ovarian insufficiency and defects of folliculogenesis. Best Pract Res Clin Endocrinol Metab. 2021 Oct 14;101594.
- Li S, Wang J, Zhang H, et al. Transcriptome profile of goat folliculogenesis reveals the interaction of oocyte and granulosa cell in correlation with different fertility population. Sci Rep. 2021 Aug 3;11(1):15698.
- Jones A, Bernabé BP, Padmanabhan V, Li J, Shikanov A. Capitalizing on transcriptome profiling to optimize and identify targets for promoting early murine folliculogenesis in vitro. Sci Rep. 2021 Jun 15;11(1):12517.
- Dompe C, Kulus M, Stefańska K, et al. Human Granulosa Cells-Stemness Properties, Molecular Cross-Talk and Follicular Angiogenesis. Cells. 2021 Jun 5;10(6):1396.
- Yu L, Wang L, Tao W, et al. LHCGR and ALMS1 defects likely cooperate in the development of polycystic ovary syndrome indicated by double-mutant mice. J Genet Genomics. 2021 May 20;48(5):384-395.
- Chakravarthi VP, Ratri A, Masumi S, et al. Granulosa cell genes that regulate ovarian follicle development beyond the antral stage: The role of estrogen receptor β. Mol Cell Endocrinol. 2021 May 15;528:111212.
- Fan X, Moustakas I, Bialecka M, et al. Single-Cell Transcriptomics Analysis of Human Small Antral Follicles. Int J Mol Sci. 2021 Nov 4;22(21):11955.

- Alvi SM, Zayed Y, Malik R, Peng C. The emerging role of microRNAs in fish ovary: A mini review. Gen Comp Endocrinol. 2021 Sep 15;311:113850.
- Okunomiya A, Horie A, Tani H, et al. Figla promotes secondary follicle growth in mature mice. Sci Rep. 2021 May 10;11(1):9842.
- Habara O, Logan CY, Kanai-Azuma M, Nusse R, Takase HM. WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility. Development. 2021 May 1;148(9):dev198846.
- Wołodko K, Castillo-Fernandez J, Kelsey G, Galvão A. Revisiting the Impact of Local Leptin Signaling in Folliculogenesis and Oocyte Maturation in Obese Mothers. Int J Mol Sci. 2021 Apr 20;22(8):4270.
- Wang S, Gong Y, Wang Z, et al. Cell-specific network analysis of human folliculogenesis reveals network rewiring in antral stage oocytes. J Cell Mol Med. 2021 Mar;25(6):2851-2860.
- Pla I, Sanchez A, Pors SE, et al. Proteome of fluid from human ovarian small antral follicles reveals insights in folliculogenesis and oocyte maturation. Hum Reprod. 2021 Feb 18;36(3):756-770.
- Chen Y, Wang X, Yang C, et al. A mouse model reveals the events and underlying regulatory signals during the gonadotrophin-dependent phase of follicle development. Mol Hum Reprod. 2020 Dec 10;26(12):920-937.
- Safdar M, Liang A, Rajput AS, et al. Orexin-A Regulates Follicular Growth, Proliferation, Cell Cycle and Apoptosis in Mouse Primary Granulosa Cells via the AKT/ERK Signaling Pathway. Molecules. 2021 Sep 16;26(18):5635.
- Qu J, Niu H, Wang J, Wang Q, Li Y. Potential mechanism of lead poisoning to the growth and development of ovarian follicle. Toxicology. 2021 Jun 15;457:152810.
- Patil K, Hinduja I, Mukherjee S. Alteration in angiogenic potential of granulosa-lutein cells and follicular fluid contributes to luteal defects in polycystic ovary syndrome. Hum Reprod. 2021 Mar 18;36(4):1052-1064.
- Li Z, Jiang J, Yi X, et al. miR-18b regulates the function of rabbit ovary granulosa cells. Reprod Fertil Dev. 2021 Mar;33(5):363-371.
- Wang J, Chu K, Wang Y, et al. Procr-expressing granulosa cells are highly proliferative and are important for follicle development. iScience. 2021 Jan 19;24(2):102065.
- Olsen KW, Castillo-Fernandez J, Chan AC, et al. Identification of a unique epigenetic profile in women with diminished ovarian reserve. Fertil Steril. 2021 Mar;115(3):732-741.
- Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol. 1999 Jun;13(6):1018-34.
- Alaee S, Asadollahpour R, Colagar AH, Talaei-Khozani T. The decellularized ovary as a potential scaffold for maturation of preantral ovarian follicles of prepubertal mice. Syst Biol Reprod Med. 2021 Dec;67(6):413-427.
- Akin N, Le AH, Ha UDT, et al. Positive effects of amphiregulin on human oocyte maturation and its molecular drivers in patients with polycystic ovary syndrome. Hum Reprod. 2021 Nov 6;deab237.
- Fan X, Moustakas I, Bialecka M, et al. Single-Cell Transcriptomics Analysis of Human Small Antral Follicles. Int J Mol Sci. 2021 Nov 4;22(21):11955.
- Luo X, Chang H-M, Yi Y, et al. Bone morphogenetic protein 2 upregulates SERPINE2 expression through noncanonical SMAD2/3 and p38 MAPK signaling pathways in human granulosa-lutein cells. FASEB J. 2021 Sep;35(9):e21845.
- Chen M, Dong F, Chen M, et al. PRMT5 regulates ovarian follicle development by facilitating Wt1 translation. Elife. 2021 Aug 27;10:e68930.

- Yoshino T, Suzuki T, Nagamatsu G, et al. Generation of ovarian follicles from mouse pluripotent stem cells. Science. 2021 Jul 16;373(6552):eabe0237.
- Ansere VA, Ali-Mondal S, Sathiaseelan R, et al. Cellular hallmarks of aging emerge in the ovary prior to primordial follicle depletion. Mech Ageing Dev. 2021 Mar;194:111425.
- Zeng J, Sun Y, Li X, et al. 2,5-Hexanedione influences primordial follicular development in cultured neonatal mouse ovaries by interfering with the PI3K signaling pathway via miR-214-3p. Toxicol Appl Pharmacol. 2020 Dec 15;409:115335.
- Bezerra FTG, Dau AMP, Van Den Hurk R, Silva JRV. Molecular characteristics of oocytes and somatic cells of follicles at different sizes that influence in vitro oocyte maturation and embryo production. Domest Anim Endocrinol. 2021 Jan;74:106485.
- Wu H-M, Chang H-M, Leung PCK. Gonadotropin-releasing hormone analogs: Mechanisms of action and clinical applications in female reproduction. Front Neuroendocrinol. 2021 Jan;60:100876.
- Fabová Z, Loncová B, Mlynček M, Sirotkin AV. Kisspeptin as autocrine/paracrine regulator of human ovarian cell functions: Possible interrelationships with FSH and its receptor. Reprod Biol. 2021 Nov 26;22(1):100580.
- Chaudhary H, Patel J, Jain NK, Joshi R. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. J Ovarian Res. 2021 Sep 26;14(1):125.
- de Carvalho Delgado J, Dos Santos Hamilton TR, Mendes CM, et al. Bone morphogenetic protein 15 supplementation enhances cumulus expansion, nuclear maturation and progesterone production of in vitro-matured bovine cumulus-oocyte complexes. Reprod Domest Anim. 2021 May;56(5):754-763.
- Xu F, Lawson MS, Bean Y, et al. Matrix-free 3D culture supports human follicular development from the unilaminar to the antral stage in vitro yielding morphologically normal metaphase II oocytes. Hum Reprod. 2021 Apr 20;36(5):1326-1338.
- Anamthathmakula P, Winuthayanon W. Prostaglandin-Endoperoxide Synthase 2 (PTGS2) in the Oviduct: Roles in Fertilization and Early Embryo Development. Endocrinology. 2021 Apr 1;162(4):bqab025.
- Chen H, Cheng S, Xiong W, Tan X. The lncRNA-miRNA-mRNA ceRNA network in mural granulosa cells of patients with polycystic ovary syndrome: an analysis of Gene Expression Omnibus data. Ann Transl Med. 2021 Jul;9(14):1156.
- Rotgers E, Nicol B, Rodriguez K, Rattan S, Flaws JA, Yao HH-C. Constitutive expression of Steroidogenic factor-1 (NR5A1) disrupts ovarian functions, fertility, and metabolic homeostasis in female mice. FASEB J. 2021 Aug;35(8):e21770.
- Chen L, Ni Z, Cai Z, et al. The Mechanism Exploration of Follicular Fluids on Granulose Cell Apoptosis in Endometriosis-Associated Infertility. Biomed Res Int. 2021 Oct 28;2021:6464686.
- Li S, Wang J, Zhang H, et al. Transcriptome profile of goat folliculogenesis reveals the interaction of oocyte and granulosa cell in correlation with different fertility population. Sci Rep. 2021 Aug 3;11(1):15698.
- Dong Y, Lyu L, Zhang D, et al. Integrated lncRNA and mRNA Transcriptome Analyses in the Ovary of Cynoglossus semilaevis Reveal Genes and Pathways Potentially Involved in Reproduction. Front Genet. 2021 May 19;12:671729.
- Buigues A, Marchante M, de Miguel-Gómez L, et al. Stem cell-secreted factor therapy regenerates the ovarian niche and rescues follicles. Am J Obstet Gynecol. 2021 Jul;225(1):65.e1-65.e14.
- Zhang Y, Wang Y, Feng X, et al. Oocyte-derived microvilli control female fertility by optimizing ovarian follicle selection in mice. Nat Commun. 2021 May 5;12(1):2523.

- Sou IF, Pryce RM, Tee W-W, McClurg UL. Meiosis initiation: a story of two sexes in all creatures great and small. Biochem J. 2021 Oct 29;478(20):3791-3805.
- Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development[†]. Biol Reprod. 2021 Sep 14;105(3):570-592.
- Qi X, Yun C, Sun L, Xia J, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019 Aug;25(8):1225-1233.
- Ramly B, Afiqah-Aleng N, Mohamed-Hussein ZA. Protein-Protein Interaction Network Analysis Reveals Several Diseases Highly Associated with Polycystic Ovarian Syndrome. Int J Mol Sci. 2019 Jun 18;20(12).
- Wang XY, Qin YY. Long non-coding RNAs in biology and female reproductive disorders. Front Biosci (Landmark Ed). 2019 Mar 1;24:750-764.
- Henriques MC, Loureiro S, Fardilha M, Herdeiro MT. Exposure to mercury and human reproductive health: A systematic review. Reprod Toxicol. 2019 Apr;85:93-103.
- Amjadi F, Mehdizadeh M, Ashrafi M, et al. Distinct changes in the proteome profile of endometrial tissues in polycystic ovary syndrome compared with healthy fertile women. Reprod Biomed Online. 2018 Aug;37(2):184-200.
- Shukla A, Dahiya S, Onteru SK, Singh D. Differentially expressed miRNA-210 during follicularluteal transition regulates pre-ovulatory granulosa cell function targeting HRas and EFNA3. J Cell Biochem. 2018 Nov;119(10):7934-7943.
- Rodriguez A, Briley SM, Patton BK, et al. Loss of the E2 SUMO-conjugating enzyme Ube2i in oocytes during ovarian folliculogenesis causes infertility in mice. Development. 2019 Dec 2;146(23).
- Cai H, Liu B, Wang H, Sun G, Feng L, et al. SP1 governs primordial folliculogenesis by regulating pregranulosa cell development in mice. J Mol Cell Biol. 2019 Jul 8. pii: mjz059. doi: 10.1093/jmcb/mjz059. [Epub ahead of print]
- Fan Y, Zhang C, Zhu G. Profiling of RNA N6-methyladenosine methylation during follicle selection in chicken ovary. Poult Sci. 2019 Nov 1;98(11):6117-6124.
- Sagvekar P, Kumar P, Mangoli V, Desai S, Mukherjee S. DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome. Clin Epigenetics. 2019 Apr 11;11(1):61.
- Wang T, Liu Y, Lv M, Xing Q, Zhang Z, He X, Xu Y, Wei Z, Cao Y. miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1. Gene. 2019 Jan 30;683:87-100.
- Zhao J, Xu J, Wang W, Zhao H, et al. Long non-coding RNA LINC-01572:28 inhibits granulosa cell growth via a decrease in p27 (Kip1) degradation in patients with polycystic ovary syndrome. EBioMedicine. 2018 Oct;36:526-538.
- Tran DN, Jung EM, Yoo YM, Ahn C, et al. Depletion of follicles accelerated by combined exposure to phthalates and 4-vinylcyclohexene diepoxide, leading to premature ovarian failure in rats. Reprod Toxicol. 2018 Sep;80:60-67.
- Khristi V, Chakravarthi VP, Singh P, et al. ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation. Mol Cell Endocrinol. 2018 Oct 15;474:214-226.
- Shukla A, Dahiya S, Onteru SK, Singh D. Differentially expressed miRNA-210 during follicularluteal transition regulates pre-ovulatory granulosa cell function targeting HRas and EFNA3. J Cell Biochem. 2018 Nov;119(10):7934-7943.
- Ragazzini R, Pérez-Palacios R, Baymaz IH, et al. EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells. Nat Commun. 2019 Aug 26;10(1):3858.

- Spiller C, Bowles J. Sexually dimorphic germ cell identity in mammals. Curr Top Dev Biol. 2019;134:253-288.
- Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson RA, Klinger FG. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update. 2019 Nov 5;25(6):673-693.
- Cuomo D, Porreca I, Ceccarelli M, Threadgill DW, et al. Transcriptional landscape of mouse-aged ovaries reveals a unique set of non-coding RNAs associated with physiological and environmental ovarian dysfunctions. Cell Death Discov. 2018 Dec 5;4:112.
- Landry DA, Rossi-Perazza L, Lafontaine S, Sirard MA. Expression of atresia biomarkers in granulosa cells after ovarian stimulation in heifers. Reproduction. 2018 Sep;156(3):239-248.
- Zhang J, Liu Y, Yao W, Li Q, Liu H, Pan Z. Initiation of follicular atresia: gene networks during early atresia in pig ovaries. Reproduction. 2018 Jul;156(1):23-33
- Ford E, Beckett EL, Roman S, McLaughlin EA, Sutherland J. Advances in human primordial follicle activation and premature ovarian insufficiency. Reproduction. 2019 Aug 1. pii: REP-19-0201.R2. doi: 10.1530/REP-19-0201. [Epub ahead of print]
- Shimizu K, Nakamura T, Bayasula, Nakanishi N, et al. Molecular mechanism of FSHR expression induced by BMP15 in human granulosa cells. J Assist Reprod Genet. 2019 Jun;36(6):1185-1194.
- Sun XF, Li YP, Pan B, Wang YF, Li J, Shen W. Molecular regulation of miR-378 on the development of mouse follicle and the maturation of oocyte in vivo. Cell Cycle. 2018;17(18):2230-2242.
- Cui L, Fang L, Mao X, Chang HM, Leung PCK, Ye Y. GDNF-Induced Downregulation of miR-145-5p Enhances Human Oocyte Maturation and Cumulus Cell Viability. J Clin Endocrinol Metab. 2018 Jul 1;103(7):2510-2521.
- Huang J, Ding Y, Li Z. The regulation of the follicular synchronization and sensitivity of rats with PCOS by AMH during prolonged pituitary downregulation. Gene. 2019 Dec 30;721:144106.
- Roness H, Spector I, Leichtmann-Bardoogo Y, Savino AM, Dereh-Haim S, Meirow D. Pharmacological administration of recombinant human AMH rescues ovarian reserve and preserves fertility in a mouse model of chemotherapy, without interfering with anti-tumoural effects. J Assist Reprod Genet. 2019 Sep;36(9):1793-1803.
- Yan H, Wen J, Zhang T, Zheng W, He M, et al. Oocyte-derived E-cadherin acts as a multiple functional factor maintaining the primordial follicle pool in mice. Cell Death Dis. 2019 Feb 15;10(3):160.
- Hardy K, Mora JM, Dunlop C, Carzaniga R, Franks S, Fenwick MA. Nuclear exclusion of SMAD2/3 in granulosa cells is associated with primordial follicle activation in the mouse ovary. J Cell Sci. 2018 Sep 7;131(17).
- Podfigurna A, Meczekalski B, Petraglia F, Luisi S. Clinical, hormonal and metabolic parameters in women with PCOS with different combined oral contraceptives (containing chlormadinone acetate versus drospirenone). J Endocrinol Invest. 2019 Oct 25. doi: 10.1007/s40618-019-01133-3. [Epub ahead of print]
- Fan X, Bialecka M, Moustakas I, et al. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat Commun. 2019 Jul 18;10(1):3164.
- Matvere A, Teino I, Varik I, Kuuse S, Tiido T, Kristjuhan A, Maimets T. FSH/LH-Dependent Upregulation of Ahr in Murine Granulosa Cells Is Controlled by PKA Signaling and Involves Epigenetic Regulation. Int J Mol Sci. 2019 Jun 23;20(12).
- Stanley JA, Arosh JA, Hoyer PB, Banu SK. Ex Vivo Fetal Whole Ovarian Culture Model: An Essential Tool for Studies in Reproductive Toxicology and Pharmacology. Methods Mol Biol. 2019;1965:107-127.

- Tanaka Y, Matsuzaki T, Tanaka N, Iwasa T, Kuwahara A, Irahara M. Activin effects on follicular growth in in vitro preantral follicle culture. J Med Invest. 2019;66(1.2):165-171.
- Candelaria NR, Padmanabhan A, Stossi F, Ljungberg MC, et al. VCAM1 Is Induced in Ovarian Theca and Stromal Cells in a Mouse Model of Androgen Excess. Endocrinology. 2019 Jun 1;160(6):1377-1393.
- Mossa F, Ireland JJ. Physiology and endocrinology symposium: Anti-Müllerian hormone: a biomarker for the ovarian reserve, ovarian function, and fertility in dairy cows. J Anim Sci. 2019 Apr 3;97(4):1446-1455.
- Wang T, Liu Y, Lv M, Xing Q, Zhang Z, He X, Xu Y, Wei Z, Cao Y. miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1. Gene. 2019 Jan 30;683:87-100.
- Schmidt VM, Isachenko E, Rappl G, Rahimi G, Hanstein B, Morgenstern B, Mallmann P, Isachenko V. Construction of human artificial ovary from cryopreserved ovarian tissue: Appearance of apoptosis and necrosis after enzymatic isolation of follicles. Cryobiology. 2018 Oct;84:10-14.
- Hamilton KJ, Hewitt SC, Arao Y, Korach KS. (2017) Estrogen Hormone Biology. Curr Top Dev Biol. 2017;125:109-146.
- Yang Z, Sun J, Hu Y, Wang F, Wang X, et al. (2017) Histone H1 defect in escort cells triggers germline tumor in Drosophila ovary. Dev Biol. 424(1):40-49.
- Bevilacqua A, Bizzarri M. (2016) Physiological role and clinical utility of inositols in polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 37:129-139.
- Mohammadi S, Kayedpoor P, Karimzadeh-Bardei L, Nabiuni M. (2017) The Effect of Curcumin on TNF-α, IL-6 and CRP Expression in a Model of Polycystic Ovary Syndrome as an Inflammation State. J Reprod Infertil. 18(4):352-360.
- Li Y, Zhang L, Hu Y, Chen M, Han F, Qin Y, Chen M, Cui X, Duo S, Tang F, Gao F. (2017) β-Catenin directs the transformation of testis Sertoli cells to ovarian granulosa-like cells by inducing Foxl2 expression. J Biol Chem. 2017 Oct 27;292(43):17577-17586.
- Herndon MK, Law NC, Donaubauer EM, Kyriss B, Hunzicker-Dunn M. (2016) Forkhead box O member FOXO1 regulates the majority of follicle-stimulating hormone responsive genes in ovarian granulosa cells. Mol Cell Endocrinol. 434:116-26.
- Huang K, Wang Y, Zhang T, He M, Sun G, Wen J, Yan H, Cai H, Yong C, Xia G, Wang C. (2018) JAK signaling regulates germline cyst breakdown and primordial follicle formation in mice. Biol Open. 17;7(1).
- Richani D, Gilchrist RB. (2108) The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update. 24(1):1-14.
- Kranc W, Budna J, Kahan R, et al. (2017) Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J Biol Regul Homeost Agents. 31(1):1-8.
- Li L, Wang B, Zhang W, Chen B, et al. (2017) A homozygous NOBOX truncating variant causes defective transcriptional activation and leads to primary ovarian insufficiency. Hum Reprod. 32(1):248-255.
- Chang HM, Qiao J, Leung PC. (2016) Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update. 23(1):1-18.
- Vanorny DA, Mayo KE. (2017) The role of Notch signaling in the mammalian ovary. Reproduction. 153(6):R187-R204.
- Li D, Xu D, Zou Y, et al. (2017) Non- coding RNAs and ovarian diseases (Review). Mol Med Rep. 15(4):1435-1440.

- Tanaka M. (2016) Germline stem cells are critical for sexual fate decision of germ cells. Bioessays. 38(12):1227-1233.
- Laven JS. (2016) Primary Ovarian Insufficiency. Semin Reprod Med. 34(4):230-4.
- De Leo V, Musacchio MC, Cappelli V, Massaro MG, Morgante G, Petraglia F. (2016) Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endocrinol. 16;14(1):38.
- Bedoschi G, Navarro PA, Oktay K. (2016) Chemotherapy-induced damage to ovary: mechanisms and clinical impact. Future Oncol. 12(20):2333-44.
- Huang X, Liu C, Hao C, Tang Q, Liu R, Lin S, Zhang L, Yan W. (2016) Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting MAP3K8. Reproduction. 151(6):643-55.
- Qin Y, Jiao X, Simpson JL, Chen ZJ. (2015) Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 21(6):787-808.
- Bhartiya D, Parte S, Patel H, et al (2016) Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly. Stem Cells Int. 2016:5096596.
- Price CA. (2016) Mechanisms of fibroblast growth factor signaling in the ovarian follicle. J Endocrinol. 228(2):R31-43.
- Ng A, Barker N. (2015) Ovary and fimbrial stem cells: biology, niche and cancer origins. Nat Rev Mol Cell Biol. 16(10):625-38.
- Grieve KM, McLaughlin M, Dunlop CE, Telfer EE, Anderson RA. (2015) The controversial existence and functional potential of oogonial stem cells. Maturitas. 82(3):278-81.
- Li Y, Fang Y, Liu Y, Yang X. (2015) MicroRNAs in ovarian function and disorders. J Ovarian Res. 1;8:51.
- Ozakpinar OB, Maurer AM, Ozsavci D. (2015) Ovarian stem cells: From basic to clinical applications. World J Stem Cells. 26;7(4):757-68.
- McGinnis LK, Luense LJ, Christenson LK. (2015) MicroRNA in Ovarian Biology and Disease. Cold Spring Harb Perspect Med. 18;5(9):a022962.
- Hummitzsch K, Anderson RA, Wilhelm D, et al. (2015) Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev. 36(1):65-91.
- Thorne JT1, Segal TR2, Chang S3, et al. (2015) Dynamic reciprocity between cells and their microenvironment in reproduction. Biol Reprod. 92(1):25.
- Slaidina M, Lehmann R. (2014) Translational control in germline stem cell development. J Cell Biol. 207(1):13-21.
- Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. (2015) Intraovarian control of early folliculogenesis. Endocr Rev. 36(1):1-24.
- Farrell A, McLoughlin N, Milne JJ, Marison IW, Bones J. (2014) Application of multi-omics techniques for bioprocess design and optimization in chinese hamster ovary cells. J Proteome Res. 13(7):3144-59.
- Shea LD, Woodruff TK, Shikanov A. (2014) Bioengineering the ovarian follicle microenvironment. Annu Rev Biomed Eng. 11;16:29-52.
- Qiao J, Wang ZB, Feng HL, et al. (2014) The root of reduced fertility in aged women and possible therapentic options: current status and future perspects. Mol Aspects Med. 38:54-85.
- Fitzgerald JB, George J, Christenson LK. (2016) Non-coding RNA in Ovarian Development and Disease. Adv Exp Med Biol. 886:79-93.
- Qin Y, Jiao X, Simpson JL, Chen ZJ. (2015) Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 21(6):787-808.

- Ren Y, Suzuki H, Jagarlamudi K, et al. (2015) Lhx8 regulates primordial follicle activation and postnatal folliculogenesis. BMC Biol. 16;13:39.
- Hua J, Xu B, Yang Y, Ban R, et al. (2015) Follicle Online: an integrated database of follicle assembly, development and ovulation. Database (Oxford). 29;2015:bav036.
- Bilgin EM, Kovanci E. (2015) Genetics of premature ovarian failure. Curr Opin Obstet Gynecol. 27(3):167-74.
- Liu C, Peng J, Matzuk MM, Yao HH. (2015) Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun. 28;6:6934.
- Heeren AM, van Iperen L, Klootwijk DB, et al. (2015) Development of the follicular basement membrane during human gametogenesis and early folliculogenesis. BMC Dev Biol. 21;15:4.
- Chen Z, Kang X, Wang L, et al. (2015) Rictor/mTORC2 pathway in oocytes regulates folliculogenesis, and its inactivation causes premature ovarian failure. J Biol Chem. 6;290(10):6387-96.
- Wang Y, Teng Z, Li G, Mu X, et al. (2015) Cyclic AMP in oocytes controls meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Development. 15;142(2):343-51.
- Dumesic DA, Meldrum DR, Katz-Jaffe MG, et al. (2015) Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 103(2):303-16.
- Park M, Suh DS, Lee K, Bae J. (2014) Positive cross talk between FOXL2 and antimüllerian hormone regulates ovarian reserve. Fertil Steril. 102(3):847-855.e1.
- Feng XL, Sun YC, Zhang M, et al. (2014) Insulin regulates primordial-follicle assembly in vitro by affecting germ-cell apoptosis and elevating oestrogen. Reprod Fertil Dev. 27(8) 1197-1204.
- Sun J, Wei HM, Xu J, Chang JF, et al. (2015) Histone H1-mediated epigenetic regulation controls germline stem cell self-renewal by modulating H4K16 acetylation. Nat Commun. 19;6:8856.
- Lan CW, Chen MJ, Tai KY, et al., (2015) Functional microarray analysis of differentially expressed genes in granulosa cells from women with polycystic ovary syndrome related to MAPK/ERK signaling. Sci Rep. 13;5:14994.
- Skory RM, Xu Y, Shea LD, Woodruff TK. (2015) Engineering the ovarian cycle using in vitro follicle culture. Hum Reprod. 30(6):1386-95.
- Vázquez MJ, Romero-Ruiz A, Tena-Sempere M. (2015) Roles of leptin in reproduction, pregnancy and polycystic ovary syndrome: consensus knowledge and recent developments. Metabolism. 64(1):79-91.
- Wigglesworth K, Lee KB, Emori C, Sugiura K, Eppig JJ. (2015) Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol Reprod. 92(1):23.
- Perry JR, Day F, Elks CE, Sulem P, et al., (2014) Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 514(7520):92-7.
- Dinicola S, Chiu TT, Unfer V, et al., (2014) The rationale of the myo-inositol and D-chiro-inositol combined treatment for polycystic ovary syndrome. J Clin Pharmacol. 54(10):1079-92.
- Aiken CE, Tarry-Adkins JL, et al., (2015) Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. FASEB J. 2015 Dec 23. pii: fj.15-280800. [Epub ahead of print]
- Peterson JS, Timmons AK, Mondragon AA, McCall K. (2015) The End of the Beginning: Cell Death in the Germline. Curr Top Dev Biol. 114:93-119.
- Grive KJ, Freiman RN. (2015) The developmental origins of the mammalian ovarian reserve. Development. 1;142(15):2554-63.
- Bayne RA, Kinnell HL, Coutts SM, et al., (2015) GDF9 is transiently expressed in oocytes before follicle formation in the human fetal ovary and is regulated by a novel NOBOX transcript. PLoS One. 19;10(3):e0119819.

- Zhang H, Risal S, Gorre N, et al., (2014) Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol. 3;24(21):2501-8.
- Estienne A, Pierre A, di Clemente N, et al. (2015) Anti-Müllerian hormone regulation by the bone morphogenetic proteins in the sheep ovary: deciphering a direct regulatory pathway. Endocrinology. 156(1):301-13.
- Pan L, Gong W, Zhou Y, Li X, Yu J, Hu S. (2014) A comprehensive transcriptomic analysis of infant and adult mouse ovary. Genomics Proteomics Bioinformatics. 12(5):239-48.
- Nilsson EE, Larsen G, Skinner MK. (2014) Roles of Gremlin 1 and Gremlin 2 in regulating ovarian primordial to primary follicle transition. Reproduction. 147(6):865-74.
- Puttabyatappa M, Cardoso RC, Padmanabhan V. (2015) Effect of maternal PCOS and PCOS-like phenotype on the offspring's health. Mol Cell Endocrinol. 2015 Nov 27. pii: S0303-7207(15)30153-2. doi: 10.1016/j.mce.2015.11.030. [Epub ahead of print]
- Dumesic DA, Oberfield SE, Stener-Victorin E, et al. (2015) Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 36(5):487-525.
- Spritzer PM, Motta AB. (2015) Adolescence and polycystic ovary syndrome: current concepts on diagnosis and treatment. Int J Clin Pract. 69(11):1236-46.
- Luque-Ramírez M, Escobar-Morreale HF. (2014) Polycystic ovary syndrome as a paradigm for prehypertension, prediabetes, and preobesity. Curr Hypertens Rep. 16(12):500.
- Lin F, Fu YH, Han J, et al. (2014) Changes in the expression of Fox O1 and death ligand genes during follicular atresia in porcine ovary. Genet Mol Res. 28;13(3):6638-45.
- Roland AV, Moenter SM. (2014) Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models. Front Neuroendocrinol. 35(4):494-511.
- Li Y, Fang Y, Liu Y, Yang X. (2015) MicroRNAs in ovarian function and disorders. J Ovarian Res. 1;8:51.
- Tiwari M, Prasad S, Tripathi A, et al., (2015) Apoptosis in mammalian oocytes: a review. Apoptosis. 20(8):1019-25.
- Johnson AL. (2015) Ovarian follicle selection and granulosa cell differentiation. Poult Sci. 94(4):781-5.
- Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. (2015) Intraovarian control of early folliculogenesis. Endocr Rev. 36(1):1-24.
- Mereness AL, Murphy ZC, et al., (2016) Conditional Deletion of Bmal1 in Ovarian Theca Cells Disrupts Ovulation in Female Mice. Endocrinology. 157(2):913-27.
- Zielak-Steciwko AE, Browne JA, McGettigan PA, et al., (2014) Expression of microRNAs and their target genes and pathways associated with ovarian follicle development in cattle. Physiol Genomics. 46(19):735-45.
- Ortega HH, Marelli BE, Rey F, et al., (2015) Molecular aspects of bovine cystic ovarian disease pathogenesis. Reproduction. 149(6):R251-64.
- Sørensen AE, Wissing ML, Salö S, Englund AL, Dalgaard LT. (2014) MicroRNAs Related to Polycystic Ovary Syndrome (PCOS). Genes (Basel). 25;5(3):684-708.
- Gheorghisan-Galateanu AA, Hinescu ME, Enciu AM. (2014) Ovarian adult stem cells: hope or pitfall? J Ovarian Res. 4;7:71.
- Roland AV, Moenter SM. (2014) Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models. Front Neuroendocrinol. 35(4):494-511.
- Rodríguez FM, Colombero M, Amweg AN, et al., (2015) Involvement of PAPP-A and IGFR1 in Cystic Ovarian Disease in Cattle. Reprod Domest Anim. 50(4):659-68.

- Munger SC, Natarajan A, Looger LL, et al. (2013) Fine time course expression analysis identifies cascades of activation and repression and maps a putative regulator of mammalian sex determination. PLoS Genet. 9(7):e1003630.
- Shafiee MN, Chapman C, Barrett D, et al. (2013) Reviewing the molecular mechanisms which increase endometrial cancer (EC) risk in women with polycystic ovarian syndrome (PCOS): time for paradigm shift? Gynecol Oncol. 131(2):489-92.
- Telfer EE, Zelinski MB. (2013) Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil Steril. 99(6):1523-33.
- Telfer EE, McLaughlin M. (2012) Strategies to support human oocyte development in vitro. Int J Dev Biol. 2012;56(10-12):901-7.
- Adam M, Saller S, Ströbl S, et al. (2012) Decorin is a part of the ovarian extracellular matrix in primates and may act as a signaling molecule. Hum Reprod. 27(11):3249-58.
- Pate JL, Toyokawa K, Walusimbi S, Brzezicka E. (2010) The interface of the immune and reproductive systems in the ovary: lessons learned from the corpus luteum of domestic animal models. Am J Reprod Immunol. 64(4):275-86.
- Peddinti D, Memili E, Burgess SC. (2010) Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction. PLoS One. 21;5(6):e11240.
- Teino I, Matvere A, Kuuse S, et al. (2014) Transcriptional repression of the Ahr gene by LHCGR signaling in preovulatory granulosa cells is controlled by chromatin accessibility. Mol Cell Endocrinol. 25;382(1):292-301.
- Grøndahl ML, Borup R, Vikeså J, et al. (2013) The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from primordial follicles and in metaphase II. Mol Hum Reprod. 19(9):600-17.
- Liu Z, Castrillon DH, Zhou W, Richards JS. (2013) FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH. Mol Endocrinol. 27(2):238-52.
- Sobinoff AP, Sutherland JM, Mclaughlin EA. (2013) Intracellular signalling during female gametogenesis. Mol Hum Reprod. 19(5):265-78.
- Richards JS, Liu Z, Kawai T, et al. (2012) Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertil Steril. 98(2):471-9.e1.
- Teino I, Kuuse S, Ingerpuu S, et al. (2012) The aryl hydrocarbon receptor regulates mouse Fshr promoter activity through an e-box binding site. Biol Reprod. 22;86(3):77.
- Reader KL, Heath DA, Lun S, et al. (2011) Signalling pathways involved in the cooperative effects of ovine and murine GDF9+BMP15-stimulated thymidine uptake by rat granulosa cells. Reproduction. 142(1):123-31.
- Psathaki OE, Hübner K, Sabour D, et al. (2011) Ultrastructural characterization of mouse embryonic stem cell-derived oocytes and granulosa cells. Stem Cells Dev. 20(12):2205-15.
- Oktem O, Buyuk E, Oktay K. (2011) Preantral follicle growth is regulated by c-Jun-N-terminal kinase (JNK) pathway. Reprod Sci. 18(3):269-76.
- Kowalewski MP, Dyson MT, Boos A, Stocco DM. (2010) Vasoactive intestinal peptide (VIP)mediated expression and function of steroidogenic acute regulatory protein (StAR) in granulosa cells. Mol Cell Endocrinol. 26;328(1-2):93-103.
- Fan HY, O'Connor A, Shitanaka M, et al. (2010) Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol. 24(8):1529-42.

- Fan HY, Liu Z, Paquet M, et al. (2009) Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res. 15;69(16):6463-72.
- Hossain MM, Cao M, Wang Q, et al. (2013) Altered expression of miRNAs in a dihydrotestosteroneinduced rat PCOS model. J Ovarian Res. 15;6(1):36.
- Nakamura S, Kurokawa H, Asakawa S, et al. (2009) Two distinct types of theca cells in the medaka gonad: germ cell-dependent maintenance of cyp19a1-expressing theca cells. Dev Dyn. 238(10):2652-7.
- Zheng W, Zhang H, Liu K. (2014) The two classes of primordial follicles in the mouse ovary: their development, physiological functions, and implications for future research. Mol Hum Reprod. Jan 20. [Epub ahead of print]
- Navalakhe RM, Jagtap DD, Nayak SU, et al. (2013) Effect of FSH receptor-binding inhibitor-8 on FSH-mediated granulosa cell signaling and proliferation. Chem Biol Drug Des. 82(2):178-88.
- Hunt PA, Lawson C, Gieske M, et al. (2012) Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc Natl Acad Sci U S A. 23;109(43):17525-30.
- Adhikari D, Gorre N, Risal S, et al. (2012) The safe use of a PTEN inhibitor for the activation of dormant mouse primordial follicles and generation of fertilizable eggs. PLoS One. 7(6):e39034.
- Laan M, Grigorova M, Huhtaniemi IT. (2012) Pharmacogenetics of follicle-stimulating hormone action. Curr Opin Endocrinol Diabetes Obes. 19(3):220-7.
- Zhang HQ, Zhang XF, Zhang LJ, et al. (2012) Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol Biol Rep. 39(5):5651-7.
- Dixit H, Rao L, Padmalatha V, et al (2010) Genes governing premature ovarian failure. Reprod Biomed Online20(6):724-40.
- Richards JS, Pangas SA. (2010) The ovary: basic biology and clinical implications. J Clin Invest. 120(4):963-72.
- Nilsson EE, Skinner MK. (2009) Progesterone regulation of primordial follicle assembly in bovine fetal ovaries. Mol Cell Endocrinol. 10;313(1-2):9-16.
- Nilsson E, Dole G, Skinner MK. (2009) Neurotrophin NT3 promotes ovarian primordial to primary follicle transition. Reproduction. 138(4):697-707.
- Fan HY, Liu Z, Shimada M, Sterneck E, et al. (2009) MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 15;324(5929):938-41.
- Barthelmess EK, Naz RK. (2014) Polycystic ovary syndrome: current status and future perspective. Front Biosci (Elite Ed). 1;6:104-19.
- Layman LC. (2013) The genetic basis of female reproductive disorders: etiology and clinical testing. Mol Cell Endocrinol. 6;370(1-2):138-48.
- Richards JS, Pangas SA. (2010) New insights into ovarian function. Handb Exp Pharmacol. (198):3-27.
- Grützner F et. al. (2008) Reproductive biology in egg-laying mammals. Sex Dev. 2008;2(3):115-27.
- Ireland JL et.al. (2008) Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol Reprod. 79(6):1219-25.
- Sun QY et. al. (2008) Oocyte-specific knockout: a novel in vivo approach for studying gene functions during folliculogenesis, oocyte maturation, fertilization, and embryogenesis. Biol Reprod. 79(6):1014-20.
- Rodrigues P et.al. (2008) Oogenesis: Prospects and challenges for the future. J Cell Physiol. 216(2):355-65.

- Richards JS et.al. (2008) Immune-like mechanisms in ovulation. Trends Endocrinol Metab. Aug;19(6):191-6.
- Best D et. al. (2008) Sdmg1 is a conserved transmembrane protein associated with germ cell sex determination and germline-soma interactions in mice. Development. 135(8):1415-25.
- Hunt PA et. al. (2008) Human female meiosis: what makes a good egg go bad? Trends Genet. 24(2):86-93.
- Oktem O et. al. (2008) The ovary: anatomy and function throughout human life. Ann N Y Acad Sci. 1127:1-9. Review.
- Stocco C (2008) Aromatase expression in the ovary: hormonal and molecular regulation. Steroids. 73(5):473-87.
- Tatone C et. al. (2008) Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 14(2):131-42.
- Choi Y et. al. (2008) Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression. Biol Reprod. 79(6):1176-82.
- Monné M et. al. (2008) Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats. Nature. 4;456(7222):653-7.
- Lee HJ et. al. (2007) Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol. 1;25(22):3198-204.
- Kimura S et. al. (2007) Androgen receptor function in folliculogenesis and its clinical implication in premature ovarian failure. Trends Endocrinol Metab. 18(5):183-9.
- Song JL et. al. (2006) Oogenesis: single cell development and differentiation. Dev Biol 300(1):385-405.
- Shimada M et. al. (2006) Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulose cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol Endocrinol 20(6):1352-65.
- Dixit H et. al. (2006) Missense mutations in the BMP15 gene are associated with ovarian failure. Hum Genet 119(4):408-15.
- Eggan K et. al. (2006) Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 441(7097):1109-14.
- Kremenskov M et. al. (2006) DNA methylation profiles of donor nuclei cells and tissues of cloned bovine fetuses. J Reprod Dev 52(2):259-66.
- Thomas FH and Vanderhyden BC (2006) Oocyte-granculosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol. 4:19.
- De La Fuente R (2006) Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev Biol 292(1):1-12.
- Wickenheisser JK et. al. (2006) Human ovarian theca cells in culture. Trends Endocrinol Metab 17(2):65-71.
- Hsieh M et. al. (2005) Mice null for Frizzled4 (Fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function. Biol Reprod 73(6):1135-46.
- Matsuda-Minehata F et. al. (2005) Changes in expression of anti-apoptotic protein, cFLIP, in granulose cells during follicular atresia in porcine ovaries. Mol Reprod Dev. 72(2):145-51.
- Wickenheisser JK et. al. (2005) Retinoids and retinol differentially regulate steroid biosynthesis in ovarian theca cells isolated normal cycling in women and women with polycystic ovary syndrome. J Clin Endocrinol Metab 90(8):4858-65.

- Xu J et. al. (2005) Discovery of LH-regulated genes in the primate corpus luteum. Mol Hum Reprod 11(3):151-9.
- Richards JS et. al. (2005) Regulated expression of ADAMTS family members in follicles and cumulus oocyte complexes: Evidence for specific and redundant patterns during ovulation. Biol Reprod 72(5):1241-55.
- Frase HM and Duncan WC (2005) Vascular morphogenesis in the primate ovary. Neuroscience 138(3):773-81.
- Friedmann S et. al. (2005) Ovarian transcriptomes as a tool for a global approach of genes modulated by gonadotropic hormones in human ovarian granulose cells. Endocrine 26(3):359-65.
- Hahn KL et. al. (2005) Lunatic fringe null female mice are infertile due to defects in meiotic maturation. Development 132(4):817-28.
- Hunter MG et. al. (2004) Endocrine and paracrine control of follicular development and ovolation rate in farm species. Anim Reprod Sci 82-83:461-477.
- Juengel JL et. al. (2004) Physiology of GDF9 and BMP15 signalling molecules. Anim Reprod Sci 82-83:447-460.
- Gilchrist RB et. al. (2004) Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci 82-83:431-446.
- Zeleznik AJ (2004) The physiology of follicle selection. Reprod Biol Endocrinol 2:31.
- Sakumoto R, Okuda K (2004) Possible actions of tumor necrosis factor-alpha in ovarian function. J. Reprod Dev 50:39-46.
- Wei AY and Prints EA (2003) Therapy for polycystic ovarian syndrome. Curr Opin Pharmacol 3:678-682.
- Albertini DF, Barrett SL (2003) Oocyte-somatic cell communication. Reprod Suppl 61:49-54.
- Wong AS, Auersperg N (2003) Ovarian surface epithelium: family history and early events in ovarian cancer. Reprod Biol Endocrinol 1:70.
- Goodarzi MO, Korenman SG (2003) The importance of insulin resistance in polycystic ovary syndrome. Fertil Steril 80:255-258.
- Azziz R (2003) Androgen excess is the key element in polycystic ovary syndrome. Fertil Steril 80:252-254.
- Epifano O and Dean J (2002) Genetic control of early folliculogenesis in mice. Trends in Endocrinology & Metabolism 13:169-173.
- Kezele P, Nilsson E and Skinner MK (2002) Cell-cell interactions in primordial follicle assembly and development. Frontiers in Bioscience 7:d1990-1996.
- Richards JS et. al. (2002) Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res 57:195-220.
- Findlay JK. et.al. (2002) Recruitment and development of the follicle; the roles of the transforming growth factor-β superfamily. Molecular and cellular endocrinology 191:35-43.
- Matzuk MM, Burns KH, Viveiros MM and Eppig JJ (2002) Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296:2178-2180.
- Vanderhyden B. (2002) Molecular basis of ovarian development and function. Frontiers in Bioscience 7:d2006-2022.
- Durlinger AL, Visser JA. Themmen AP (2002) Regulation of ovarian function: the role of anti-Müllerian hormone. Reproduction 124:601-609.
- Johnson AL, and Bridgham JT (2002) Caspase-mediated apoptosis in the vertebrate ovary. Reproduction 124:19-27.

OVARY

Ovary, Overview

Janice M Bahr, University of Illinois, Urbana-Champaign, IL, United States

© 2018 Elsevier Inc. All rights reserved.

Glossary

Corpus luteum An endocrine gland formed from the granulosa and theca layers of an ovulated follicle.Follicle A structure in the ovary consisting of the oocyte and surrounding granulosa and theca cell layers.Granulosa cells Somatic cells directly surrounding the oocyte.Meiosis A type of cell division which the oocyte undergoes reducing the number of chromosomes so that the oocyte has one copy of each chromosome.Oocyte The female gamete.

Ovary The female gonad.

Steroids Molecules with a basic structure similar to that of cholesterol.

Theca cells Layer of steroidogenic cells and connective tissue surrounding the granulosa cells and forming the outer layer of the follicle.

Introduction

Ovaries are female gonads responsible for the generation of female gametes (oocytes) and synthesis of hormones necessary for the regulation of reproductive functions. Since the first description of the ovary reported by Aristotle more than 2000 years ago, information about the ovary has expanded significantly. Knowledge of the formation of the ovary and its endocrine function is essential to understand the mystery of the regeneration of life.

Anatomy of the Ovary

Most vertebrates develop a pair of ovaries with the exception of some birds, reptiles and a few mammals that only have one ovary. Ovaries lie on either side of the upper pelvic cavity and against the pelvic wall. They are held in place by a mesentery (mesovarium) connected to a broad ligament. Ovaries are one of the most vascular organs in the body. The ovarian artery (or utero-ovarian artery) which arises from the abdominal aorta reaches the ovary along with the mesovarium. Branches of the ovarian artery enter the ovary through the hilus, the same site at which the venous blood exits. Adrenergic and cholinergic nerves also enter the ovary through the hilus.

Even though the size of the ovary varies, the structure of the ovary is similar among mammalian species (Fig. 1). The ovary consists of an inner medulla, containing a rich vascular bed within loose connective tissue and an outer cortex, where the ovarian follicles are located. The outermost lay of the cortex is a single squamous or cuboidal surface epithelium derived from the peritoneum. Under the surface epithelium lies the tunica albuginea, a poorly delineated layer of dense connective tissue that gives the ovary a whitish color. The cortex of the ovary is made up of numerous follicles of varies sizes and stages of development embedded in the stroma. The stroma is composed of at least three different cell types: connective tissue cells (fibroblasts) performing support functions, smooth muscle cells regulating the contraction of blood vessels and interstitial cells including undifferentiated theca cells and degenerated cells from atretic follicles and regressed corpora lutea. The follicles (follicle is Latin for "little bag") are structurally very conspicuous because of their variation in size. The microscopic appearance of follicles is different depending on the stage of follicular development whereas the basic cellular organization of follicles is the same. A follicle consists of an oocyte and surrounding follicular wall. Between the oocyte and surrounding follicular wall is a thin transparent membrane, the zona pellucida. The follicular wall contains an inner granulosa layer and an outer theca layer. The granulosa layer surrounds the oocyte and is separated from the theca layer by the basement membrane. The number and function of the granulosa cells changes during follicular growth. In mature follicles, the theca layer can be divided in the theca externa and interna. The theca externa consists of concentrically arranged smooth muscles cells innervated with autonomic nerves. The theca interna has epithelioid cells called interstitial cells, which are steroid producing cells. These cells contain LH and insulin receptors

Fig. 1 A cross-section of the ovary illustrating follicles at different stages of development (from primordial to Graafian follicles), corpus hemorrhagicum, corpus luteum, and corpus albicans. The microscopic structures of follicles are also shown. Adapted from Jones, R.E. (1991) The ovaries in human reproductive biology, pp. 39–53. Academic Press, San Diego. p. 42.

and synthesize primarily androgens, of which the predominant steroid is androstenedione. The theca interna has both blood vessels and nerves. The granulosa layer is devoid of blood vessels and nerves at all times.

Once ovulation of the Graffian follicle (tertiary) has occurred, blood derived from torn blood vessels of the theca layer infiltrates the collapsed follicle and results in the formation of the corpus hemorrhagicum, a developing corpus luteum with a bloody core. Luteinizing granulosa and thecal cells begin to divide and invade the antral cavity, which remains after ovulation of the oocyte, forming the corpus luteum (Latin for "yellow body"). Blood vessels from the theca layer grow and penetrate the developing luteal cell mass. If pregnancy does not occur, the corpus luteum degenerates after a certain length of time depending upon the species. The connective tissues replaces the luteal cells and forms the corpus albicans (Latin for "white body"). The ovarian medulla devoid of follicles, contains large, spirally arranged blood vessels, lymphatic vessels and nerves.

Functions of the Ovary

Generation of the Female Gametes

Oogenesis

Female gametes, or oocytes, provide the maternal genetic material for the formation of an embryo. The ovary nurtures thousands of oocytes and functions as an incubator for their development. The development of oocytes (oogenesis) starts with primordial germ cells, residing in sex cords which divide mitotically producing oogonia. Oogonia then become primary oocytes and undergo the first meiosis. The primary oocytes are arrested at the diplotene stage of the first meiosis until they experience the preovulatory LH surge. Then the first meiosis is reinitiated and the membrane of the oocyte nucleus (germinal vesicle) disintegrates, which is called germinal vesicle breakdown. Meiosis of the oocyte is unequal producing a large haploid secondary oocyte and a tiny haploid first polar body. This polar body can divide again or remain single; in either case, it degenerates. Then the secondary oocyte begins the second meiotic division but this division is arrested at metaphase until after sperm penetration of the oocyte, which occurs in the oviduct. Completion of the second meiosis results in a haploid ovum and the second polar body.

Folliculogenesis

Folliculogenesis is a developmental sequence regulated by a number of genes, transcription factors and hormones. During fetal development of humans and postnatal development of mice, oocytes are present in clusters or nests. Majority of these oocytes enter meiosis during embryonic life. As the oocytes separate into individual oocytes, they form primordial follicles and undergo further development called oogenesis. Maturation of oocytes (oogenesis) is closely associated with the development of follicles because factors produced by the oocytes have a major impact on the development of the granulosa and theca layers. Folliculogenesis always begins in the innermost part of the ovarian cortex in mammals. Primordial follicles consist of primary oocytes surrounded by flat squamous pre-granulosa cells. Primordial follicles are the only available source of oocytes during the entire reproductive period of the female. As primordial follicles develop into primary follicles, there are changes in the oocyte. It

increases in diameter and develops an extracellular matrix, the zona pellucida. Reactivation of the oocyte genome causes the oocyte to secrete growth factors which play a crucial role in the growth of the follicle. As primary follicles grow, the granulosa cells divide mitotically so that secondary follicles have two to six layers of cuboidal-shaped granulosa cells. Secondary follicles also acquire an additional somatic cell layer, the theca. There are at least two sources of the theca progenitor cells; somatic precursors of the fetal ovary and mesenchymal cells in the neighboring mesonephros. The formation of this theca layer is dependent upon the presence of growth differentiation factor-9 (GDF-9) produced by the oocyte. The theca layer forms around the basement membrane in secondary follicles and ultimately forms the theca interna and theca externa. Follicular growth from primordial to secondary follicles is gonadotrophin-independent. During the formation of tertiary follicles or preantral follicles, follicles continue to grow in size. As follicles progress from secondary follicles to antral follicles, granulosa cells secrete a fluid that accumulates between cells. Large amounts of additional fluid diffuse out of the thecal blood vessels and are added to the fluid which is called follicular fluid. Follicular fluid contains steroid and protein hormones, anticoagulants, enzymes, and electrolytes and is similar to blood serum in appearance and contents. The follicle filled with follicular fluid is the tertiary or preovulatory follicle. These follicles have a mural granulosa layer of four to six layers and the theca layer is differentiated into an inner theca interna and an outer theca externa. Oocytes in preovulatory follicles are suspended in follicular fluid by a stalk of granulosa cells, the cumulus oophorus. Immediately surrounding the oocyte is a thin ring of granulosa cells, the corona radiata. At this state the follicle is called the Graafian follicle and appears as a transparent vesicle that bulges from the surface of the ovary.

Even though one of the function of the ovary is to produce oocytes, the majority of oocytes never ovulate. The number of oocytes reaches its maximum soon after the ovaries are formed. After that time oocyte number decreases dramatically. At birth, a female has all the oocytes she will have in her life; no new oocytes are formed after birth. The vast majority of oocytes, enclosed in follicles, around 99.9%, are eliminated before ovulation through a process called atresia which is due to the activation of apoptosis in the oocyte and granulosa cells. Follicles can become atretic at any stage of development.

Production of Hormones

Another function of the ovary is to secrete hormones which act on the hypothalamus and pituitary to regulate the secretion of hormones by these two tissues, thus establishing the hypothalamic-pituitary–ovarian axis. The ovarian hormones also regulate the function of the reproductive tract and ultimately reproduction.

Protein and peptide hormones

- (i) Inhibin and activin: Inhibin and activin were first isolated from gonadal fluids because of their effects on production of follicle stimulating hormone (FSH) by the pituitary in mammals. Inhibins consist of two disulfide-bridged subunits, the α and β subunits, whereas activins consist of two β subunits. The primary source of inhibin and activin in the ovary is the maturing follicles and the corpus luteum. The function of inhibins is to modulate FSH secretion at the level of the pituitary, whereas the function of activins is to increase FSH secretion at the level of the pituitary. Inhibins and activins have antagonistic actions. Inhibins and activins also function as intraovarian hormones.
- (ii) Follistatin: Follistatin is a FSH-modulating polypeptide not related to TGF-β. Follistatin acts as a binding protein and a functional antagonist of activin. Granulosa cells in antral follicles and luteal cells secrete follistatin.
- (iii) *Relaxin*: Relaxin is produced by the corpus luteum. The structure of relaxin is very similar to that of insulin but has < 20% amino acid homology. In the human, relaxin is the highest during the first trimester of pregnancy after which the concentrations are relative stable. In the rat and the pig, relaxin reaches the highest concentration prior to parturition. Relaxin in these species functions to soften the cervix and vagina for the passage of the fetus during parturition and to promote the growth of nipples. Relaxin also acts on nonreproductive tissues, such as skin and the gastrointestinal tract.</p>
- (iv) Growth factors: The ovary not only secretes endocrine hormones to regulate functions of other reproductive organs but also produces growth factors to coordinate the activities of different ovarian compartments. Many growth factors, such as insulinlike growth factors, transforming growth factors and epidermal growth factor are produced by the oocyte and somatic cells in the ovary. This complex intraovarian regulation system is no less important than the extraovarian regulation by the pituitary hormones. These growth factors form a delicate interactive communication web inside the ovary. Without them, the ovarian cells cannot interact with each other and the growth of the ovary is halted.

Steroid hormones

The ovary uses cholesterol as the precursor for steroid synthesis. Cholesterol is metabolized into progestins, androgens, and estrogens by different compartments of the follicles (Fig. 2).

(i) Progestins pregnenolone. Is the most important progestins (C21 pregnane family) produced by follicles because of its key position as the precursor of all steroid hormones. The most abundant progestin is progesterone, produced as a biosynthetic intermediate by follicles at all growing stages of development and as a secretory end product of the corpus luteum. In the developing follicles, the theca layer is the primary site of progestin productions. Immediately prior to ovulation, the granulosa cells stimulated by LH also synthesize progesterone. After ovulation the corpus luteum

Fig. 2 Biosynthesis of steroid hormones from cholesterol. This scheme provides a simplistic view of a highly organized and complicated process that requires multiple enzymes. Adapted from Hafez, E.S.E (1993) Folliculogenesis, egg maturation, and ovulation. In Reproduction in farm animals, 6th ed., pp. 114–143. Lea and Febiger, Philadelphia, p. 79.

synthesizes copious amounts of progesterone needed to prepare the uterus for implantation and later for the maintenance of pregnancy.

- (ii) Androgens. The follicle is a significant source of ovarian androgens (C19 androstane family). Pregnenolone and progesterone are converted into androgen metabolites, dehydroepiandrosterone and androstenedione, respectively. These are two metabolites are then transformed into testosterone. The theca layer of the follicle is the primary source of ovarian androgens.
- (iii) Estrogens. Physiologically, the estrogens (C18 estrane family) especially estrone and estradiol-17-β, are the most important of the ovarian steroids. Androstenedione and testosterone are the immediate biosynthetic precursors of estrone and estradiol-17-β, respectively. Their names reflect their roles in the induction of sexual receptivity (estrus) in female mammals. Estrone was the first sex steroid isolated and identified. The granulosa layer is the major site of estrogen synthesis in the mammalian ovary.

Regulation of Ovarian Functions

Regulation of Folliculogenesis

Growth of primordial follicles to the preantral stage is independent of gonadotropins and is controlled by intraovarian growth factors. Growth of follicles after the preantral stage depends on appropriate patterns of secretion, sufficient concentrations and adequate ratios of FSH and LH in the blood. FSH plays a major role in early follicular development. FSH stimulates granulosa cell mitosis and accumulation of follicular fluid. Granulosa cells synthesize estrogens in response to FSH which further enhance the mitotic effect of FSH. Moreover, FSH induces granulosa cell sensitivity to LH by increasing LH receptor expression. Abundant LH receptors in granulosa cells prepare the luteinization of granulosa cells in response to the ovulatory LH surge in mammals. In contrast, theca cells are stimulated only by LH and LH receptors are present from the beginning of the formation of the theca layer.

Fig. 3 "Two-cell, two-hormone" theory of follicular steroidogenesis. LH binds to specific membrane receptors on theca calls and stimulates cyclic AMP production and the conversion of cholesterol to androgens, primarily androstenedione and testosterone. These androgens diffuse into the circulation and across the basement membrane into granulosa cells. FSH binds to specific membrane receptors on granulosa cells and stimulates cyclic AMP production, which leads to increased aromatase enzyme activity and the conversion of theca androgens. Adapted from Yen, S. S. C. and Jaffe, R. B. (1986). Reproductive Endocrinology (2nd ed.), Philadelphia: Saunders.

Regulation of Steroidogenesis

The steroidogenic output of the ovary is a function of coordinated actions of theca and granulosa cells. Differences in gonadotropin receptors on the membrane, in the activity of steroidogenic enzymes and in compartmentalization in the follicle result in a unique partnership in steroid synthesis between theca and granulosa cells. The principal site of estrogen synthesis in the mammalian ovary is granulosa cells under the control of FSH. Androgen production appears to be the primary steroidogenic function of theca cells in response to LH. Androgens from theca cells provide substrates for granulosa cells to synthesize estrogens. The action of LH on theca androgen production, together with the action of FSH on granulosa estrogen synthesis, forms the basis of the "two-cell, two-hormone" theory for the control of steroidogenesis in the ovary (Fig. 3).

Further Reading

Dong, J., Albertini, D. F., Nishimori, K., Kumar, T. R., Lu, N., & Matzuk, M. M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. *Nature, 383*, 531–535.

Hafez, E. S. E. (1993). Folliculogenesis, egg maturation, and ovulation. In Reproduction in farm animals (6th ed., pp. 114–143). Philadelphia: Lea and Febiger.

Jones, R. E. (1991). The ovaries in human reproductive biology. San Diego: Academic Press. pp. 39-53.

Liu, C., Peng, J. Matzuk, M.M. and Yao, H.H. (2015). Nature Communications. https://doi.org/10.1038/ncomms7934.

Rajkovic, A., Panagas, S. A., & Matzuk, M. M. (2006). Follicular development: Mouse, sheep and human models. In J. D. Neill (Ed.), Knobil and Neill's physiology of reproduction (3rd edn). Amsterdam: Elsevier.

Strauss, J.F. III and Williams, C.J. (2009). The ovarian life cycle, Strauss, J.F. III, Barberi, R.L. eds., Yen and Jaffe's reproductive endocrinology, physiology, pathophysiology, and management, 6th edn, Saunders, Philadephia, PA.

Williams, C. J., & Erickson, G. F. (2012). In L. J. De Groot, G. Chrousos, & K. Dungan (Eds.), Morphology and physiology of the ovary. South Dartmouth, MA: Endotext.

A		Syste	ins biology of Reproduction
Spring	2024 (Even Yo	ears) - Course Syl	labus
Biol 47	5/575 Undergr	aduate/Graduate	(3 Credit)
SLN: (4	175) - 06763, (575) - 06764	
Time -	Tuesday and	Thursday 10:35 an	n-11:50 am
Course	Lectures in p	erson and recorde	d on Canvas/Panopto and Discussion Sessions live in person and
on WS	U Zoom for all	campuses (Hybri	d Course)
Room -	- CUE 418	about Chinese Ab	-Inn II-II 507 335 1534 -Idea - Constant
Course	Director - Mi	chael Skinner, Ab	eison man 507, 555-1524, skinner@wsu.edu
Co-Ins	ructor - Eric	Misson, Abelson I	tan 507, 225-1655, misson@wsu.edu
Learni	ng Objective -	1	Did of Destation I will be an all and
Current	interature base	a course on the Sys	tems biology of keproduction. Learning Systems approaches to the
biology	of reproductio	n from a molecular	to physiological level of understanding.
Schedu	le/Lecture Ou	time -	
January	9&11	Week 1	Systems Biology Introduction
	1 M M 1 M		
	10 & 10	WCCK 2	Molecular/ Centuar/ Reproduction Systems
	23 & 25	Week 3	Sex Determination Systems
Jan /Fel	23 & 25 5 30 & 1	Week 3 Week 4	Molecular/ Centular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function
Jan /Fel Februar	23 & 25 0 30 & 1 y 6 & 8	Week 3 Week 4 Week 5	Molecular Cenular Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function
Jan /Fel Februar	23 & 25 30 & 1 y 6 & 8 13 & 15	Week 3 Week 4 Week 5 Week 6	Noicetuar / centuar reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology
Jan /Fel Februar	23 & 25 30 & 1 y 6 & 8 13 & 15 20 & 22	Week 3 Week 4 Week 5 Week 6 Week 7	Notectuar / centuar reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology
Jan /Fel Februar	23 & 25 23 & 25 20 & 1 20 & 22 27 & 29	Week 3 Week 4 Week 5 Week 6 Week 7 Week 8	Notecutar / centuar / keproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology
Jan /Fel Februar March	10 & 18 23 & 25 5 30 & 1 y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7	Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9	NoiceCuar / Centuar Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease
Jan /Fel Februar March	10 & 16 23 & 25 50 & 0 & 1 y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15	Week 3 Week 4 Week 5 Week 6 Week 6 Week 8 Week 8 Week 9 Week 10	Notectuar / centuar reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Diagnetics and Transgenerational Gonadal Disease Spring Break
Jan /Fel Februar March	$\begin{array}{c} 10 & 23 \\ 23 & 25 \\ \hline 0 & 20 & & 1 \\ y & 6 & 8 \\ 13 & & 15 \\ 20 & & 22 \\ 27 & & 29 \\ \hline 5 & 7 \\ 11 - 15 \\ 19 & & 21 \\ \end{array}$	Week 2 Week 3 Week 4 Week 5 Week 6 Week 6 Week 7 Week 8 Week 10 Week 11	Molecular / Centuar Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/Stem Cells/ Cloning
Jan /Fel Februar March	10 & 16 23 & 25 50 & 1 y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28	Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12	Molecular / Centuar Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Depresenties and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalanus-Pituitary Development & Function
Jan /Fel Februar March April	$\begin{array}{c} 10 \& 16 \\ 23 \& 25 \\ 5 & 30 \& 1 \\ y 6 \& 8 \\ 13 \& 15 \\ 20 \& 22 \\ 27 \& 29 \\ 5 \& 7 \\ 11 - 15 \\ 19 \& 21 \\ 26 \& 28 \\ 2 \& 4 \end{array}$	Week 2 Week 3 Week 4 Week 5 Week 6 Week 6 Week 8 Week 8 Week 10 Week 11 Week 12 Week 13	Notecular / centuar reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Deigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/Stem Cells/Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems
Jan /Fel Februar March April	$\begin{array}{c} 10 \& 16 \\ 23 \& 25 \\ 5 & 30 \& 1 \\ y 6 \& 8 \\ 13 \& 15 \\ 20 \& 22 \\ 27 \& 29 \\ 5 \& 7 \\ 11 - 15 \\ 19 \& 21 \\ 26 \& 28 \\ 2 \& 4 \\ 9 \& 11 \\ \end{array}$	Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14	Notecular / centuar reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Depring Break Gametogenesis/Stem Cells/ Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems
Jan /Feb Februar March April	$\begin{array}{c} 10 \& 16 \\ 10 \& 16 \\ 23 \& 25 \\ \hline 0 & 0 \& 1 \\ y 6 \& 8 \\ 13 \& 15 \\ 20 \& 22 \\ 27 \& 29 \\ \hline 5 \& 7 \\ 11 - 15 \\ 19 \& 21 \\ 26 \& 28 \\ 2 \& 4 \\ 9 \& 11 \\ 16 \& 18 \\ \end{array}$	Week 2 Week 3 Week 4 Week 5 Week 6 Week 6 Week 7 Week 8 Week 10 Week 11 Week 11 Week 13 Week 14	Notecular / Centuar Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Control Systems Reproductive Endocrinology Systems Fertilization & Implantation Systems Fertilization & Implantation Systems
Jan /Feb Februar March April	$\begin{array}{c} 10 \& 16 \\ 10 \& 16 \\ 23 \& 25 \\ \hline 0 \ 0 \& 1 \\ y \ 6 \& 8 \\ 13 \& 15 \\ 20 \& 22 \\ 27 \& 29 \\ \hline 5 \& 7 \\ 11 - 15 \\ 19 \& 21 \\ 26 \& 28 \\ \hline 2 \& 4 \\ 9 \& 11 \\ 16 \& 18 \\ 23 \& 25 \\ \end{array}$	Week 2 Week 4 Week 4 Week 5 Week 6 Week 6 Week 7 Week 8 Week 10 Week 11 Week 11 Week 13 Week 15 Week 15	Molecular / Centuar Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Ovary Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/Stem Cells/ Cloning Hypothalanus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems Fertal Development & Birth Systems Assisted Reproduction/Contraception

Lecture Outline – Ovarian Systems Biology Michael K. Skinner – Biol 475/575 CUE 418, 10:35-11:50 am, Tuesday & Thursday February 27, 2024 Week 8	
Ovarian Systems Biology	
Cell Biology of the Ovary -Cell types/organization -Developmental stages (Folliculogenesis) -Atresia/apoptosis -Ogenesis	
Regulation of Folliculogenesis -Growth properties of ovarian follicles -Local production and action of growth factors -Growth regulations during development -Primordial follicle transition	
Endocrine Regulation of Tissue Function -Gonadotropin actions (Ptutiary/Gonadal Axis) -Steroid preduction and action -Two cell theory modifications -Hormone actions during development	
Cell-Cell Interactions -Categorization of different cell-cell interactions in the ovary -Growth factor regulation follicle development -Oogenesis and systems biology	
Required Reading	
Bahr JM. (2018) Ovary. Overview. in: Encyclopedia of Reproduction 2nd Edition, Ed: MK Skinner, Elsevier. Vol 2: 3-7.	

Spring 2024 – Systems Biology of Reproduction Discussion Outline – Ovary Systems Biology Michael K. Skinner – Biol 475/875 Zoom/CUE 418, 10:35-11:50 am, Tuesday & Thursday February 29, 2024 Week 8

Ovary Systems Biology

Primary Papers:

- Pla, et al. (2021) Hum Reprod. 18;36(3):756-770
 Sagvekar, et al. (2019) Clinical Epigenetics 11:61
 Nilsson, et al. (2010) PLoS ONE 7:e11637

Discussion

- Student 8: Reference 1 above
- What approach and technology was used?
 What genc categories and networks were identified?
 What oocyte maturation and folliculogenesis insights were identified?
- Student 9: Reference 2 above What are the technology used and objectives?
- What epigenetic regulation and gene network were identified?
 What insights are provided into the development of polycystic ovarian disease?

- Student 10: Reference 3 above

 • What is the experimental and systems approach?

 • What new insights provided on primordial follicle development?

 • What gene signaling networks were identified for primordial follicle development?

1

ABLE 3. The be	d-2 pene family		0		·
	Method of identification	* Punction	~	2-2 C=	1
bel-2	Overexpressed in B-cell lymphoma found at junction of t(14;18) chromosomal transle-	Suppresses apoptesia	Super si wra	tructure of chromatin: DNA apped arround nucleosomes	saring
BAX	Coprecipitate with Bel- 2 protein	Prevents bcl-2 action and increases apop-	(end	poptic cell death osticlease activity)	
bel-X	Homologous screening of cDNA library		Oligonucleosomes	/	
Long form Short form		Prevents apoptosis Increases apoptosis	a sold	* *	2000
AL	Differential screening	100	20mm	3'-End-labeling	0.00
MCL1	Subtraction screening (early response gene in musicid calls)	772	0 00 00	/ î	82.0 Q
ICE	Protesse homolog of ced-3 (interleukin 1d-	Promotes apoptosia	Gel ser	fragments	on histologic sec
ord-9	Genetic analysis (C. ele-	Prevents apoptosis		*	
BHRF1	Epstein-Barr viral se-	Prevents apoptosis	esealthy Atretic	Entyme si	spectade.
LMW5-HL	African awine fever vi- rus gene	127	()	bp Antidiga	olephause tigenin
			= =	555 Digonigen	-DNA

Number of Oocytes During Stages of
Early Folliculogenesis

	Proliferation	Assembly	Puberty
Rodent	75,000	27,000	10,000
Primate	6,800,000	1,000,000	700,000

Only 500 human follicles ovulate.

Candidate Factors for Primordial to Primary Follicle Transition

- KL (Stem Cell Factor)(Kit Ligand)
- bFGF (basic Fibroblast Growth Factor)
- LIF (Leukemia Inhibitory Factor)
- GDF-9 (Growth and Differentiation Factor 9)
- BMP-4 (Bone Morphogenic Protein 4)
- EGF (Epidermal Growth Factor)
- HGF (Hepatocyte Growth Factor)
- KGF (FGF-7)(Karotinocyte Growth Factor)
- IGF-1 (Insulin Like Growth Factor 1)
- VEGF (Vascular Endothelial Growth Factor)
- TNFα (Tumor Necrosis Factor)

Used Compound	Official Gene Symbol	Gene Title			
bFGF	Fgf2	fibroblast growth factor 2			
PDGF	Pdgfb	platelet-derived growth factor beta polypeptide			
LIF	Lif	Leukemia inhibitory factor			
KGF	Fgf7	fibroblast growth factor 7			
BMP4	Bmp4	oone morphogenetic protein 4			
AMH	Amh	anti-Mullerian hormone			
KL	Kitlg	KIT ligand			
GDNF	Gdnf	glial cell derived neurotrophic factor			
NT3	Ntf3	neurotrophin 3			
All compo	ounds ha				

Systems Biology Approach:

- 1.Comparative mRNA expression with several treatments.
- 2.Network analysis.
- 3.Unbiased literature analysis.

	#PW	AMH	FGF2	BMP4	GDNF	FGF7	KITLG	ΠF	PDGFab	CTGF
He	n genes	56	41	22	20	36	54	56	41	12
АМН	268		28	18	14	29	37	40	32	7
FGF2	248	10		13	11	19	27	29	17	7
BMP4	79	4	5		9	11	14	16	13	6
GDNF	148	14	7	3		9	9	11	11	3
FGF7	123	36	5	1	5		28	25	17	5
KITLG	271	8	5	3	1	2		39	24	8
LIF	349	7	18	13	4	3	18		30	9
PDGFab	275	18	22	3	14	5	7	10		6
CTGF	155	5	7	2	1	2	6	2	6	

Intraovarian o Hsueh AJ, Kawar Endocr Rev. 2015	control of early follicu nura K, Cheng Y, Fauser E i Feb;36(1):1-24.	llogenesis. ^{SC.}	
	Table 1. Intraovarian F Through RTKs, RSKs, GPU NPRB, and Integrins to Re Growth ^a	Paracrine Hormones Act CRs, Guanylyl Cyclase Receptor egulate Preantral Follicle	<u>.</u>
	Ligands	Receptors	
	IGF-1, KGF, VEGF, FGF2, FGF10	RTKs	-0
	Activins, BMP6, AMH	RSKs (types I and II)	
	PACAP, VIP CNP CCN2/CTGF	GPCRs Guanylyl cyclase (NPRB) Integrins	
	Abbrevations: CTGF, connective itssu- * Diverse paracrine growth factors are through several distinct initizealitiar sig- development. IGF1, KGF, VEGF, FG2 RTGS in granulosa cells to regulate foll AM+i, and BM/6 synthesized by granulo RSGS in granulosa cells increase regulate folloair functione. CNP secre guanyly(cyclase NMRI to increase cGA development. In contract, CCM2CTGF to Hippo signaling disruption, Initiazia granulosa cells to promote folkel gior	growth factor, secreted by granulosa cells; they act graning pathways: to promote failcle and rG-10 act through their respective cid development. In contrast, activitis, losa cells act though type I and type II de development. Also, both PACAP and se: CAMP production by granulosa cells to their by granulosa: cells binds to the P production and promote failide produced by granulosa cells in response with membrane-bound integrins in with.	_

PROPERTIES AND NOMENCLATURE OF SEVERAL COMMON GROWTH FACTORS							
Growth Factor		Approx. Size (kDa)	Examples of Physiological Action				
Insulin-like Growth Factor-I	IGF-I	7.5	Skeletal Growth				
Insulin-fike Growth Factor-II	IGF-II	7.5	Feal Development				
Epidernal Growth Factor	EGF	6	Tissue Growth				
Transforming Growth Factor Alpha	TGF-e	5	Tissue Growth				
Transforming Growth Factor Beta	TGF-0	25/dimer	Growth Inhibition/ Tissue Repair				
Fibroblast Growth Factor	FGF	17	Angiogenesis/Tissue Grown				
Vascular Endothelial Growth Factor	VEGF	25-50/dimer	Angiogenesis/Tissue Growt				
Nerve Growth Factor	NGF	15	Neuronal Development				
Imerienkin-1	IL-1	17	Immuae Response/				
Platelet Derived Growth Factor	PDGF	30Minner	Tissue Growth				
Stem Cell Factor (c-kat ligand)	SCF	30	Tissue Growth/Fetal				

Gene	Product	Function
Amphiregulin (Areg)	EGF-like farm	Binds EGFR and serivates ERR1/2
A disintegrin and metalloproteinase with hrombospondin-like repeats (Adamta1)	Protein	Secreted protease cleaves versioan
Cathepsin L (Cisl)	Protein	Protease
Choodrotin sultane proteoglycan (Cioc2)	Versigan	Binds HA
Cell differentiation14 (Cd14)	Adaptor molecule	Binds LPS
CD34 (Cd34)	Membrane protein	Immune cell stem cell marker
CD36 (Cd36)	Membrane publicin	Scavenger receptor
CD52 (Cd52)	GPI anchored protein	Unknown
Complement factor Q1 (C1q)	Clq	Adaptor for TLR2/4 bunds HA and PTX7
HA synthase 2 (Has2)	HA	Polymer of matrix of COCa-
Insertenkin 6 (B0)	IL-6. cynikine	Inflammation, monte immune
Pentraxin 3 (Pfx3)	Matrix protein	Binds TNFAIP6
Progesterone receptor (Pgr)	Nuclear protein	Transcription factor
Programmed cell death) (Pdod1)	Membrane protein	Anti-autoimmune regulator
Privitagiandin synthase 2 (Ptgs2)	PGE2, prostaglandins	Binds (prostaglandin E2 receptor sophtype) EP2 receptorand induces AREG
Runxl	Nuclear protein	Transcription factor
Toll-like receptors (Th2, Th4)	Membrane proteins-	Bind LPS and Pam3Cys and HA fragmente
[NF-a-induced protein 6 (Tnfaip6)	Mairix protein	Binds and stabilizes HA mairis

		and so that the			
		GROWTH FA	CTORS IN THE OVA	LRY	
	Growth Factor	Proposed Site Synthesis	Proposed Site of Action	Proposed Function*	
	IOF-1	Granulosa	Granulosa Theca	+Growth/+Differentiation +Growth/+Differentiation	3
	FGF	Granulosa	Granulosa Endothelium	+Growth Angiogenesu	
	TGF-8	Theon Granulosa	Granulosa. Theca	-Growth/+Differentiation -Growth/+Differentiation	
	TGF-c	Theca	Granulosa Threa	+Growth/-Differentiation +Growth	
	VEGF	Granulosa	Endothelium	Angiogenesis/+Griwth	
	NGF	Ovary	Neurons	Innervation	
	SCF (kit ligue)	Granulosa	Ookyte	Öocyte Manuration	
	*A (+) denotes an	increase and (+) indicates	a decrease.		
KGF	Th	ieca	Granulos	a	+growth
HGF	Th	ieca	Granulos	a	+growth
GDF9	Oc	ocyte	Granulos	a/	+growth/
		-	Theca		+differentiat
BMP15	Oc	ocvte	Granulos	a	+growth

	Environmental	Nutritional	Regulatory
Theca- Granulosa	ECM	Androgen	Estrogen Progestin TGFα TGFβ HGF KGF
Granulosa- Oocyte	Minimal ECM Cytoarchitectural Support	Gap Junctions (<800mw)	cAMP Xanthine Dirivatives OMI Kit-ligand (SCF) GDF-9
Granulosa- Granulosa	Minimal ECM Gap Junctions	Gap Junctions (cAMP)	Estrogen IGF FRP

 Table 1
 Effect of obesity on cardiometabolic risk factors in women with PCOS compared with lean patients

- ↑ Insulin resistance
- † Hyperinsulinism
- ↑ Fasting glucose
- † 2 h glucose after OGTT
- ↓ HDL-cholesterol levels
- ↑ Office and ABPM systolic and diastolic blood pressure values
- ↑ Prevalence of office and ABPM hypertension
- ↑ Prevalence of NAFLD

ABPM ambulatory blood pressure monitoring, NAFLD nonalcoholic fatty liver disease, OGTT standard 75 g oral glucose tolerance test

SLN: (Time - Course on WS	475) – 06763, (Tuesday and Lectures in p	575) – 06764 Thursday 10:35 an	11:50 am
Course	Lectures in p	I nursday 10:35 an	1-11-50 900
course on WS	: Lectures in p	the second se	I an Community and Discoursing Sections lies in a sector and
	I Zoom fon al	erson and recorde	d on Canvas ranopto and Discussion Sessions live in person and
Doom	CUE 418	campuses (nyori	a Course)
Course	Director - Mi	chael Skinner Ab	elson Hall 507 335-1524 skinner@wsn.edu
Co-Ins	tructor - Eric	Nilsson Abelson I	Iall 507, 225-1835, nilsson@wsn.edu
Learni	ng Objective -	The soli, receison 1	and every every holds, https://www.wou.com
Current	literature hase	d course on the Sys	tems Biology of Reproduction Learning Systems approaches to the
biology	of reproductio	a from a molecular	to physiological level of understanding
Schedy	le/Lecture On	tline _	to physiological level of understanding.
January	9.8.11	Week 1	Systems Biology Introduction
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16 & 18	Week 2	Molecular/ Cellular/ Reproduction Systems
	23 & 25	Week 3	Sex Determination Systems
Jan /Feb 30 & 1 Week 4		Week 4	Male Reproductive Tract Development & Function
February 6 & 8 W			
Februar	ry 6 & 8	Week 5	Female Reproductive Tract Development & Function
Februa	ry 6 & 8 13 & 15	Week 5 Week 6	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology
Februa	ry 6 & 8 13 & 15 20 & 22	Week 5 Week 6 Week 7	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology
Februa	ry 6 & 8 13 & 15 20 & 22 27 & 29	Week 5 Week 6 Week 7 Week 8	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology
Februar	ry 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7	Week 5 Week 6 Week 7 Week 8 Week 9	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease
Februar	ry 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15	Week 5 Week 6 Week 7 Week 8 Week 9 Week 10	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Preak
Februar	y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21	Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis' Stem Cells/ Cloning
Februar	ry 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28	Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis' Stem Cells' Cloning Hypothalamus-Pituitary Development & Function
Februar March April	ry 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28 2 & 4	Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/Stem Cells/Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems
Februar March April	ry 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28 2 & 4 9 & 11	Week 5 Week 6 Week 7 Week 8 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalanus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems
Februar March April	ry 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28 2 & 4 9 & 11 16 & 18	Week 5 Week 6 Week 7 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis' Stem Cells/ Cloning Hypothalamms-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems Fertal Development & Bith Systems
Februar March April	ry 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28 2 & 4 9 & 11 16 & 18 23 & 25	Week 5 Week 6 Week 7 Week 8 Week 10 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16	Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems Fertilization & Implantation Systems Fertilization & Enpolanticon Contraception