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Week 8

Ovarian Systems Biology

Cell Biology of the Ovary

-Cell types/organization

-Developmental stages (Folliculogenesis)
-Atresia/apoptosis

-Oogenesis

Regulation of Folliculogenesis

-Growth properties of ovarian follicles

-Local production and action of growth factors
-Growth regulations during development
-Primordial follicle transition

Endocrine Regulation of Tissue Function
-Gonadotropin actions (Pituitary/Gonadal Axis)
-Steroid production and action

-Two cell theory modifications

-Hormone actions during development

Cell-Cell Interactions

-Categorization of different cell-cell interactions in the ovary
-Growth factor regulation follicle development

-Oogenesis and systems biology

Required Reading

Bahr JM. (2018) Ovary, Overview. in: Encyclopedia of Reproduction 2nd Edition, Ed: MK Skinner.
Elsevier. Vol 2: 3-7.
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Glossary

Corpus luteum An endocrine gland formed from the granulosa and theca layers of an ovulated follicle.

Follicle A structure in the ovary consisting of the oocyte and surrounding granulosa and theca cell layers.

Granulosa cells Somatic cells directly surrounding the oocyte.

Meiosis A type of cell division which the oocyte undergoes reducing the number of chromosomes so that the oocyte has one
copy of each chromosome.

Oocyte The female gamete.

Ovary The female gonad.

Steroids Molecules with a basic structure similar to that of cholesterol.

Theca cells Layer of steroidogenic cells and connective tissue surrounding the granulosa cells and forming the outer layer of
the follicle.

Introduction

Ovaries are female gonads responsible for the generation of female gametes (oocytes) and synthesis of hormones necessary
for the regulation of reproductive functions. Since the first description of the ovary reported by Aristotle more than 2000 years
ago, information about the ovary has expanded significantly. Knowledge of the formation of the ovary and its endocrine function
is essential to understand the mystery of the regeneration of life.

Anatomy of the Ovary

Most vertebrates develop a pair of ovaries with the exception of some birds, reptiles and a few mammals that only have one ovary.
Opvaries lie on either side of the upper pelvic cavity and against the pelvic wall. They are held in place by a mesentery (mesovarium)
connected to a broad ligament. Ovaries are one of the most vascular organs in the body. The ovarian artery (or utero-ovarian artery)
which arises from the abdominal aorta reaches the ovary along with the mesovarium. Branches of the ovarian artery enter the ovary
through the hilus, the same site at which the venous blood exits. Adrenergic and cholinergic nerves also enter the ovary through
the hilus.

Even though the size of the ovary varies, the structure of the ovary is similar among mammalian species (Fig. 1). The
ovary consists of an inner medulla, containing a rich vascular bed within loose connective tissue and an outer cortex, where
the ovarian follicles are located. The outermost lay of the cortex is a single squamous or cuboidal surface epithelium derived
from the peritoneum. Under the surface epithelium lies the tunica albuginea, a poorly delineated layer of dense connective tissue
that gives the ovary a whitish color. The cortex of the ovary is made up of numerous follicles of varies sizes and stages of
development embedded in the stroma. The stroma is composed of at least three different cell types: connective tissue cells
(fibroblasts) performing support functions, smooth muscle cells regulating the contraction of blood vessels and interstitial cells
including undifferentiated theca cells and degenerated cells from atretic follicles and regressed corpora lutea. The follicles (follicle
is Latin for “little bag”) are structurally very conspicuous because of their variation in size. The microscopic appearance of follicles
is different depending on the stage of follicular development whereas the basic cellular organization of follicles is the same.
A follicle consists of an oocyte and surrounding follicular wall. Between the oocyte and surrounding follicular wall is a thin
transparent membrane, the zona pellucida. The follicular wall contains an inner granulosa layer and an outer theca layer. The
granulosa layer surrounds the oocyte and is separated from the theca layer by the basement membrane. The number and function
of the granulosa cells changes during follicular growth. In mature follicles, the theca layer can be divided in the theca externa and
interna. The theca externa consists of concentrically arranged smooth muscles cells innervated with autonomic nerves. The theca
interna has epithelioid cells called interstitial cells, which are steroid producing cells. These cells contain LH and insulin receptors
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Fig. 1 A cross-section of the ovary illustrating follicles at different stages of development (from primordial to Graafian follicles), corpus hemor-
rhagicum, corpus luteum, and corpus albicans. The microscopic structures of follicles are also shown. Adapted from Jones, R.E. (1991) The ovaries
in human reproductive biology, pp. 39-53. Academic Press, San Diego. p. 42.

and synthesize primarily androgens, of which the predominant steroid is androstenedione. The theca interna has both blood
vessels and nerves. The granulosa layer is devoid of blood vessels and nerves at all times.

Once ovulation of the Graffian follicle (tertiary) has occurred, blood derived from torn blood vessels of the theca layer infiltrates
the collapsed follicle and results in the formation of the corpus hemorrhagicum, a developing corpus luteum with a bloody core.
Luteinizing granulosa and thecal cells begin to divide and invade the antral cavity, which remains after ovulation of the oocyte,
forming the corpus luteum (Latin for “yellow body”). Blood vessels from the theca layer grow and penetrate the developing luteal
cell mass. If pregnancy does not occur, the corpus luteum degenerates after a certain length of time depending upon the species. The
connective tissues replaces the luteal cells and forms the corpus albicans (Latin for “white body”). The ovarian medulla devoid of
follicles, contains large, spirally arranged blood vessels, lymphatic vessels and nerves.

Functions of the Ovary
Generation of the Female Gametes

Oogenesis

Female gametes, or oocytes, provide the maternal genetic material for the formation of an embryo. The ovary nurtures thousands of
oocytes and functions as an incubator for their development. The development of oocytes (0ogenesis) starts with primordial germ
cells, residing in sex cords which divide mitotically producing oogonia. Oogonia then become primary oocytes and undergo the first
meiosis. The primary oocytes are arrested at the diplotene stage of the first meiosis until they experience the preovulatory LH surge.
Then the first meiosis is reinitiated and the membrane of the oocyte nucleus (germinal vesicle) disintegrates, which is called
germinal vesicle breakdown. Meiosis of the oocyte is unequal producing a large haploid secondary oocyte and a tiny haploid first
polar body. This polar body can divide again or remain single; in either case, it degenerates. Then the secondary oocyte begins the
second meiotic division but this division is arrested at metaphase until after sperm penetration of the oocyte, which occurs in the
oviduct. Completion of the second meiosis results in a haploid ovum and the second polar body.

Folliculogenesis

Folliculogenesis is a developmental sequence regulated by a number of genes, transcription factors and hormones. During fetal
development of humans and postnatal development of mice, oocytes are present in clusters or nests. Majority of these oocytes
enter meiosis during embryonic life. As the oocytes separate into individual oocytes, they form primordial follicles and undergo
further development called oogenesis. Maturation of oocytes (oogenesis) is closely associated with the development of follicles
because factors produced by the oocytes have a major impact on the development of the granulosa and theca layers. Folliculo-
genesis always begins in the innermost part of the ovarian cortex in mammals. Primordial follicles consist of primary oocytes
surrounded by flat squamous pre-granulosa cells. Primordial follicles are the only available source of oocytes during the entire
reproductive period of the female. As primordial follicles develop into primary follicles, there are changes in the oocyte. It
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increases in diameter and develops an extracellular matrix, the zona pellucida. Reactivation of the oocyte genome causes the
oocyte to secrete growth factors which play a crucial role in the growth of the follicle. As primary follicles grow, the granulosa
cells divide mitotically so that secondary follicles have two to six layers of cuboidal-shaped granulosa cells. Secondary follicles
also acquire an additional somatic cell layer, the theca. There are at least two sources of the theca progenitor cells: somatic precur-
sors of the fetal ovary and mesenchymal cells in the neighboring mesonephros. The formation of this theca layer is dependent
upon the presence of growth differentiation factor-9 (GDF-9) produced by the oocyte. The theca layer forms around the basement
membrane in secondary follicles and ultimately forms the theca interna and theca externa. Follicular growth from primordial
to secondary follicles is gonadotrophin-independent. During the formation of tertiary follicles or preantral follicles,
follicles continue to grow in size. As follicles progress from secondary follicles to antral follicles, granulosa cells secrete a fluid
that accumulates between cells. Large amounts of additional fluid diffuse out of the thecal blood vessels and are added to
the fluid which is called follicular fluid. Follicular fluid contains steroid and protein hormones, anticoagulants, enzymes, and
electrolytes and is similar to blood serum in appearance and contents. The follicle filled with follicular fluid is the tertiary or
preovulatory follicle. These follicles have a mural granulosa layer of four to six layers and the theca layer is differentiated into
an inner theca interna and an outer theca externa. Oocytes in preovulatory follicles are suspended in follicular fluid by a stalk
of granulosa cells, the cumulus oophorus. Immediately surrounding the oocyte is a thin ring of granulosa cells, the corona
radiata. At this state the follicle is called the Graafian follicle and appears as a transparent vesicle that bulges from the surface
of the ovary.

Even though one of the function of the ovary is to produce oocytes, the majority of oocytes never ovulate. The number of oocytes
reaches its maximum soon after the ovaries are formed. After that time oocyte number decreases dramatically. At birth, a female has
all the oocytes she will have in her life; no new oocytes are formed after birth. The vast majority of oocytes, enclosed in follicles,
around 99.9%, are eliminated before ovulation through a process called atresia which is due to the activation of apoptosis in
the oocyte and granulosa cells. Follicles can become atretic at any stage of development.

Production of Hormones

Another function of the ovary is to secrete hormones which act on the hypothalamus and pituitary to regulate the secretion of
hormones by these two tissues, thus establishing the hypothalamic-pituitary-ovarian axis. The ovarian hormones also regulate
the function of the reproductive tract and ultimately reproduction.

Protein and peptide hormones

(i) Inhibin and activin: Inhibin and activin were first isolated from gonadal fluids because of their effects on production of follicle
stimulating hormone (FSH) by the pituitary in mammals. Inhibins consist of two disulfide-bridged subunits, the « and
B subunits, whereas activins consist of two  subunits. The primary source of inhibin and activin in the ovary is the maturing
follicles and the corpus luteum. The function of inhibins is to modulate FSH secretion at the level of the pituitary, whereas the
function of activins is to increase FSH secretion at the level of the pituitary. Inhibins and activins have antagonistic actions.
Inhibins and activins also function as intraovarian hormones.

(ii) Follistatin: Follistatin is a FSH-modulating polypeptide not related to TGF-B. Follistatin acts as a binding protein and a func-
tional antagonist of activin. Granulosa cells in antral follicles and luteal cells secrete follistatin.

(iii) Relaxin: Relaxin is produced by the corpus luteum. The structure of relaxin is very similar to that of insulin but has <20%
amino acid homology. In the human, relaxin is the highest during the first trimester of pregnancy after which the concen-
trations are relative stable. In the rat and the pig, relaxin reaches the highest concentration prior to parturition. Relaxin in these
species functions to soften the cervix and vagina for the passage of the fetus during parturition and to promote the growth of
nipples. Relaxin also acts on nonreproductive tissues, such as skin and the gastrointestinal tract.

(iv) Growth factors: The ovary not only secretes endocrine hormones to regulate functions of other reproductive organs but also
produces growth factors to coordinate the activities of different ovarian compartments. Many growth factors, such as insulin-
like growth factors, transforming growth factors and epidermal growth factor are produced by the oocyte and somatic cells in
the ovary. This complex intraovarian regulation system is no less important than the extraovarian regulation by the pituitary
hormones. These growth factors form a delicate interactive communication web inside the ovary. Without them, the ovarian
cells cannot interact with each other and the growth of the ovary is halted.

Steroid hormones
The ovary uses cholesterol as the precursor for steroid synthesis. Cholesterol is metabolized into progestins, androgens, and estro-
gens by different compartments of the follicles (Fig. 2).

(i) Progestins pregnenolone. Is the most important progestins (C21 pregnane family) produced by follicles because of its
key position as the precursor of all steroid hormones. The most abundant progestin is progesterone, produced as
a biosynthetic intermediate by follicles at all growing stages of development and as a secretory end product of the
corpus luteum. In the developing follicles, the theca layer is the primary site of progestin productions. Immediately prior
to ovulation, the granulosa cells stimulated by LH also synthesize progesterone. After ovulation the corpus luteum
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Fig. 2 Biosynthesis of steroid hormones from cholesterol. This scheme provides a simplistic view of a highly organized and complicated process

that requires multiple enzymes. Adapted from Hafez, E.S.E (1993) Folliculogenesis, egg maturation, and ovulation. In Reproduction in farm animals,
6th ed., pp. 114-143. Lea and Febiger, Philadelphia, p. 79.

synthesizes copious amounts of progesterone needed to prepare the uterus for implantation and later for the maintenance
of pregnancy.

(ii) Androgens. The follicle is a significant source of ovarian androgens (C19 androstane family). Pregnenolone and progesterone
are converted into androgen metabolites, dehydroepiandrosterone and androstenedione, respectively. These are two metab-
olites are then transformed into testosterone. The theca layer of the follicle is the primary source of ovarian androgens.

(iii) Estrogens. Physiologically, the estrogens (C18 estrane family) especially estrone and estradiol-17-p, are the most important
of the ovarian steroids. Androstenedione and testosterone are the immediate biosynthetic precursors of estrone and
estradiol-17-B, respectively. Their names reflect their roles in the induction of sexual receptivity (estrus) in female mammals.
Estrone was the first sex steroid isolated and identified. The granulosa layer is the major site of estrogen synthesis in the
mammalian ovary.

Regulation of Ovarian Functions
Regulation of Folliculogenesis

Growth of primordial follicles to the preantral stage is independent of gonadotropins and is controlled by intraovarian growth
factors. Growth of follicles after the preantral stage depends on appropriate patterns of secretion, sufficient concentrations and
adequate ratios of FSH and LH in the blood. FSH plays a major role in early follicular development. FSH stimulates granulosa cell
mitosis and accumulation of follicular fluid. Granulosa cells synthesize estrogens in response to FSH which further enhance the
mitotic effect of FSH. Moreover, FSH induces granulosa cell sensitivity to LH by increasing LH receptor expression. Abundant LH
receptors in granulosa cells prepare the luteinization of granulosa cells in response to the ovulatory LH surge in mammals. In
contrast, theca cells are stimulated only by LH and LH receptors are present from the beginning of the formation of the theca
layer.
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Fig. 3 “Two-cell, two-hormone” theory of follicular steroidogenesis. LH binds to specific membrane receptors on theca calls and stimulates cyclic
AMP production and the conversion of cholesterol to androgens, primarily androstenedione and testosterone. These androgens diffuse into the circu-
lation and across the basement membrane into granulosa cells. FSH binds to specific membrane receptors on granulosa cells and stimulates cyclic
AMP production, which leads to increased aromatase enzyme activity and the conversion of theca androgens to estrogens. Adapted from Yen, S. S.
C. and Jaffe, R. B. (1986). Reproductive Endocrinology (2" ed.), Philadelphia: Saunders.

Regulation of Steroidogenesis

The steroidogenic output of the ovary is a function of coordinated actions of theca and granulosa cells. Differences in gonadotropin
receptors on the membrane, in the activity of steroidogenic enzymes and in compartmentalization in the follicle result in a unique
partnership in steroid synthesis between theca and granulosa cells. The principal site of estrogen synthesis in the mammalian ovary
is granulosa cells under the control of FSH. Androgen production appears to be the primary steroidogenic function of theca cells in
response to LH. Androgens from theca cells provide substrates for granulosa cells to synthesize estrogens. The action of LH on theca
androgen production, together with the action of FSH on granulosa estrogen synthesis, forms the basis of the “two-cell, two-
hormone” theory for the control of steroidogenesis in the ovary (Fig. 3).

Further Reading

Dong, J., Albertini, D. F., Nishimori, K., Kumar, T. R., Lu, N., & Matzuk, M. M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature, 383,
531-535.

Hafez, E. S. E. (1993). Folliculogenesis, egg maturation, and ovulation. In Reproduction in farm animals (6th ed., pp. 114—143). Philadelphia: Lea and Febiger.

Jones, R. E. (1991). The ovaries in human reproductive biology. San Diego: Academic Press. pp. 39-53.

Liu, C., Peng, J. Matzuk, M.M. and Yao, H.H. (2015). Nature Communications. https://doi.org/10.1038/ncomms7934.

Rajkovic, A., Panagas, S. A., & Matzuk, M. M. (2006). Follicular development: Mouse, sheep and human models. In J. D. Neill (Ed.), Knobil and Neill's physiology of reproduction
(3rd edn). Amsterdam: Elsevier.

Strauss, J.F. Il and Williams, C.J. (2009). The ovarian life cycle, Strauss, J.F. lll, Barberi, R.L. eds., Yen and Jaffe’s reproductive endocrinology, physiology, pathophysiology, and
management, 6th edn, Saunders, Philadephia, PA.

Williams, C. J., & Erickson, G. F. (2012). In L. J. De Groot, G. Chrousos, & K. Dungan (Eds.), Morphology and physiology of the ovary. South Dartmouth, MA: Endotext.


https://doi.org/10.1038/ncomms7934

Spring 2024 — Systems Biology of Reproduction
Lecture Outline — Ovarian Systems Biology
Michael K. Skinner — Biol 475/575
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Week 8

Ovarian Systems logy

Cell Biology of the Ovary
~Cell types/organization

-D stages (
-Atresia/apoptosis
-Oogenesis

Regulation of Folliculogenesis

~Growth properties of ovarian follicles

~Local production and action of growth factors
-Growth regulations during development
-Primordial follicle transition

Endocrine Regulation of Tissue Function
~Gonadotropin actions (Pituitary/Gonadal Axis)
~Steroid production and action

“Two cell theory modifications

-Hormone actions during development

Cell-Cell Interactios
-Categorization of different cell-cell interactions in the ovary
-Growth factor regulation follicle development

s and systems biology
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Skinner. Elsevier. Vol 2: 3-7.
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Discussion Outline — Ovary Systems Biology
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Week 8

Ovary Systems Biology
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2. Sagvekar, et al. (2019) Clinical Epigenetics 11:61
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Discussion

Student 8: Reference 1 above
o What approach and technology was used?
o What gene categories and networks were identified?
o What oocyte maturation and folliculogenesis insights were identified?

Student 9: Reference 2 above
o What are the technology used and objectives?
*  What epigenetic regulation and gene network were identified?
o What insights are provided into the development of polycystic ovarian discase?

Student 10: Reference 3 above
®  What is the experimental and systems approach?
o What new insights provided on primordial follicle development?
o What gene signaling networks were identified for primordial follicle development?
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Initiation of follicular atresia: gene networks during early atresi;
Zhang J, Liu Y, Yao W, Li Q, Liu H, Pan Z.
Reproduction. 2018 Jul;156(1):23-33.

in pig ovaries.

Bubble chart of potential signaling pathways
generated by DEGs. Pathway analysis was
performed to associate the unique DEGs with
pathways using the KEGG database. The size
and color of each bubble represent number of
in each pathway and P value
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genes.

Activation of in early | mice i
Watanabe R, Sasaki S, Kimura N.
Biol Reprod. 2019 Sep 30. [Epub ahead of print]

primordial follicle number and improves lifelong fertility.

Autophagy par in cyst and primordial folliculogenesis by reducing reactive oxygen species levels in
perinatal mouse ovaries.

Zhihan T, Xinyi M, Qingying L, Rufei G, Yan Z, Xuemei C, Yanging G, Yingxiong W, Junlin H.

J Cell Physiol. 2019 May;234(5):6125-6135.
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Bone Marrow Transplantation Generates Immature Oocytes and Rescues Long-Term Fertility in a Preclinical Mouse Model of
Chemotherapy-Induced Premature Ovarian Failure

Ho-Joon Lee, Kaisa Selesniemi, Yuichi Niikura, Teruko Niikura, Rachael Kiein, David M. Dombkowski, Jonathan L. Tilly

The controversial existence and functional potential of oogonial stem
cells.

Grieve KM, McLaughlin M, Dunlop CE, Telfer EE, Anderson RA.
Maturitas. 2015 Nov;82(3):278-81.




Cyclic epithelial remodelling in the ovary and fimbria

Follicular Assembly and Primordial to
Primary Follicle Transition

Oocyte “Nest” Primordial Primary Follicles
Follicles

SP1 governs primordial folli is by cell in mice.
Cai H, Liu B, Wang H, Sun G, Feng L, Chen Z, Zhou J, Zhang J, Zhang T, He M, Yang T, Guo Q, Teng Z, Xin Q, Zhou B, Zhang H, Xia G, Wang C.
Mol Cell Biol. 2019 Jul 5. pii: mjz059. doi: 10.1093/jmcb/mjz059. [Epub ahead of print]




Nuclear exclusion of SMAD2/3 in granulosa cells is associated with primordial follicle activation in the mouse ovary.
Hardy K, Mora JM, Dunlop C, Carzaniga R, Franks S, Fenwick MA.
J Cell Sci. 2018 Sep 7;131(17). pii: jcs218123.
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Somatic cells initiate primordial follicle activation and govern the
development of dormant oocytes in mice.

Zhang H, Risal S, Gorre N, Busayavalasa K, Li X, Shen Y, Bosbach B, Brannstrom M, Liu K.
Curr Biol. 2014 Nov 3;24(21):2501-8.




FOXO01/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH.
LiuZ,etal.
Mol Endocrinol. (2013) Feb;27(2):238-52.

Forkhead box O member FOXO1 regulates the majority of follicle-stimulating
hormone responsive genes in ovarian granulosa cells

Mol Cell Endocrinol. 2016 Oct 15;434:116-26.

Herndon MK, Law NC, Donaubauer EM, Kyriss B, Hunzicker-Dunn M.

of Follicle-Sti ing Hormone and Stem Cell Factor to Promote Primordial Follicle Assembly in the Chicken.
Guo C, Liu G, Zhao D, Mi Y, Zhang C, Li J.
Front Endocrinol (Lausanne). 2019 Feb 19;10:91.

Effects of FSH treatment on chicken folliculogenesis in vivo. (A B) Morphology of the primordial and growing follicles in 6 en ovaries. Scale bar: 20 pm
Arrowheads and arrows represent the somatic cells and oocytes, respectively. (C) Changes in the primordial and growing follicle numbers after FSH treatment. (D) The
¢-KIT and SCF mRNA expressions were measured by qRT-PCR in ovaries from the 6-day-old chickens after FSH treatment at day 4. GAPDH was used as the
normalization control. T-tests were used to determine statistically significant differences. The values are the mean = SEM of six experiments. Asterisks indicate
significant differences (*P < 0.05, **P <001, P <0.001)
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Candidate Factors for Primordial
to Primary Follicle Transition

¢ KL (Stem Cell Factor)(Kit Ligand )

¢ bFGF (basic Fibroblast Growth Factor)

* LIF (Leukemia Inhibitory Factor)

¢ GDF-9 (Growth and Differentiation Factor 9)
* BMP-4 (Bone Morphogenic Protein 4)

* EGF (Epidermal Growth Factor)

¢ HGF (Hepatocyte Growth Factor)

* KGF (FGF-7)(Karotinocyte Growth Factor)
¢ IGF-1 (Insulin Like Growth Factor 1)

¢ VEGF (Vascular Endothelial Growth Factor)
¢ TNFa (Tumor Necrosis Factor)

Current Model of Early Folliculogenesis

TNFa ( i

Roles of Gremlin 1 and Gremlin 2 in regulating ovarian primordial to
primary follicle transition.

Nilsson EE, Larsen G, Skinner MK.
Reproduction. 2014 Jun;147(6):865-74.

Neurotrophin NT3 promotes ovarian primordial to primary follicle transition.
Nilsson E, Dole G, Skinner MK.
Reproduction. 2009 Oct;138(4):697-707.
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Lhx8 regulates primordial follicle activation and postnatal
folliculogenesis.

Ren Y, Suzuki H, Jagarlamudi K, Golnoski K, McGuire M, Lopes R, Pachnis V, Rajkovic A
BMC Biol. 2015 Jun 16;13:39.

Dynamic expression patterns of Irx3 and Irx5 during germline nest breakdown and primordial follicle formation promote
follicle survival in mouse ovaries.

Fu A, Oberholtzer SM, Bagheri-Fam S, et al.

PLOS Genet. 2018 Aug 2;14(8):e1007488.

Dazl determines primordial follicle formation through the translational regulation of Tex14.
Rosario R, Crichton JH, Stewart HL, Childs AJ, Adams IR, Anderson RA.
FASEB J. 2019 Dec;33(12):14221-14233.
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ELAVL2-directed RNA regulatory network drives the formation of quiescent primordial follicles.
Kato Y, Iwamori T, Ninomiya Y, Kohda T, Miyashita J, Sato M, Saga Y.
EMBO Rep. 2019 Dec 5;20(12):e48251.

Sirtuins in female meiosis and in reproductive longevity
Berta N Vazquez, Alejandro Vaquero, Karen Schindler
Mol Reprod Dev. 2020 Dec;87(12):1175-1187.

Identification of a unique epigenetic profile in women with diminished ovarian reserve.
Olsen KW, Castillo-Fernandez J, Chan AC, et al.
Fertil Steril. 2021 Mar;115(3):732-741.
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Systems Biology Approach:

I.Comparative mRNA expression
with several treatments.

2 Network analysis.

3.Unbiased literature analysis.

Regulatory Growth Factors

Official
Used Gene
Compound | Symbol |Gene Title
bFGF Fgf2 | fibroblast growth factor 2
PDGF Pdgfb | platelet-derived growth factor beta polypeptide
LIF Lif Leukemia inhibitory factor
KGF Fgf7 | fibroblast growth factor 7
BMP4 Bmp4 | bone morphogenetic protein 4
AMH Amh | anti-Mullerian hormone
KL Kitlg | KIT ligand
GDNF Gdnf | glial cell derived neurotrophic factor
NT3 Ntf3 | neurotrophin 3

All compounds had effect on Primordial to Primary Follicle Transition

QOocyte “Nest”
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Gene Co-expression Network

heatman derived from a network )

-

(Hierarchical Clustering over the module-module similarity matrix

Size, #

Module genes
turquoise * 194
blue * 182
brown * 158
yellow * 150
green 139
red * 112
black 99
pink 85
magenta 68
purple * 45
greenyellow 32
tan 29
salmon 28
cyan 22
midnightblue 20
lightcyan 20
I* - chosen

“Short” list of 55 most connected
in network genes
CTGF, connective tissue growth factor

Organ culture experiments to test if CTGF regulates follicle transition:

Intraovarian control of early folliculogenesis.

Hsueh AJ, Kawamura K, Cheng Y, Fauser BC.
Endocr Rev. 2015 Feb;36(1):1-24.
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WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility
Habara O, Logan CY, Kanai-Azuma M, Nusse R, Takase HM.
Development. 2021 May 1;148(9):dev198846.

P! role of WNT si ing in is. WNT-responding pre-GCs produce Wnt4, Wnt6 and Wnt11 in primordial
folllcles and oocytes secrete the WNT agonlst RSPO2. Activation of canonical WNT signaling in pre-GCs promotes their transition
into GCs during primordial follicle activation (PFA). In primary follicles, GCs induce the withdrawal of oocytes from a dormant state,
as reflected by the translocation of FOXO3 from the nucleus to the cytoplasm.
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Hypothetical diagram of RTEC induced earlier menopause. The red line represents normal ovarian dynamics during aging while the
blue line represents ovarian dynamics in a premature menopause scenario.
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Fig. 4. Schematic of the prpoosed steroid-
mediated interactions between ovarian theca cells
and granulosa cells. The steroids involved
include androgens (A), estogens (E) and
progestins (P) with both positive (+) and negative
-) effects on steroidogenesis. The gonadotropins
involved include luteinizing hormone (LH) and
follicle stimulating hormone (FSH).

“FSH Actions on Granulosa Cells “

“Actions of LH on Granulosa Cells”
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Transforming Growth-Beta Factor
Family

- oocyte/follicle

- Granulosa
- Theca/Granulosa
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Signalling pathways involved in the cooperative effects of ovine and murine GDF9+BMP15-stimulated
thymidine uptake by rat granulosa cells.

Reader KL, et al.

Reproduction. (2011) Jul;142(1):123-31.

The epidermal growth factor network: role in oocyte growth, maturation and
developmental competence

Hum Reprod Update. 2018 Jan 1;24(1):1-14.

Richani D, Gilchrist RB.
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KGF - keratinocyte growth factor
28kDA mesenchymal cell derived growth factor
(FGF-7); receptor FGFR-2 splice variant
Receptor only on epithelial type cells

HGF - hepatocyte growth factor
28kDA mesenchymal cell derived growth factor
(scatter factor); promote kidney tubulogenesis
Receptor is c-met protooncogene
only on epithelium

Both mediate mesenchymal-epithelial interactions

Theca cells- express/secrete KGF & HGF
Granulosa cells- respond t growth

Parrott et al (1994)
Endocrinology
135:569

KGF
HGF
GDF9

BMP15

Theca
Theca
Oocyte

Oocyte

Granulosa
Granulosa
Granulosa/
Theca
Granulosa

+growth
+growth
+growth/
+differentiation
+growth

The role of Notch signaling in the mammalian ovary
Reproduction. 2017 Jun;153(6):R187-R204.
Vanorny DA, Mayo KE.
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Myo-Inositol and D-Chiro-Inositol as of Ovary i is: A ive Review.
Bizzarri M, Monti N, Piombarolo A, Angeloni A, Verna R.
Nutrients. 2023 Apr 13;15(8):1875.

Main ic p. ys related to myo-inositol ion inside the cell.
Main showing the i of myo-Ins and D-
chiro-Ins (DCI) upon endocrine signaling pathways in theca and
Opposite i exerted by myo-inositol and D-chiro-inositol. granulosa cells within the ovary.

The Role of Inositols in the Hyperandrogenic Phenotypes of PCOS: A Re-Reading of Larner's Resuilts.

Fedeli V, Catizone A, Querqui A, Unfer V, Bizzarri M.

Int J Mol Sci. 2023 Mar 27;24(7):6296.

Main intracellular signaling pathways in which myo-

inositol participates.

Opposite effects upon ovary steroidogenesis of
myo-Ins and D-Chiro-Ins.
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Genetics of ovarian insufficiency and defects of folliculogenesis.
Franga MM, Mendonca BB.
Best Pract Res Clin Endocrinol Metab. 2021 Oct 14;101594.

Antral Follicle Primordial Follicles
Pr ics-based syst biology modeling of bovine germinal vesicle stage oocyte and cumulus cell
interaction.
Peddinti D, et al.

PLoS One. (2010) Jun 21;5(6):e11240.

Proteome of fluid from human ovarian small antral follicles reveals insights in
folliculogenesis and oocyte maturation.

Plal, Sanchez A, Pors SE, et al.

Hum Reprod. 2021 Feb 18;36(3):756-770.
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The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from
primordial follicles and in metaphase II.

Grgndahl ML, et al.

Mol Hum Reprod. (2013) 19(9):600-17.

ranscriptome profile of goat folliculogenesis reveals the interaction of oocyte and
granulosa cell in correlation with different fertility population.
Li S, Wang J, Zhang H, et al.
ci Rep. 2021 Aug 3;11(1):15698.

Follicle Online: an integrated database of follicle assembly, development

and ovulation.
Hua J, Xu B, Yang Y, Ban R, Igbal F, Cooke HJ, Zhang Y, Shi Q.
Database (Oxford). 2015 Apr 29;2015:bav036.

Cell-specific network analysis of human folliculogenesis reveals network rewiring in antral
stage oocytes.

Wang S, Gong Y, Wang Z, et al.

J Cell Mol Med. 2021 Mar;25(6):2851-2860.
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A single-cell atlas reveals unanticipated cell type complexity in Drosophila ovaries.
Slaidina M, Gupta S, Banisch TU, Lehmann R.
Genome Res. 2021 Oct;31(10):1938-1951.

Single-Cell Transcriptomics Analysis of Human Small Antral Follicles.
Fan X, Moustakas |, Bialecka M, et al.
Int J Mol Sci. 2021 Nov 4;22(21):11955.
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Single-cell RNA-sequencing of retrieved human oocytes and eggs in clinical practice and for human ovarian cell atlasing.
Machlin JH, Shikanov A.
Mol Reprod Dev. 2022 Dec;89(12):597-607.
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Novel insights into repi ive ageing and from
Das A, Destouni A.
Hum Reprod. 2023 Feb 1;38(2):195-203.

Ovarian and somatic biological ageing clocks and their putative relationship.

[Making a good egg: human oocyte health, aging, and in vitro development.
[ Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA.
Physiol Rev. 2023 Oct 1;103(4):2623-2677.

Ben Yaakov T, Wasserman T, Aknin E, Savir Y.
Elife. 2023 Apr 25;12:e74915.

The effect of female age on the ovarian immune milieu

The effect of fertile female aging on the ovarian immune system

Single-cell analysis of the aged ovarian immune system reveals a shift towards adaptive immunity and attenuated cell function.

Cellular hallmarks of aging emerge in the ovary prior to primordial follicle depletion.

Ansere VA, Ali-Mondal S, Sathiaseelan R, et al.
Mech Ageing Dev. 2021 Mar;194:111425.
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Polycystic ovary syndrome as a paradigm for prehypertension,
prediabetes, and preobesity.

Luque-Ramirez M, Escobar-Morreale HF.

Curr Hypertens Rep. 2014 Dec;16(12):500.

Scientific Statement on the Diagnostic Criteria, Epidemiology,

Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome.
Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS.
Endocr Rev. 2015 Oct;36(5):487-525.

Pathophysiology of PCOS—a vicious circle. Several theories have been proposed to explain the pathogenesis of PCOS. One of
these is that neuroendocrine defects lead to increased pulse frequency and amplitude of LH and relatively low FSH. This causes
intrinsic defects in ovarian androgen production. Also, there may be an alteration in cortisol metabolism and excessive adrenal
androgen production. Insulin resistance with compensatory hyperinsulinemia further increases ovarian androgen production both
directly and indirectly via the inhibition of hepatic SHBG production. Obesity, insulin resistance, and high circulating androgens are

Alteration in angiogenic potential of granulosa-lutein cells and follicular fluid contributes to

luteal defects in polycystic ovary syndrome.
Patil K, Hinduja I, Mukherjee S.

Hum Reprod. 2021 Mar 18;36(4):1052-1064.
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The concentration of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) levels in FF and serum of
control and women with polycystic ovary syndrome (PCOS). FF (n % 20 in each group) and serum (n % 10 in each group) were
used to measure levels of VEGF (A and B) and FGF2 (C and D), in women with PCOS compared to controls. Statistical
comparison was performed using the Mann-Whitney U test. Data are represented as mean = SEM and *P < 0.05; **P < 0.01
considered significant. FF, follicular fluid.

associated with increased sympathetic nerve activity. E, estradiol.

Compromised Cumulus-Oocyte Complex Matrix Organization and Expansion in Women with PCOS
Patil K, Shinde G, Hinduja I, Mukherjee S.
Reprod Sci. 2021 Nov 8. Online ahead of print.
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Functional microarray analysis of differentially expressed genes in
granulosa cells from women with polycystic ovary syndrome related to
MAPKI/ERK signaling.

Lan CW, Chen MJ, Tai KY, Yu DC, Yang YC, Jan PS, Yang YS, Chen HF, Ho HN.

Sci Rep. 2015 Oct 13;5:14994.

DNA y profiling of cells reveals altered ylation in genes ing vital ovarian i in
polycystic ovary syndrome.

Sagvekar P, Kumar P, Mangoli V, Desai S, Mukherjee S.

Clin Epigenetics. 2019 Apr 11;11(1):61.

of ged ovaries reveals a unique set of ding RNAs iated with ph
and i ovarian i
Cuomo D, Porreca |, Ceccarelli M, Threadgill DW, et al.
Cell Death Discov. 2018 Dec 5;4:112.

Networks of putative target genes

g by di i
miRNAs.Validated target genes (grey
nodes) mapped to pathway annotations
derived from literature and gene ontology
using Ingenuity Pathway Analysis (IPA,
http://www.ingenuity.com) A Mir143
regulatory network B and  Mir145
regulatory network. The solid lines
connecting molecules represent a direct
relation and dotted lines an indirect
relation. IPA constructs networks  that
optimize for both interconnectivity and
number of Focus Genes (the grey nodes)
under the constraint of a maximal
network size. White nodes are added by
the algorithm to build a highly connected
molecular network between Focus
Genes.

WGCNA Analysis Identifies Polycystic Ovary Syndrome-Associated Circular RNAs That
Interact with RNA-Binding Proteins and Sponge miRNAs.

Li M, Zeng Z, Zhang A, et al.

Int J Gen Med. 2021 Nov 23;14:8737-8751.
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[The IncRNA-miRNA-mRNA ceRNA network in mural granulosa cells of patients with polycystig

ovary syndrome: an analysis of Gene Expression Omnibus data.
Chen H, Cheng S, Xiong W, Tan X.
JAnn Transl Med. 2021 Jul;9(14):1156.

Flowchart of data processing and analysis. LncRNA, long non-coding RNA; miRNA, microRNA; mRNA, messenger]

RNA; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Evaluation of the expression profile of mMRNAs and IncRNAs in cells i with polycystic ovary sy
and pregnancy.

I B, i FS, Akbari A, i SR, Kazemi M.
Iran J Basic Med Sci. 2023;26(10):1144-1154.

Hub gene network. Node color is related to its degree

Microarray data analysis of 7 PCOS and 3 normal GCs samples

IncRNA-mRNA j jon network. i from

Methylome and transcriptome profiling revealed epigenetic silencing of LPCAT1 and
PCYT1A associated with lipidome alterations in polycystic ovary syndrome.

Mao Z, Li T, Zhao H, Wang X, Kang Y, Kang Y.

J Cell Physiol. 2021 Sep;236(9):6362-6375.

Systems biology and in silico-based lysis of PCOS led the risk of
Hossain MA, Al Ashik SA, Mahin MR, Al Amin M, Rahman MH, Khan MA, Emran AA.
Heliyon. 2022 Dec 22;8(12):e12480.
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