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Abstract

Our model of the bovine estrous cycle is a set of ordinary differential equations which generates hormone profiles of successive
estrous cycles with several follicular waves per cycle. It describes the growth and decay of the follicles and the corpus luteum,
as well as the change of the key reproductive hormones, enzymes and processes over time. In this work we describe recent
developments of this model towards the administration of prostaglandin F2�. We validate our model by showing that the
simulations agree with observations from synchronization studies and with measured progesterone data after single dose
administrations of synthetic prostaglandin F2�.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout the last decades, increasing amounts of
biological data have become available, and mathemat-
ical modeling aims at relating and interpreting these
data with the help of powerful computational tools and
efficient algorithms. As part of the rapidly expanding
research field systems biology, this approach is highly
interdisciplinary, and requires a close collaboration be-
tween mathematicians and natural scientists. Although
a few models are already available [1–4], systems bi-
ology modeling in animal sciences is still at an early
stage of development [5].

The purpose of this paper is to demonstrate how
dynamic mathematical models can enhance the under-
standing of synchronization in the bovine estrous cycle.

* Corresponding author. Tel: �49 30 84185 335; Fax: �49 30
84185 107
E-mail address: stoetzel@zib.de (C. Stötzel).

093-691X/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.theriogenology.2012.04.017
The model used in this article is based on a model that
was presented in previous studies [4,6]. It describes the
key feedback mechanisms within the bovine estrous
cycle, and generates hormonal profiles of successive
estrous cycles over time. The long-term goal of devel-
oping such a model of the endocrine mechanisms in the
bovine is to assist with research and application in drug
testing, management decision making, or therapeutic
strategies. On the one hand, we want to contribute to a
better understanding of the complex biological mecha-
nisms that drive the estrous cycle, and on the other hand
we aim to exploit the predictive abilities of such a
mathematical model, e.g., by simulating external influ-
ences. The short-term goal and current aim of this
article is to validate and improve the existing model,
thus to make a step towards a reliable model, which
makes predictions more adequate.

The starting point of our work was the validation of

the model used in [6]. For this purpose we investigated
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how adequately the model simulations match available
information. Experimental data required for model val-
idation would for example consist of measured hor-
monal concentrations of healthy, untreated, individual
cows at different stages of estrous cycle. Unfortunately,
measurements published in literature are rare and do
often not meet the requirements for validation; ob-
served time scales are often too small or too coarse, or
too few substances are measured. Therefore, we were
looking for alternative information that we could mon-
itor with the model. We wanted to check the correct-
ness of the model for a specific scenario where the
system answer is known. More precisely, synchroniza-
tion protocols [7] drew our attention to prostaglandin
F2� (PGF2�). In veterinary medicine, PGF2� and its
analogues are administered to cows mainly to make use
of their luteolytic action, e.g., in estrus synchronization
protocols. It is known that the sudden rise of this
hormone at certain stages of the estrous cycle results in
an immediate decay of the responsive corpus luteum
(CL), and an immediate fall of progesterone levels in
plasma. In a first validation step of our model, we
simulated the administration of PGF2� and compared
he outcome of our simulation with known responses
eported in literature. Furthermore, we used measure-
ents taken after single injections of PGF2� to validate

our simulation.
The above described validation is an iterative pro-

cess. Whenever simulations with the original model
were not satisfactory, adjustments to the model were
made. In particular, during simulations for the admin-
istration of hormones, we figured out that this model
still had some shortcomings regarding the growth and
decay of the CL. A replacement of mechanisms in-
volved in ovulation and the refinement of luteolysis
became necessary.

The objective of this paper is to describe the adjust-
ments to the original model, and to show that the
advanced model captures the known effects after
PGF2� administration.

2. Materials and methods

Our modeling approach aims to reproduce how the
various components involved in the bovine estrous cy-
cle function together. Instead of only investigating in-
dividual parts, we describe the biological system on the
whole-organism level, in order to capture the most
important dynamic feedback mechanisms. We mostly
consider regulatory mechanisms (inhibitory and stimu-

latory effects of hormones), and model them as contin- o
uous functions over time. The model in [4] was con-
structed by first defining a number of key components
of the system and their interactions, which were then
represented in a flow chart. Subsequently, a set of
differential equations was derived to describe the rela-
tions within the flow chart mathematically. For every
model component, e.g., a hormonal concentration or the
follicular capacity to produce hormones, one ordinary
differential equation (ODE) was developed. The depen-
dencies between the components are described in the
right hand sides of the ODEs. Hill functions are used to
model inhibitory and stimulatory relations. A slightly
modified version of the model in [4] with improved
luteolysis was used in [6], which we will refer to as the
original model in the following. The model derived in
this paper is the result of several adjustment of the
original model, which will be described in detail. An
overview of the final model is given in Figure 4. As we
aim to validate our model with the help of external
manipulations, we will describe the background of this
administration first, before going into the details of the
model advancements.

2.1. Background of PGF2� administration - estrus
synchronization protocols

Protocols of estrus synchronization consist of consec-
utive administration of different hormones or their ana-
logues following a certain order. They have the goal to
synchronize the estrus of individual females in order to
facilitate timing of following artificial insemination, inde-
pently of estrous cycle stage at the start of the protocol.
They are commonly used in cattle and in other domestic
and non-domestic species [8]. Our approach to validate
the model of the bovine estrous cycle was to include
synchronization protocols as described in [7,9]. Here, we
restrict ourselves to single and double administrations of
PGF2�, which is used in these protocols as single or
ouble injection. We model the administration of PGF2�

at different stages of the estrous cycle.
The PGF2� is responsible for the onset of luteolysis

n the cow. With luteolysis the luteal phase of the cycle
nds and a new estrus can take place. The PGF2�

induces functional luteolysis by reducing progesterone
production followed by structural luteolysis with tissue
degeneration and cell death [10,11]. The PGF2� is syn-
thetized in the endometrium and released in pulses,
regulated by estradiol (E2), progesterone (P4) and oxy-
ocin (OT) during the estrous cycle [12–14]. In animal
roduction, administration of synthetical analogues of
GF2� (e.g., Cloprostenol, Luprostiol, Tiaprost) or

riginal PGF2� (e.g., Dinoprost) is used for various pur-
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poses in the cow, such as induction of estrus or synchro-
nization protocols. The effect of the treatment depends on
the stage of estrous cycle which determines the respon-
siveness of the CL on the luteolytic effect of PGF2� [11].
At midluteal stage of the estrous cycle administration of
PGF2� leads to luteolysis within a few hours. This results
in a decrease of P4 concentration, increase of E2, a peak of
he Luteinizing Hormone (LH) and ovulation [15].

Virtual administration of PGF2� to the cow model
was conducted on various days of the estrous cycle.
With the original model, the simulation outcome of the
model after PGF2� application was not as expected,
which gave us a starting point to improve the model.

2.2. Advancements in the model

To improve the model with respect to the expected
effects of a single PGF2� injection, we introduced some
ew features which are described in this section. A list
f the Hill functions—sigmoidal functions to model
nhibitory or stimulatory effects as described in [4]—
an be found in Appendix B. Here H� and H� denote

scaled positive, respectively negative Hill functions.
Parameter values are specified in Appendix C.

In the former model, the equation for the CL de-
scribed the change of the capacity of the CL to produce
P4. For reasons described later in this section, we now
interpret this equation as the development of the size
(e.g., diameter) of the CL over the cycle. This is also
advantageous as soon as we deal with ultrasound mea-
surements for the corpus luteum. Likewise, the equa-
tion for the follicles (Foll) now describes the develop-
ment of the total size of all follicles.

2.2.1. Drug administration
We add an additional model component for ana-

logues of PGF2�, denoted PGFsyn in the following. It is
reported that PGF2� and its analogues have a very short
alf-life [16,17], thus we chose to model PGFsyn with a
apid decay. Furthermore, it is known that PGF2� ana-
ogues have an up to three times higher biological
ctivity than original PGF2� [17]. Even low doses of

PGFsyn cause a peak in PGF2� that exceeds the natural
level [18]. Due to this high potency of PGFsyn, we
hose to model PGFsyn with a three times higher rela-
ive level compared to normal PGF2� levels. We model

the effect of the synthetical analogue by summing the
level of PGFsyn to the normal PGF2� level.

To model the rise of PGFsyn in the system, we take a
function which is zero before dosing time (tD), and has a
sharp left-skewed peak with maximum shortly after tD.
This leads to a slight delay in the effect of the injection. As

suggested in [19] and based on techniques described in
[20], we take the probability density function of the Gam-
ma-distribution with fixed shape parameter � � 2, and
inverse scale parameter � leading to a left-skewed curve
which has its maximum at t � 1/�. The change of con-
entration of synthetic PGF2� is calculated as

d

dt
PGFsyn(t) � D · �2 · tmod(t) · exp (�� · tmod(t))

� cPGFsyn
· PGFsyn (t).

he parameter D represents the amount of administered
rug scaled to obtain the designated height of the rel-
tive level of PGFsyn, see Figure 1. The parameter

cPGFsyn denotes the clearance rate constant of PGFsyn.
he modified time function tmod denotes time after
osing, and is given by

tmod(t) � max(0, t � tD)

The rise of PGFsyn is large right after dosing time and
approaches zero quickly thereafter, leading to a rapid
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2.2.2. Improvement of luteolysis
In [4], the rise of PGF2� triggering the decay of

the CL was modeled as a black box, depending with
large delays on P4 only. In [6], this was improved as
nzymes were introduced that stimulate PGF2�, and
he model became more robust. However, in simu-
ating the administration of PGF2� we detected that

the modeling of luteolysis still had some shortcom-
ings. It is known that after the administration of
PGF2� the responsive CL decays immediately [21].
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PGF2�, to appear a couple of days later compared to
the original model. To account for this effect, we
now model the mechanisms that lead to a rise in
PGF2� differently. The development of the model
regarding luteolysis is illustrated in Figure 2.

Instead of leaving only the enzymes (Enz) being re-
sponsible for PGF2� levels as in [6], we now also include
OT as another initiator of PGF2� [22]. The E2 stimulates
OT synthesis in the granulosa cells [23] and the effect
of OT on PGF2� [13]. We assume that OT production
depends on the surface of the CL and thus quadratically on
CL size, and that it is cleared with constant rate cOT. The
equation for the rise and fall of OT is now

d

dt
OT (t) � H17

� (E2) · CL(t)2 � cOT · OT (t).

The OT together with Enz are now responsible for the
rise of PGF2�. With the function H16

�(Enz & OT),
hich represents a stimulatory effect if the levels of
nz and OT are both high, and the constant clearance

ate cPGF, the equation for PGF2� becomes

d

dt
PGF(t) � H19

� (Enz&OT) � cPGF · PGF(t).

In the former model, PGF2� triggered luteolysis di-
ectly, independent of estrous stage. However, it is
nown that the CL is resistant to the action of PGF2� at

early luteal stage. We therefore remodeled the action of
PGF2� on the CL. According to [11], the direct action
f PGF2� on the CL is mediated by local factors: endo-

thelin-1-system, cytokines, and nitric oxide. The expres-
sion of these interovarian substances is upregulated by
PGF2�, and strictly depends on the stage of the CL. Sum-

arizing these local factors, we introduce a new compo-
ent to our model and call it interovarian factors (IOF).
OF is stimulated by PGF2� only if the CL has reached a

certain size, and is cleared with constant rate cIOF,

d

dt
IOF(t) � H18

� (PGF&CL) � cIOF · IOF(t).

The rise of the interovarian factors now induces
luteolysis.

2.2.3. Improvement of ovulation
In the original model, LH was the initiator of ovulation,

responsible for decay of the dominant follicle, and at the
same time the initiator of the rise of the CL 4.5 days after
the LH peak. A delay differential equation was needed to
model this effect. The atretic follicles disappeared from
the system, and the CL emerged independently of the size

of the just ovulated dominant follicle.
However, it is known that thecal and granulosa cells
of the ruptured follicle transform to small and large
luteal cells which form the rising CL [24]. Therefore, to
make the model more realistic and to be able to account
for different sizes of the dominant follicle [25], we
changed the involved mechanisms. The ovulatory fol-
licle now directly influences the initiation of CL
growth, and no further delay differential equation is
needed. The old and new mechanisms are illustrated in
Figure 3. The equations for the follicular size (denoted
Foll) and the CL are modified as follows:

d

dt
Foll(t) � H̃11

� (FSHBld) � (H12
� (P4)

� H13
� (LHBld)) · Foll(t),

d

dt
CL(t) � SF · H13

� (LHBld) · Foll(t) � H14
� (CL)
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Fig. 3. Changes in the mechanisms involved in ovulation. “�” marks a
stimulatory effect, “T” denotes a threshold within a Hill function. Arrows
without description mean a transitition, and “�” marks a degraded sub-
stance. In both models, ovulation includes the degradation of the follicles,
and the formation of the CL, triggered by LH. In previous models (A), the
CL arose independently from the size of the follicles, only regulated by the
timepoint of the LH peak. In (B), a new dependency is introduced as
the degraded follicles transform to the newly arising CL, making thus the
size of the CL directly dependent on the follicles.
� H15
� (IOF) · CL(t).
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In the model, the part of the follicles decaying due to
LH, i.e., the ovulated follicle, is now preserved in the
system, forming the rising CL. The scaling factor SF is
included to keep the relative levels of the substances
between 0 and 1. Further growth of the CL is still
modeled by a self-growth, i.e., a positive influence of
the CL on its own size from a certain size on. Since the
CL therefore starts to grow earlier now, the threshold
and rate of self-growth have been adjusted.

2.2.4. Further modifications
Because the development of the CL depends on

three mechanisms (an initiating impulse from LH, a
self-growth and the decay caused by the interovarian
factors), the level of the CL changes as follows: Right
after ovulation the CL starts to grow, reaches the size
needed for self-growth, and then grows with constant rate
until the rise of PGF2�. In the original model, with the
former mechanisms of delayed rise of the CL after ovu-
lation, the course of CL was interpreted as “capacity to
produce P4”, and thus the P4 profile looked similar. Avail-
able experimental data for P4 lead us to modify its pro-
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duction in the model. In particular, data from a study with c
single dose PGF2� administration showed that the P4 pro-
le stayed low for about 10 days after the PGF2� admin-

stration. Therefore, and since it is known that P4 produc-
tion of the CL is not absolutely proportional to the CL size
[26], the mechanisms leading to the rise of P4 were ad-
justed to obtain a P4 production which is lower at start of

L growth compared to later luteal stages. We now in-
erpret the equation for CL as development of the “size of
he CL”, and assume that production of P4 depends on the

surface size and thus quadratically on CL. The equation
for P4 becomes

d

dt
P4(t) � cCL

P4 · CL(t)2 � cP4 · P4(t).

In the former model, the capacity of the follicles to
produce E2 and inhibin (Inh) was described in one
quation, and E2 and Inh levels were proportional to the

relative level of this component. For consistency rea-
sons we now also assume a quadratic relationship be-
tween the follicles and E2, respectively Inh, and the

 Pituitary

LH Blood

FSH Blood

+−

+

+T

T +

T T

T

+
+

+

+

T

T

T

T

T +

+
T

+
Follicles

Corpus Luteum

IOF

 Pituitary

Pituitary

in presented advanced model of the bovine estrous cycle. Each box
olor resp. grayscale of a box indicates the different physiological
ituitary (GnRH, LH, FSH), blood (LH, FSH, estradiol, progesterone,
GF2�). The arrows represent the regulations between the substances

d within a Hill function. No description means a transition, and ‘�’
FSH

+

es

GnRH

LH 

the here
, the c
RH), p
terus (P
hreshol
orresponding equations become



ovulatio

1421C. Stötzel et al. / Theriogenology 78 (2012) 1415–1428
d

dt
E2(t) � cFoll

E2 · Foll(t)2 � cE2 · E2(t),

d

dt
Inh(t) � cFoll

Inh · Foll(t)2 � cInh · Inh(t).

Diminishing the former delay for inhibin on FSH has
been possible by augmenting the threshold for in-
hibin until its negative influence on FSH synthesis
arises, at the same time steepening the regulatory
effect on FSH. Moreover, the production rate of
inhibin as well as its clearance rate have been low-
ered in order to defer the simulated inhibin curve.
The FSH threshold for its influence on the follicles
has also been increased. The fact that we were able to
dispose of this delay without changing the differen-
tial equation at all was only possible because the
delay was quite short (1.41 days in [6]).

A flow chart of the complete mechanisms of the
model is shown in Figure 4.

3. Results and discussion

The here presented advanced model of the bovine
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estrous cycle consists of 15 ordinary differential equations
and 60 parameters, generating successive estrous cycles of
21 days with three follicular waves per cycle. It does not
contain time delays anymore. Therefore, there is no longer
a need for a delay differential equation solver. We now
use a linear implicit Euler method with extrapolation,
implemented in the code LIMEX [27]. Parameters are
identified with the software NLSCON developed at the
Zuse Institute. This software uses subtle mathematical
techniques, such as affine covariant Gauss-Newton meth-
ods that take into account sensitivities and linear depen-
dencies of the parameters [28,29].

Our model of the bovine estrous cycle is dimen-
sionless in the sense of [30], i.e., the numerical
values of the components are independent of the
standard of measurement. Simulated hormone levels
and ovarian components have been scaled to be be-
tween 0 and 1 by dividing the equation by its max-
imum output level. Once we have measurement data
available we will scale the functions to the corre-
sponding quantities by scaling the involved parame-
ters. This can be done because until now none of the
parameters has a fixed value verified by experiments.
We refer to the simulated dimensionless output func-
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3.1. Simulation of single administration of PGF2� at
ifferent stages of the cycle

The changes in the model described in the previous
ection have led to the following changes in the simulation
esults (Fig. 5). In contrast to the previous model, after
dministration of PGF2� on Day 10 after ovulation the CL
ow decays immediately to zero. P4 levels follow shortly

after. Right after administration, PGF2� does not have high
levels right anymore, but stays low for 21 days. The most
important difference between the outcome of the former and
the advanced model can be observed in the follicles. Before,
the administration of PGF2� did not affect regular fun-
tion, anovulatory waves stayed anovulatory. Now, the
ext arising follicular wave does not decay but contin-
es to rise, leading to ovulation.

In Figure 6 we can observe that virtual administra-
ion of PGF2� in the early luteal stage does not lead to
decay of the CL, while at later time points of the cycle

t results in an immediate decay of the responsive CL,
n LH peak, and ovulation during the following follic-
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ays after administration.
lar wave. d
.2. Simulation of repeated administration of PGF2�

at different stages of the cycle

As described in Section 2.1, protocols of estrus syn-
chronization often contain two administrations of
PGF2�. It is known that the success of these protocols
depends on the time interval between the two doses
[31]. We thus investigated several time intervals with
our model. In Figure 7, the effect of this application on
he follicles is shown. On day zero, PGF2� is adminis-
ered to six cows in different phases of their cycles. A
igh peak in the course of Foll of a cow corresponds to
he ovulatory wave of this cow. As can be observed in
igure 7A, a single dose of PGF2� results in an ovula-

tion in the next follicular wave in some cows (cow3,
cow4, cow5, cow6), while in other cows (cow1 and
cow2) it does not have any effect. In Figure 7B, a
second dose of PGF2� is given to the same cows seven
ays after the first application. Here too, some cows
re affected by this administration (cow1 and cow2
re responsive), while others are not affected. This is
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CL is not responsive to PGF2� early after its rise. The
cows affected by the first dosage are now in the early
luteal stage and thus not responsive to the second
dosage, while the cows not responsive at the first
administration are now in a later luteal stage where
they respond to PGF2�. This suggests giving the
econd application when the cows affected by the
rst dosage are again in the phase of their estrous
ycle where they have a responsive CL. In Figure
C, the second dose is given 14 days after the first
ose, leading to a synchronization effect within al-
ost all of the cows under investigation.
Before the first administration to the cows in Figure
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Fig. 7. Simulation results for the follicles of six different cows d
administration, when the cows are each in a different stage of their est
In (A), a single dose of PGF2� is given, which impacts the cycle of at
fter the first dosage, now influencing the cycle of two other cows (co
ow influencing four cows (cow3, cow4, cow5 and cow6).
, the ovulation timepoints of the cows were evenly c
istributed, while after double administration within 14
ays they were brought much closer together, such that
he cows ovulate within a timespan of 4.5 days. This is
onsistent with the double injection 11 to 14 days
part in common synchronization protocols as re-
iewed in [31]. Only for some cows in a certain stage
f their cycle (e.g., cow 5 in Fig. 7C), the synchro-
ization effect in our model is not as desired, which
s in line with observations after presynch protocols
32]. Nevertheless, this result validates our model in
he sense that it captures the known effects after this
ertain external manipulation of the bovine estrous
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3.3. Comparison with progesterone measurements
after single administration of PGF2�

In a recent study performed at the institute of animal
reproduction, Department of Veterinary Medicine at
Freie Universität Berlin, a single dose of 5 mg PGF2�

was injected to seven cows, and plasma progesterone
concentrations were measured before and after the ad-
ministration. In particular, blood was collected every
morning (8:00h) and evening (17:00h) before the injec-
tion, every four h after the injection, and twice a day
after ovulation, detected by ultrasound.

Model parameters have been identified so that the
simulated P4 level matches the given data. Note that we
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Fig. 8. Simulation of a single dose of PGF� and its impact on other
components of the model. Parameters have been fitted such that the
simulated P4 levels match the given experimental P4 data. With the set
of identified parameters, we can investigate the course of the other model
components. In particular, we can observe that ovulation occurs six days
after injection. (C) Relative levels of selected other hormones.
now observe and simulate concentrations instead of rela- c
tive levels for progesterone. Certain parameter units there-
fore have to be adapted adequately. In Figure 8A an
example of measured P4 concentrations for one of the
examined cows is shown, together with the simulated P4

concentration. Ovulation has been detected by ultrasound
a couple of days after the PG injection. This is well
captured in the simulation. Not only does this approve our
model, we can also observe substances that are not mea-
sured within the experiment, and our simulation gives us
insight into the development of these substrates after a
single PGF2� injection. For example, in Figure 8C we
observe a GnRH peak after administration of PGF2�,

hich can be understood as an increase in pulse frequency
nd is in the scope of expected observations.

. Conclusions

In this work we have enhanced the model of the
ovine estrous cycle which was introduced in [4,6]
owards the simulation of synchronization protocols.

e have replaced the mechanisms regarding ovulation
nd refined the modeling of luteolysis. The new com-
onents representing oxytocin and interovarian factors
ave been introduced, integrated, and connected to the
ther components of the model. To eliminate time de-
ays, certain growth and decay rates, as well as several
hresholds and steepness factors have been adjusted. To
ccount for effects observed in experimental data, the
elationship between CL growth and the rise of P4

levels has been modified, the action of Foll has been
adjusted accordingly. We have validated our model by
capturing the synchronization effect of double PGF2�

administration. In our model, the responsiveness of the
corpus luteum is the decisive factor for synchronization
effects after PGF2� injection.

We have shown simulation results for cows with
three follicular waves per cycle. Different parameter-
izations can also lead to cycles with different wave
numbers or irregular wave patterns, but those simula-
tions would go beyond the scope of this work. The
original motivation of developing a model of the bovine
estrous cycle [4] was to better understand the underly-
ng biological mechanisms and dynamics, but this mo-
ivation is not exclusive.

In the future, the model of the bovine estrous cycle
ould be used within study planning or evaluation, for
ducational purposes or to assist management deci-
ions. The model could be integrated into existing mod-
ls, e.g., metabolic networks [1]. New models could
lso be developed for other aspects interacting with the

ycle, e.g., stress, negative energy balance, or milk
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production, and then coupled to the model presented in
this work. Further applications could be the modeling
of pathologic situations, e.g., cystic ovarian disease,
anestrous, or inflammation. The model could be used to
deeper investigate their interaction with fertility hor-
mones of the cow. Further, an optimal control problem
could be formulated to design synchronization proto-
cols regarding optimal dosing and frequency. A future
refinement could require the inclusion of reactions that
take place on single-cell level, e.g., receptor binding
mechanisms as in [33]. The level of detail will be
adjusted according to the applications. The direction of
future research will highly depend on future collabora-
tions and input from animal reproduction experts. The
prospectives will thus depend crucially on the available
experimental data and interest of animal scientists in
systems biology methods.
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Appendix A. Equations

The model describing the bovine estrous cycle with-
out external manipulation consists of 15 ordinary dif-
ferential equations with 60 parameters. For virtual ad-
ministration of PGF2� we use one additional ordinary
ifferential equation (ODE) containing three extra pa-
ameters.

GnRH:

d

dt
GnRHHypo(t) � SynGnRH(t) � RelGnRH(t) (1)

SynGnRH(t) � cGnRH,1 · �1 �
GnRHHypo(t)

GnRHHypo
max �

RelGnRH(t) � (H1
�(P4 & E2) � H2

�(P4)) · GnRHHypo(t)

d

dt
GnRHPit(t) � RelGnRH(t) · H3

�(E2)

� cGnRH,2 · GnRHPit(t) (2)

FSH:

d

dt
FSHPit(t) � SynFSH(t) � RelFSH(t) (3)
SynFSH(t) � H4
�(Inh)

RelFSH(t) � (bFSH � H5
�(P4) � H6

�(E2)

� H7
�(GnRHPit)) · FSHPit(t)

d

dt
FSHBld(t) � RelFSH(t) � cFSH · FSHBld(t) (4)

H:

d

dt
LHPit(t) � SynLH(t) � RelLH(t) (5)

SynLH(t) � H8
�(E2) � H9

�(P4)

RelLH(t) � (bLH � H10
� (GnRHPit)) · LHPit(t)

d

dt
LHBld(t) � RelLH(t) � cLH · LHBld(t) (6)

Follicles and corpus luteum:

d

dt
Foll(t) � H̃11

� (FSHBld) � (H12
� (P4)

� H13
� (LHBld)) · Foll(t) (7)

d

dt
CL(t) � SF · H13

� (LHBld) · Foll(t) � H14
� (CL)

� H15
� (IOF) · CL(t) (8)

Hormones produced in the ovaries:

d

dt
P4(t) � cCL

P4 · CL(t)2 � cP4 · P4(t) (9)

d

dt
E2(t) � cFoll

E2 · Foll(t)2 � cE2 · E2(t) (10)

d

dt
Inh(t) � cFoll

Inh · Foll(t)2 � cInh · Inh(t) (11)

Enzymes, oxytocin and inter-ovarian factors:

d

dt
Enz(t) � H16

� (P4) � cEnz · Enz(t) (12)

d

dt
OT(t) � H17

� (E2) · CL(t)2 � cOT · OT(t) (13)

d

dt
IOF(t) � H18

� (PGF & CL) � cIOF · IOF(t) (14)
PGF2� and synthetic prostaglandin

http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1273
http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1273
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d

dt
PGF(t) � H19

� (Enz & OT) � cPGF · PGF(t) (15)

d

dt
PGFsyn(t) � D · �2 · tmod(t) · exp(�� · tmod(t) )

� cPGFsyn
· PGFsyn(t)

tmod(t) : � max(0, t � tD)

ppendix B. List of hill functions

Positive resp. negative Hill functions are defined as

�(S(t);T, n) : �
S(t)n

Tn � S(t)n
,

h�(S(t);T, n) : �
Tn

Tn � S(t)n.

The Hill functions listed below are the full notations of
the Hill functions mentioned in Section 2.2, in Appen-
dix A. They represent a majority of the mechanisms
shown in Fig. 4.

H1
�(P4 & E2) � mP4&E2

GnRH · (h�(P4(t); TP4
GnRH,1, 2)

� h�(E2(t), TE2
GnRH,1, 2)

�h�(P4(t); TP4
GnRH,1, 2) · h�(E2(t), TE2

GnRH,1, 2))

H2
�(P4) � mP4

GnRH,2 · h�(P4(t), TP4
GnRH,2, 2)

H3
�(E2) � mE2

GnRH,2 · h�(E2(t), TE2
GnRH,2, 5)

H4
�(Inh) � mInh

FSH · h�(Inh(t), TInh
FSH, 5)

H5
�(P4) � mP4

FSH · h�(P4(t); TP4
FSH, 2)

H6
�(E2) � mE2

FSH · h�(E2(t); TE2
FSH, 2)

H7
�(GnRHPit) � mGnRH

FSH · h� (GnRHPit(t); TGnRH
FSH , 1)

H8
�(E2) � mE2

LH · h�(E2(t); TE2
LH, 2)

H9
�(P4) � mP4

LH · h�(P4(t); TP4
LH, 2)

H10
� (GnRHPit) � mGnRH

LH · h�(GnRHPit(t); TGnRH
LH , 5)

˜
11
� (FSHBld)

� mFSH
Foll · h�(FSHBld(t); T̃FSH

Foll(t), 2), T̃FSH
Foll(t)

� TFSH
Foll · h�(Foll(t); TFoll

FSH, 2)

H12
� (P4) � mP4

Foll · h�(P4(t); TP4
Foll, 5)
H13
� (LHBld) � mLH

Ovul · h�(LHBld(t); TLH
Ovul, 2)
H14
� (CL) � mCL

CL · h�(CL(t), TCL
CL, 2)

H15
� (IOF) � mIOF

CL · h�(IOF(t); TIOF
CL , 5)

H16
� (P4) � mP4

Enz · h�(P4(t); TP4
Enz, 5)

H17
� (E2) � mE2

OT · h�(E2(t); TE2
OT, 2)

18
� (PGF & CL) � mPGF&CL

IOF · h�(PGF(t)

� PGFsyn(t); TPGF
IOF, 5) · h�(CL(t); TCL

IOF, nCL
IOF, 10)

19
� (Enz & OT)

� mEnz&OT
PGF · h�(Enz(t); TEnz

PGF, 5) · h�(OT(t); TOT
PGF, 2)

ppendix C. Parameter values

[·] stands for the unit of the substance, usually a
oncentration, and can be specified from measure-
ents. Typical units are [FSH] � [LH] � IU/l, [P4] �

g/mL, and [E2] � pg/ml. If units of FSH and lutein-
zing hormone (LH) differ in pituitary and blood, re-
ease-terms have to be scaled adequately. t denotes
‘time’”; in our model [·] stands for “‘days’”

Par. No. Symbol Value Unit

1 GnRHHypo
max 16 [GnRHHypo]

cGnRH,1 2.75 �GnRHHypo�

�t�
mP4&E2

GnRH 2.05 1/[t]
4 TE2

GnRH,1 0.0972 [E2]
5 TP4

GnRH,1 0.35 [P4]
6 mP4

GnRH,2 1.91 1/[t]
7 TP4

GnRH,2 0.252 [P4]
8 mE2

GnRH,2 0.99 �GnRHPit�

�GnRHHypo�
9 TE2

GnRH,2 0.648 [E2]
10 cGnRH,2 1.63 1/[t]

11 mInh
FSH 4.21 [FSH]/[t]

12 TInh
FSH 0.118 [Inh]

13 bFSH 0.948 1/[t]
14 mP4

FSH 0.293 1/[t]
15 TP4

FSH 0.152 [P4]
16 mE2

FSH 0.396 1/[t]
17 TE2

FSH 0.312 [E2]
18 mGnRH

FSH 1.23 1/[t]
19 TGnRH

FSH 0.0708 [GnRHPit]

20 cFSH 2.73 1/[t]

21 mE2

LH 0.376 [LH]/[t]

22 TE2

LH 0.243 [E2]
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Par. No. Symbol Value Unit

23 mP4

LH 2.71 [LH]/[t]
24 TP4

LH 0.0269 [P4]
25 bLH 0.0141 1/[t]

26 mGnRH
LH 2.22 1/[t]

27 TGnRH
LH 0.69 [GnRHPit]

28 cLH 12.0 1/[t]
29 mFSH

Foll 0.562 [Foll]/[t]
30 TFSH

Foll 0.57 [FSH]
31 TFoll

FSH 0.22 [Foll]
32 mP4

Foll 1.1 1/[t]
33 TP4

Foll 0.126 [P4]
34 mLH

Ovul 3.49 1/[t]
35 TLH

Ovul 0.171 [LH]

36 SF 0.2 [CL]/[t]
37 mCL

CL 0.0353 [CL]/[t]
38 TCL

CL 0.1 [CL]
39 mIOF

CL 41.39 1/[t]
40 TIOF

CL 1.32 [IOF]
41 cCL

P4 2.25 �P4�⁄�CL�2

�t�
2 cP4 1.41 1/[t]

43 cFoll
E2 2.19 �E2�⁄�Foll�2

�t�

44 cE2 1.23 1/[t]
Par. No. Symbol Value Unit

45 cFoll
Inh 1.41 �Inh�⁄�Foll�2

�t�
46 cInh 0.475 1/[t]

47 mP4
Enz 3.58 [Enz]/[t]

48 TP4
Enz 0.77 [P4]

49 cEnz 2.98 1/[t]
50 mE2

OT 1.59 �OT�⁄�CL�2

�t�
1 TE2

OT 0.143 [E2]
52 cOT 0.644 1/[t]
53 mPGF&CL

IOF 39.68 [IOF]/[t]
54 TPGF

IOF 1.22 [PGF]
55 TCL

IOF 0.6 [CL]
56 cIOF 0.298 1/[t]

57 mEnz&OT
PGF 53.91 [PGF]/[t]

58 TEnz
PGF 1.43 [Enz]

59 TOT
PGF 1.087 [OT]

60 cPGF 1.23 1/[t]

D 3.7 [PGF]

� 100 1/[t]

cPGFsyn
5.5 1/[t]
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Abstract

The progesterone receptor (PR, encoded by Pgr) plays essential roles in reproduction. 
Female mice lacking the PR are infertile, due to the loss of the protein’s functions in 
the brain, ovary, and uterus. PR is also expressed in pituitary gonadotrope cells, but its 
specific role therein has not been assessed in vivo. We therefore generated gonadotrope-
specific Pgr conditional knockout mice (cKO) using the Cre-LoxP system. Overall, both 
female and male cKO mice appeared phenotypically normal. cKO females displayed 
regular estrous cycles (vaginal cytology) and normal fertility (litter size and frequency). 
Reproductive organ weights were comparable between wild-type and cKO mice of both 
sexes, as were production and secretion of the gonadotropins, LH and FSH, with one 
exception. On the afternoon of proestrus, the amplitude of the LH surge was blunted 
in cKO females relative to controls. Contrary to predictions of earlier models, this did 
not appear to derive from impaired GnRH self-priming. Collectively, these data indicate 
that PR function in gonadotropes may be limited to regulation of LH surge amplitude in 
female mice via a currently unknown mechanism.

Introduction

The progesterone receptor (PR, product of the Pgr gene) 
plays fundamental and pleiotropic roles in the control of 
reproduction. This is perhaps most clearly demonstrated in 
female Pgr-knockout mice, which are infertile because of 
impairments in LH surges from the pituitary, LH-induced 
meiotic maturation and ovarian follicle rupture, uterine 
decidualization, and sexual behavior (Lydon et  al. 1995, 
Chappell et  al. 1999). The LH surge is driven by ovarian 
estrogens, which have positive feedback effects at both the 
hypothalamic and pituitary levels. In the hypothalamus, 
estrogens stimulate expression of kisspeptin (Kiss1) in 

neurons of the anteroventral periventricular nucleus 
(AVPV); kisspeptin, in turn, stimulates GnRH release 
(Messager et  al. 2005, d’Anglemont de Tassigny et  al. 
2008). In the pituitary, high levels of estrogens increase the 
sensitivity of gonadotrope cells to GnRH, amplifying LH 
release (Lasley et al. 1975, Dafopoulos et al. 2004). Estrogens 
stimulate PR expression in multiple cell types, and PRs in 
kisspeptin neurons play essential roles in estrogen-positive 
feedback. Indeed, estradiol-induced LH surges, ovulation 
(as reflected by corpora lutea numbers), and fertility (e.g., 
litter size) are impaired in female mice with conditional 
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deletion of Pgr in kisspeptin neurons (Stephens et al. 2015, 
Gal et al. 2016). Though kisspeptin expression appears to 
be normal in the AVPV of these animals, the data indicate 
that LH surges in mice depend, at least in part, on intact PR 
function in kisspeptin neurons.

These results do not, however, rule out an additional 
role for the PR in estrogen-positive feedback and LH surge 
generation at the pituitary level. Estrogens induce PR 
expression in gonadotropes and PR has been suggested to 
modulate GnRH action (i.e., self-priming) therein (Turgeon 
& Waring 1994, Aguilar et al. 2003). GnRH self-priming is 
a phenomenon in which prior GnRH pulses potentiate the 
actions of subsequent GnRH pulses on LH release (Waring 
& Turgeon 1980, Higuchi & Kawakami 1982). Self-priming, 
which is more pronounced in rats than mice, is estrogen and 
protein-synthesis dependent, but does not require increases 
in GnRH receptor numbers (Pickering & Fink 1976, Colin 
et al. 1996). Rather, GnRH actions appear to be enhanced 
in a cAMP- and PR-dependent manner (Turgeon & Waring 
1994, Abdilnour & Bourne 1995). For example, GnRH self-
priming is reduced, though not completely eliminated, in 
estradiol-treated pituitary cultures of Pgr-knockout mice 
(Turgeon & Waring 2001). Similarly, GnRH self-priming is 
blocked in ovariectomized, estradiol-treated Pgr-knockout 
mice in vivo (Chappell et  al. 1999). Nevertheless, the 
necessity for PR function in gonadotropes for gonadotropin 
production, LH surge dynamics, and fertility have not been 
assessed. To address these gaps in knowledge, we generated 
gonadotrope-specific Pgr-knockout mice.

Materials and methods

Animals

The Pgrfx/fx and GnrhrIRES-Cre/IRES-Cre (GRIC) mice were 
described previously (Wen et  al. 2008, Fernandez-Valdivia  
et al. 2010). Pgrfx/fx males were crossed with GRIC females 
to generate Pgrfx/+;GnrhrGRIC/+ progeny. Pgrfx/+;GnrhrGRIC/+ 
females were then crossed to Pgrfx/fx males to generate 
Pgrfx/fx;Gnrhr+/+ controls and Pgrfx/fx;GnrhrGRIC/+ conditional 
knockouts (cKOs). In order to purify gonadotropes by 
fluorescence-activated cell sorting (FACS), we crossed  
Pgrfx/fx animals with Gt(ROSA26)ACTB-tdTomato-EGFP mice 
(mTmG/mTmG, stock 007676 from Jackson Laboratories) 
to generate Pgrfx/fx;Rosa26mTmG/mTmG males, which were 
then crossed to Pgrfx/+;GnrhrGRIC/+ females to generate  
Pgrfx/fx;GnrhrGRIC/+;Rosa26mTmG/+ males and females. Controls 
for FACS were generated by crossing Rosa26mTmG/mTmG and  
GRIC mice to generate Pgr+/+;GnrhrGRIC/+;Rosa26mTmG/+ 
progeny. Genotyping and assessment of genomic 

recombination were conducted as previously described  
(Zhou et  al. 2016) (primers listed in Table 1). All 
animal experiments were performed in accordance with  
institutional and federal guidelines and were approved 
by the McGill University and Goodman Cancer Centre  
Facility Animal Care Committee (Protocol 5204).

Fluorescence-activated cell sorting of gonadotropes

FACS was performed at the Cell Vision Core Facility 
for Flow Cytometry and Single Cell Analysis of the Life 
Science Complex at the Rosalind and Morris Goodman 
Cancer Research Centre at McGill University. Pituitary cell 
dispersion and cell sorting were performed as previously 
described (Ho et  al. 2011, Li et  al. 2017). Here, EGFP-
positive (gonadotropes) and tdTomato-positive (non-
gonadotropes) cells were sorted from control and cKO 
animals. On average, 1.2 × 104 EGFP-positive and 2.5 × 105 
tdTomato-positive cells were obtained from each group 
(ten mice per group).

Assessment of female puberty onset, estrous cyclicity, 
and fertility

Females were monitored daily after weaning (postnatal day 
21) to determine the onset of vaginal opening. At 6 weeks  
of age, estrous cyclicity was assessed by daily vaginal 
swabs for 3 weeks. Vaginal cells were smeared on glass 
slides and stained with 0.1% methylene blue to identify 
cycle stages (Caligioni 2009). The number of days spent 
in each stage (proestrus, estrus, or diestrus/metestrus) was 
then counted and divided by the total number of days 
to determine the relative proportion of time spent in 
each stage. At 9 weeks of age, a group of females (n = 6 
per genotype) were mated with wild-type age-matched 
C57BL/6 males (Charles River) for 6 months. Breeding 
cages were monitored daily, and the date of birth and 
number of pups were recorded.

Reproductive organ collection

Testes, seminal vesicles, ovaries, and uteri were dissected 
from 10-week-old control and cKO males and females. 
Females were killed at 07:00 h on the morning of estrus. 
All organs were weighed on a precision balance.

Blood collection

Blood was collected from 10-week-old control and cKO 
males and females (07:00 h on estrus morning) by cardiac 
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puncture, allowed to clot for 30 min at room temperature, 
and spun down at 850 g for 10 min to collect serum. Sera 
were stored at −20°C until assayed for LH and FSH. To 
assess LH pulsatility in males, four microliters of blood 
were collected from the tail tip, every 10 min over 4 h, 
starting 2 h before lights off. To assess LH surge amplitude 
in females, four blood samples (four microliters each) were 
collected from the tail tip over 10 consecutive days: at 
10:00 h and at 18:00, 19:00 and 20:00 h (light cycle on/off 
at 07:00 h/19:00 h). For all tail tip blood collections, the 
animals were acclimatized to the procedure by massaging 
the tail for 2 weeks prior to the start of the blood collection. 
All tail tip blood samples were immediately diluted (1:30) 
in 1× PBS containing 0.05% of Tween, gently vortexed, 
and placed on dry ice. Blood dilutions were stored at 
−80°C until LH ELISAs were performed.

In the LH surge experiment, we compared the 
maximal LH level obtained from each animal on proestrus 
afternoon (peak). In females surging more than once over 
the 10-day sampling period, an average of the maximal 
value was calculated and used in the analysis. With the 
sampling method used, we may have missed the true peak 
of the LH surge. Nevertheless, it enabled us to observe one 
or more surges in all animals, which would not have been 
the case if we relied exclusively on vaginal smears for 
staging proestrus. Moreover, the same approach was used 
for all animals, and the pattern of results was comparable 
between the two genotypes.

Hormone analyses

Serum FSH levels were assessed by a Milliplex kit (Millipore, 
MPTMAG-49K, custom-made for FSH only) following the 
manufacturer’s instructions (minimal detection limit: 
9.5 pg/mL; intra-assay CV <15%). Serum and whole blood 
LH levels were measured using an in-house sandwich ELISA 
as previously described in Steyn et al. (2013), Czieselsky et al. 
(2016), Li et al. (2017) (detection limit: 0.117 to 30 ng/mL; 
an intra-assay CV <10%). As we reported previously (and as 
seen here), LH levels are higher in serum than whole blood 
samples (Li et al. 2018b).

Reverse transcription and quantitative-PCR

Pituitary glands were dissected from control and cKO 
animals (10 weeks old; females were killed at 07:00 h on 
estrous morning), snap-frozen in liquid nitrogen, and 
stored at −80°C. Pituitaries were homogenized in TRIzol 
reagent (15596018, ThermoFisher Scientific), and total RNA 
was extracted following the manufacturer’s guidelines. For 
cells from the FACS experiments, total RNA was extracted 
using a Total RNA Mini Kit (Geneaid, RB300, New Taipei 
City, Taiwan). Reverse transcription was performed as 
previously described (Turgeon et al. 2017) using Moloney 
murine leukemia virus reverse transcriptase (0000172807, 
Promega) and random hexamers (0000184865, Promega). 
qPCR was run on a Corbett Rotorgene 600 instrument 
(Corbett Life Science) using EvaGreen qPCR Mastermix 

Table 1 Primer sequences.

Genotyping primers
 Pgr primer 1 (forward) GTATGTTTATGGTCCTAGGAGCTGGG
 Pgr primer 2 (reverse) TGCTAAAGGTCTCCTCATGTAATTGGG
 Pgr primer 3 (recombination; reverse) CTGGAAGTAGGATAGAATAATTGGCCTT
 GRIC primer 1 (forward) GGACATGTTCAGGGATCGCCAGGC
 GRIC primer 2 (reverse) GCATAACCAGTGAAACAGCATTGCTG
 mTmG primer 1 (WT forward) AGGGAGCTGCAGTGGAGTAG
 mTmG primer 2 (mutant forward) TAGAGCTTGCGGAACCCTTC
 mTmG primer 3 (common reverse) CTTTAAGCCTGCCCAGAAGA
qPCR primers
 Rpl19 (forward) CGGGAATCCAAGAAGATTGA
 Rpl19 (reverse) TTCAGCTTGTGGATGTGCTC
 Fshb (forward) GTGCGGGCTACTGCTACACT
 Fshb (reverse) CAGGCAATCTTACGGTCTCG
 Lhb (forward) ACTGTGCCGGCCTGTCAACG
 Lhb (reverse) AGCAGCCGGCAGTACTCGGA
 Cga (forward) TCCCTCAAAAAGTCCAQGAGC
 Cga (reverse) GAAGAGAATGAAGAATATGCAG
 Gnrhr (forward) TTCGCTACCTCCTTTGTCGT
 Gnrhr (reverse) CACGGGTTTAGGAAAGCAAA 
 Pgr (forward) GTCACTATGGCGTGCTTACCT
 Pgr (reverse) TCAGACGACATGCTGGGCA
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(ABMMmix-S-XL; Diamed, Mississauga, ON, Canada) 
and the primers are listed in Table 1. Expression levels of 
genes of interest were determined using the 2−ΔΔCt method 
(Livak & Schmittgen 2001) and ribosomal protein L19 
(Rpl19) for normalization. All primers were validated for 
efficiency and specificity.

GnRH self-priming

The protocol to examine GnRH self-priming was adapted 
from Chappell et  al. (1999), with some modifications 
based on Higuchi & Kawakami (1982). Indeed, changes 
were required because we were unsuccessful in reliably and 
consistently observing GnRH self-priming in wild-type mice 
using the protocol described in Chappell et al. (1999). We 
developed a reliable and reproducible self-priming method 
after several rounds of optimization. Females (7 to 9 weeks 
of age) were ovariectomized in accordance with standard 
operating procedure 206 of the McGill University and 
Goodman Cancer Centre Facility Animal Care Committee. 
Briefly, an incision was made at the midline of the mid-
dorsum of the animal. On each side of the animal, a small 
incision was made in the muscle above the ovary, and the 
ovary pulled out of the body cavity with forceps. The tissue 
was then cauterized at the level of the oviduct and the 
ovary was removed. All incisions were closed by sutures. 
One week following ovariectomy, each female was given a 
s.c. injection of 2 μg estradiol benzoate (EB, E8515, Sigma-
Aldrich) dissolved in sesame oil (100 μL of a 0.02 μg/μL 
solution) between 09:30 and 10:00 h. At 07:00 h on the 
next day, blood from the tail tip was collected as described 
above. Each female was then given six consecutive s.c. 
injections of 50 ng GnRH (L8008, Sigma-Aldrich) (100 μL 
of a 0.5 ng/μL solution) at 1-h intervals. Blood from the tail 
tip was collected 10 min after each GnRH administration. 
To minimize stress associated with frequent sampling and 
injections, mice were handled daily for 2 weeks prior to the 
onset of injections. Blood samples were diluted and frozen 
as described above. Samples were then stored at −80°C 
until LH ELISAs were performed.

Immunofluorescence

GRIC mice were crossed to eR26-τGFP mice (Wen et  al. 
2011) to produce animals in which Cre-expressing 
cells are tagged with τGFP (GRIC/eR26-τGFP). Eight 
week-old animals were transcardially perfused with 4% 
paraformaldehyde (158127 Sigma-Aldrich) in 0.1 M 
PBS (P3813, Sigma-Aldrich) under ketamine/xylazine 
(7005294 and 10124950, Serumwerk Bernburg, Bernburg, 

Germany) anesthesia. Brains were removed, soaked in 
fixative for 2 h and 18% sucrose overnight, and then frozen 
in optimal cutting temperature (OCT) (14020108926, 
Leica). Serial 14-μm coronal cryosections were thaw 
mounted onto SuperFrost Plus slides (10149870 Thermo 
Fisher). Brain sections were blocked in 0.1 M PBS, 0.3% 
Triton X-100, 10% donkey serum (017-000-121, Jackson 
ImmunoResearch) and 3% BSA (A2153, Sigma-Aldrich) 
and incubated with chicken anti-GFP (1:1000, A10262, 
Thermo Fisher) and rabbit anti-kisspeptin (1:500, AB9754, 
Millipore) overnight at 4°C, followed by goat anti-
chicken 488 (1:500, A11039, Thermo Fischer, Waltham, 
Massachusetts, USA) and biotinylated donkey anti-rabbit 
(1:500, BA-1000, Vector Laboratory, Burlingame, CA, 
USA) and streptavidin CY5 (1:500, 016-170-084, Jackson 
ImmunoResearch Inc). For nuclear staining, sections 
were incubated with 5 μg/mL Hoechst 33258 dye (14530, 
Sigma-Aldrich) in 0.1 M PBS for 5 min and mounted with 
Fluoromount-G (0100-01, Southern Biotech, Birmingham, 
Alabama, USA). Sections were analyzed on an Imager.M2 
microscope equipped with AxioVision software (Zeiss).

Statistical analysis

All data were analyzed on GraphPad Prism 6 using Student 
t-tests. Results were considered statistically significant 
when P < 0.05. For LH pulses, data were deconvoluted 
using MatLab (Veldhuis et al. 2016) and number of pulses 
were compared between genotypes using Student t-test. 
Comparisons between the two groups of mice challenged 
with GnRH were done with the GLM procedure for 
repeated measurements. Calculations were performed 
with Systat 13 (Systat Software, Inc, San Jose, CA, USA).

Results

Generation of progesterone receptor conditional 
knockout mice

To address the role of the PR in gonadotropes, we generated 
gonadotrope-specific Pgr-knockout (cKO) mice by crossing 
floxed Pgr (Pgrfx/fx) and GRIC mice (GnrhrGRIC/GRIC). First, we 
verified Pgr recombination in different tissues from controls 
and cKOs of both sexes. As expected, recombination was 
restricted to the pituitary of both females and males, 
and to the testes and epididymides of males (Fig. 1A). 
Next, we quantified the efficiency and specificity of 
Pgr recombination by assessing the level of Pgr mRNA 
expression in purified gonadotropes (Cre-recombinase 
expressing cells, EGFP-positive) compared to other cell 
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populations in the pituitary (Cre-negative, tdTomato-
positive). In both male and female cKOs, Pgr expression 
was markedly reduced in gonadotropes (Fig. 1B, green 
bars). Pgr expression in non-gonadotropes (lactotropes) was 
intact (Fig. 1B, red bars). Recent single-cell RNA-seq data 
confirm that Pgr expression is enriched in gonadotropes 
and lactotropes in murine pituitaries (Cheung et al. 2018).

Normal fertility and gonadal development in 
Pgr cKO mice

cKO females and their control littermates reached puberty 
at similar ages, as assessed by vaginal opening (Fig. 2A). We 
did not measure the day of first estrus, which is considered 
by some to be a more robust measure of puberty onset 

Figure 1
Pgr recombination efficiency and specificity in 
gonadotrope cells. (A) PCR of genomic DNA from 
different tissues shows the specificity of 
recombination in the pituitary glands of female 
(left) and male cKOs (right), as well as in the 
epididymis and testis in males (right). rec: 
recombined; fx: floxed. (B) Quantitative-PCR of 
cDNA from control (Pgr+/+;Rosa26mTmG/+;GnrhrGRIC/+) 
and cKO (Pgrfx/fx;Rosa26mTmG/+;GnrhrGRIC/+) mice, 
showing Pgr expression in purified gonadotrope 
(EGFP +ve, black) versus non-gonadotrope 
(tdTomato +ve, gray) cells, in females (left) and 
males (right).

Figure 2
Pgr expression in gonadotropes is not essential 
for normal reproductive function in female mice. 
(A) Age of vaginal opening (days) in female control 
(black) and cKO mice (gray). (B) Percentage of time 
spent in each stage of the estrous cycle in control 
and cKO females. (C, D and E) Fertility in control 
and cKO females. (C) Frequency of delivery per 30 
days, (D) inter-litter interval (days), and (E) average 
litter size for each mouse (n = 6 per genotype). 
Two samples Student t-test was performed for 
statistical analysis. n.s, non-significant; M/D, 
metestrus/diestrus; P, proestrus; and E, estrus.
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Figure 3
Normal reproductive organ weights in female and male Pgr cKO mice. (A) 
Ovarian and (B) uterine mass in 10-week-old control and cKO females 
(n = 12). (C) Testicular and (D) seminal vesicle mass in 10-week-old control 
and cKO males (n = 10). Student t-tests were performed for statistical 
analysis. n.s, non-significant.

Figure 4
Intact serum gonadotropin levels in both female and male Pgr cKO mice. 
(A and B) Serum FSH and (C and D) LH levels in 10-week-old control and 
cKO females (n = 10 per genotype, left panels) and males (n = 12 controls 
and n = 9 cKO, right panels). Female samples were collected at 07:00 h on 
estrous morning. Student t-tests were performed for statistical analysis. 
n.s., non-significant.

than vaginal opening. However, the other phenotypes in 
these mice (or lack thereof) suggest that day of first estrus 
was unlikely to be affected. Pgr cKO females had normal 
estrous cyclicity, as assessed by vaginal cytology (Fig. 
2B). In breeding trials, frequency of delivery, inter-litter 
interval, and average litter size were comparable between 
control and cKO females (Fig. 2C, D and E). Ovarian and 
uterine masses were also normal in cKO females (Fig. 3A 
and B). In males, testicular and seminal vesicle masses 
were equivalent between genotypes (Fig. 3C and D).

FSH and LH production is intact in Pgr cKO mice

Although fertility and gonadal development were 
apparently unaffected in the absence of gonadotrope PR 
function, we measured serum LH and FSH levels in both 
females and males. Blood samples were collected from 
control and cKO females on the morning of estrus, just 
after lights on. Serum FSH (Fig. 4A and B) and LH levels (Fig. 
4C and D) were equivalent between genotypes. Similarly, 
pituitary expression of the gonadotropin subunit genes 
(Fshb, Lhb, and Cga) and the GnRH receptor (Gnrhr, Fig. 
5) did not differ between control and cKO mice, with two 
exceptions (Fig. 5F and H). Cga mRNA levels were reduced 
and Gnrhr mRNA levels increased in cKO males relative to 
controls. The variation in serum FSH and pituitary Fshb 

mRNA levels is likely explained by the fact that some 
females were still in the midst of the secondary surge, 
while others were not at the time of sampling.

Pulsatile LH secretion is normal in Pgr cKO males

While there were no apparent effects of PR loss on LH 
production, we next examined LH pulse frequency. We 
focused on males, as LH pulsatility varies markedly across 
the estrous cycle in females (Czieselsky et al. 2016). There 
were no genotype-dependent differences in LH pulse 
amplitude or frequency (Fig. 6 and Table 2).

Female Pgr cKO mice have blunted 
preovulatory LH surges

We assessed the role of PR in gonadotropes on the LH 
surge. Profiles of the LH surge in controls (left) and cKOs 
(right) are shown in Fig. 7A and B, respectively. The 
number of surges detected across the 10-day sampling 
period appeared to be reduced in cKO females, but this was 
not statistically significant (Fig. 7C). Next, we compared 
the amplitude of the LH surge between controls and cKOs. 
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Consistent with data from the morning of estrus (Fig. 
4C), there was no genotype difference in LH levels on the 
morning of proestrus. Although most of the mice surged 
during the 10-day period (Fig. 7A, B and C), the maximal 
LH levels measured during the surge were significantly 
lower in cKO relative to control females (Fig. 7D).

Female Pgr cKO mice do not display impaired GnRH 
self-priming

Finally, based on previous reports (Waring & Turgeon 
1992, Turgeon & Waring 1994, 2001, Chappell et al. 1999, 
Aguilar et  al. 2003, Attardi et  al. 2007), we assessed the 
effects of gonadotrope-specific PR loss on GnRH self-
priming as a potential mechanism underlying reduced 
LH surge amplitude in these animals. Mean serum LH 
levels before the first GnRH injection and 10 min after 
each injection (six injections in total) are shown in Fig. 8. 
The amplitude of GnRH-stimulated LH release increased 
following successive GnRH injections, indicating that 
self-priming occurred in both genotypes. Blood LH 
concentrations increased after GnRH administration 
(ANOVA: P < 0.0001), but there was no difference between 
genotypes (P = 0.90) and no interaction between time 
and genotype (P = 0.70). There was a highly significant 
difference in LH increase between the first and subsequent 
GnRH injections, and the second and the fourth and 
following administrations (P values between 0.0001 and 
0.012), but thereafter this effect leveled off.

Discussion

We generated conditional Pgr-knockout mice to assess PR 
function in pituitary gonadotrope cells. The data suggest 
that PR’s primary role in this cell type is to regulate the 
amplitude of the LH surge in females. We did not observe 
any other alterations in reproductive physiology in either 
sex. As Pgr knockdown was highly efficient, the apparently 
normal gonadotropin synthesis and secretion in males 
and females (except on proestrus) is unlikely to derive 
from preservation of some PR function (i.e., incomplete 
recombination by Cre). Indeed, global Pgr-knockout mice 
similarly show normal LH and FSH production under 
most conditions (Chappell et al. 1997). Overall, our results 
confirm and extend some previous observations, while 
challenging other in vivo and in vitro findings.

Results from global Pgr-knockout mice suggest that 
the PR plays an important role in GnRH self-priming in 
gonadotropes (Chappell et  al. 1999, Turgeon & Waring 
2001). Therefore, the most parsimonious explanation of 
the blunted LH surge in Pgr cKO mice would be impaired 
GnRH self-priming. However, we did not observe any such 
impairment, at least under the conditions used here. We 
attempted to employ the protocol described in Chappell 
et al. (1999), but the GnRH dose used previously (~4 ng) 
was insufficient to stimulate LH release in our hands 

Figure 5
No differences in the expression of pituitary gonadotropin subunits in Pgr 
cKO mice. (A and B) FSHβ-subunit (Fshb), (C and D) LH β-subunit (Lhb), (E 
and F) common α-subunit (Cga), and (G and H) GnRH receptor (Gnrhr) 
mRNA levels in 10-week-old control and cKO females (n = 10 per 
genotype, left panels) and males (n = 12 controls and n = 8 cKO, right 
panels). Female samples were collected at 07:00 h on estrous morning. 
Student t-tests were performed for statistical analysis. *P < 0.05, n.s, 
non-significant.
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(data not shown). We developed a new protocol based 
on a previous report in rats (Higuchi & Kawakami 1982). 
Here, we modified the estrogen priming (no 17β-estradiol 
implant added during the ovariectomy, and we increased 
the amount of EB to 2 μg), GnRH dose (50 ng per 
injection), and frequency of GnRH treatment (once per 
hour, for a total of six injections) relative to Chappell et al. 
(1999). We observed enhanced LH release with successive 
GnRH injections (indicative of self-priming), but there 
was no difference between genotypes. The data suggest 
that PR is not required for GnRH self-priming in murine 
gonadotropes and that PR regulates LH surge amplitude 
via a distinct mechanism in these cells.

It is also possible that reduced LH surge amplitude 
might be explained by effects originating outside of the 
gonadotrope. For example, Pgr cKO females could have 
reduced circulating estradiol levels relative to control. 
We did not assess this parameter as, in our experience, 
measurements of serum estradiol levels in mice are 
unreliable (Haisenleder et  al. 2011, Fortin et  al. 2014,  

Li et al. 2017). However, as FSH and LH production, and 
ovary and litter sizes, are normal in Pgr cKO mice, there 
is no reason to suspect impairments in gonadotropin-
stimulated estradiol production. Alternatively, as Cre 
activity has been observed in some neurons of GRIC mice 
(Wen et al. 2010, Schauer et al. 2015), it is possible that 
the reduced LH surge amplitude might derive from loss 
of PR in the brain in addition to the pituitary. Indeed, 
PR expression in the AVPV is necessary for LH surge 
induction (Chappell & Levine 2000). However, there is no 
Cre activity in either GnRH neurons (Wen et al. 2010) or 
kisspeptin neurons in the AVPV or arcuate nucleus (Fig. 
9) of GRIC mice. In addition, female mice lacking PR in 
kisspeptin neurons show more dramatic reproductive 
deficits than what we observe here, including advanced 
onset of puberty, reduced fertility, and impaired 
ovulation (Stephens et  al. 2015). We therefore conclude 
that it is unlikely that the phenotypes described in the 
Pgr cKO mice derive from loss of the PR in GnRH or  
kisspeptin neurons.

Figure 6
Normal LH pulses in cKO males. Blood samples 
were collected over 4 h at 10-min intervals from 
either control (n = 7) and cKO (n = 6) males. (A) 
Representative profiles of LH secretion from two 
control (black graphs, left) and two cKO (gray 
graphs, right) males. The gray area represents the 
period of lights-off on a 07:00/19:00 h (on/off) 
light/dark cycle. Each asterisk (*) indicates a pulse. 
(B) Quantification of the number of LH pulses in 
the 4-h sampling period. Student t-tests were 
performed for statistical analysis. n.s, non-
significant.

Table 2 Deconvolution analysis of circulating LH in six control and six KO mice sampled at 10-min intervals for 4 h.

Control mice KO mice P value P value (log-transformed data)

Burst number (#/4 h) 3.2 ± 0.5 3.5 ± 0.5 0.64 0.55
Fast half-life (min) 1.0 1.0
Slow half-life (min) 5.5 ± 1.1 6.5 ± 0.7 0.44 0.36
Mode (min) 10.8 ± 2.0 11.3 ± 2.1 0.84 0.90
Basal secretion (IU/mL) 10.6 ± 2.7 7.7 ± 2.7 0.46 0.54
Pulsatile secretion (IU/mL) 8.8 ± 2.9 10.8 ± 4.1 0.70 0.79
Total secretion (IU/mL) 19.4 ± 3.9 18.5 ± 5.5 0.89 0.69
Mean pulse mass (IU/mL) 2.7 ± 1.0 3.1 ± 1.2 0.78 0.98

Data are mean ± s.e.m. Statistical comparisons were done with the Student’s two-sided t-test for unpaired data.
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Based on previous reports, we would have expected 
effects of PR deletion on FSH. Estradiol-treated pre-
menopausal women show increased FSH production 
in response to exogenous progesterone administration 
(Hutchens et  al. 2016). Also, pre-menopausal women 
co-treated with estradiol benzoate and progesterone produce 
more FSH in response to exogenous GnRH compared to 
women treated with estradiol benzoate alone (Lasley et al. 
1975). In rodents, PR and progesterone also appear to 
stimulate FSH production. For example, progesterone and 
its analogs (e.g., R5020), both alone or in synergy with 
activin A, strongly stimulate the activity of murine Fshb 
promoter-reporters in immortalized murine gonadotrope 
cells, LβT2 (Thackray et al. 2006, Thackray & Mellon 2008). 
There was some suggestion that GnRH might stimulate 
Fshb mRNA expression in a PR-dependent fashion in these 
cells (An et  al. 2009). In rats, the PR antagonists, RU486 
and Org31710, attenuate the primary LH and FSH surges 
on proestrus, while blocking the secondary FSH surge on 
the morning of estrus (Knox & Schwartz 1992, Knox et al. 
1993, Roa et al. 2008a,b). Nevertheless, we did not detect 
the differences in serum FSH or pituitary Fshb mRNA levels 
between genotypes in either sex. One interpretation of these 
data is that we did not sample females at the appropriate 
cycle stage to observe effects of the gene deletion on 
FSH. Though we collected blood and pituitaries on the 
morning of estrus, it was a few hours after the peak of the 
secondary surge (Li et al. 2018a). Nonetheless, litter size is 

normal, arguing against an impairment in FSH production 
at any cycle stage. Although the data suggest that PR is 
dispensable for FSH production, it is important to consider 
that there may be functional redundancy in the system. 
Specifically, the related androgen and/or glucocorticoid 
receptors might compensate for the absence of PR in  
gonadotropes (Turgeon & Waring 1999, McGillivray et al. 
2007, Wu et al. 2014).

Figure 7
The LH surge is blunted in Pgr-knockout females. 
Blood samples were collected four times daily for 
10 consecutive days. Representative profiles of 
the LH secretion obtained on proestrus from 
control (A) and cKO (B) female mice. Different 
colors indicate different mice. Gray areas 
represent the dark phase of the light/dark cycle. 
(C) Number of surges observed in each mouse 
during the 10 days of the experiment. (D) Maximal 
LH levels measured on proestrus from control 
(n = 9) and cKO (n = 9) females. Student t-tests 
were performed for statistical analysis. *P < 0.05. 
n.s, non-significant. Note: maximal values in panel 
D are lower than in panels A and B because 
averages were used in panel D in mice that 
surged more than once (see ‘Methods’ section).  
A full colour version of this figure is available at 
https​://do​i.org​/10.1​530/J​OE-19​-0013​.

Figure 8
Control and cKO females show equivalent levels of GnRH self-priming. 
Blood samples were collected from ovariectomized, EB-injected females 
at 07:00 h. Females were then given six injections of GnRH (50 ng per 
injection) at 1-h intervals. Blood samples were collected 10 min after each 
injection. Mean whole blood LH levels in control (n = 4) and cKO (n = 6) 
females are shown. GLM procedure for repeated measurements was 
used for statistical analysis.
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In summary, LH surge amplitude is reduced 
in gonadotrope-specific Pgr-knockout mice, but 
gonadotropin production and fertility are otherwise intact 
in these animals. The data suggest that progesterone-
negative feedback at the level of the pituitary may be 
negligible, but that PR contributes to positive feedback 
effects of estrogens at this level of the HPG axis. Future 
studies should determine the mechanisms through which 
PR regulates LH surge amplitude as the receptor does not 
appear to play a necessary role in GnRH self-priming.
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causative effects has the potential to provide new insights into the 
etiology of reproductive diseases and novel diagnostic and clinical 
technologies for infertility treatment.

RESULTS
We report a large meta-analysis of genome-wide association studies 
(GWAS) of 251,151 individuals for AFB and 343,072 individuals for 
NEB from a total of 62 cohorts of European ancestry. We identify  
12 independent loci (10 of which are new and 2 of which were previ-
ously identified in a study on age at first sexual intercourse11) that are 
significantly associated with AFB and/or NEB in men, women or both 
sexes combined (Table 1). Follow-up analyses identified a number of 
genetic variants and genes that likely drive the GWAS associations.  
We also quantified the genetic overlap with biologically adjacent 
reproductive, developmental, neuropsychiatric and behavioral  
phenotypes. A detailed description of all materials and methods is 
available in the Supplementary Note.

Meta-analysis of GWAS
Associations of AFB (mean ± s.d., 26.8 ± 4.78 years) and/or NEB 
(mean ± s.d., 2.3 ± 1.43 children) with SNPs imputed from NCBI Build 
37 HapMap phase 2 data were examined in 62 cohorts using multi-
ple linear regression under an additive model, in men and women 
separately (Supplementary Note). Associations were adjusted for 
principal components, to reduce confounding by population strati-
fication15, as well as for the birth year of the respondent and its square 
and cube to control for nonlinear birth cohort effects (Supplementary 
Tables 1 and 2, and Supplementary Note). NEB was assessed only for 
those who had completed their reproductive period (age ≥45 years for 
women and ≥55 years for men), while AFB was only assessed for those 
who were parous. Quality control was conducted in two independent  
centers using QCGWAS16 and EasyQC17 (Supplementary Note). 
Results were subsequently submitted to meta-analysis for the 2.4 million  
SNPs that passed quality control filters (Supplementary Note) and 
are reported for men and women combined and separately.

Human reproductive behavior—AFB and NEB—has been associated  
with human development1,2, infertility3,4 and neuropsychiatric  
disorders5. Reproductive tempo (AFB) and quantum (NEB) are 
cross-cutting topics in the medical, biological, evolutionary and 
social sciences and are central in national and international policies6.  
Advanced societies have experienced a rapid postponement of AFB,  
with the mean AFB of women now being 28–29 years in many  
countries7. This increase in AFB has been linked to lower fertility 
rates, unprecedented rates of childlessness (~20%) and infertility, 
which affects 10 to 15% of couples8. An estimated 48.5 million couples 
worldwide are infertile, with a large part of subfertility, particularly in 
men, remaining unexplained9. Although infertility has been related 
to advanced AFB, ovulation defects, failure of spermatogenesis, and 
single-gene or polygenic defects, the causal effects for these factors 
remain unsubstantiated10.

Recently, genetic and clinical research has focused on proximal 
infertility phenotypes3,4,10,11. AFB and NEB represent accurate meas-
ures of complex reproductive outcomes, are frequently recorded and 
consistently measured, and are key parameters for demographic 
population forecasting12. There is evidence of a genetic component 
underlying reproduction, with heritability estimates of up to 50% 
for AFB and NEB (Supplementary Fig. 1)6. A recent study attrib-
uted 15% of the variance in AFB and 10% of the variance in NEB to 
common genetic variants13. There are also sex-specific differences in 
human reproduction, related to the timing of fertility, fecundability 
and sex–genotype interactions (Supplementary Note). Researchers 
have given less attention to traits such as NEB because of an erroneous 
and frequently repeated misinterpretation of Fisher’s fundamental  
theorem of natural selection14 that the additive genetic variance in 
fitness should be close to zero. This misreading of the theorem had 
a naively intuitive appeal: genes that reduce fitness should be passed 
on less frequently. Fisher, however, actually argues that fitness is 
moderately heritable in human populations (for a discussion, see the 
Supplementary Note). As no established genes are currently avail-
able for clinical testing of infertility10, isolating genetic loci and their 

The genetic architecture of human reproductive behavior—age at first birth (AFB) and number of children ever born (NEB)—has 	
a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few 	
genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large 
genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 
12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 	
4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting 
non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits. 

Genome-wide analysis identifies 12 loci influencing 
human reproductive behavior

A full list of authors and affiliations appears at the end of the paper.
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We applied a single genomic control at the cohort level and 
performed meta-analysis of results using a sample-size-weighted 
fixed-effect method in METAL (Supplementary Note). The PLINK 
clumping function isolated ‘lead SNPs’—those with the lowest P value 
for association that are independently associated—using an r2 thresh-
old of 0.1 and a distance threshold of 500 kb. For AFB, we identified 
ten loci associated at genome-wide significance (P < 5 × 10−8 for 
combined results and P < 1.67 × 10−8 for sex-specific results adjusted 
for multiple testing), of which 9 were significantly associated in both 
sexes combined and 1 was associated in women only (n = 154,839) 
(Fig. 1a and Table 1). Three loci were significantly associated with 
NEB: two in both sexes combined and one in men only (n = 103,736) 
(Fig. 1b, Table 1 and Supplementary Note). One locus on chromo-
some 1 reached significance for association with both AFB and NEB 
with r2 = 0.57 between the two lead SNPs, suggesting a shared genetic 
basis for the two traits (Table 2). A statistical test of sex-specific effects 
confirmed that differences are mainly due to variation in sample size 
and not variation in effect size (Supplementary Note).

As for other complex traits18, the quantile–quantile plots of the 
meta-analyses exhibited strong inflation of low P values (Fig. 2), sug-
gesting that, although cohorts controlled for the top principal compo-
nents and cohort-level genomic control was applied (Supplementary 
Note), residual population stratification may remain. However, the 
LD Score intercept method19 as well as a series of individual and 
within-family regression analyses using polygenic scores as predic-
tors20,21 (Supplementary Note) indicated that the observed inflation 
was almost entirely attributable to a true polygenic signal, rather than 
population stratification.

Gene-based GWAS
To increase the power to find statistically significant associations and 
causal genes, we additionally performed a gene-based GWAS using 
VEGAS22,23. The results confirmed top hits from the single-SNP 
analyses. For AFB, seven loci from the SNP-based GWAS were also 
represented in the gene-based analysis (Supplementary Table 3), and 
three additional loci emerged, represented by SLF2 (chromosome 10),  
ENO4 (chromosome 10) and TRAF3-AMN (chromosome 14). For 
NEB, one locus from the SNP-based GWAS was represented in the 
gene-based analysis—GATAD2B (chromosome 1)—and one new 
locus on chromosome 17 was identified (Supplementary Table 4).

Causal variants
To identify functional and potentially causal variants, both coding and 
regulatory, within loci identified in the SNP-based GWAS (Table 1),  
we first performed an in silico sequencing annotation analysis using 
the post-GWAS pipeline reported by Vaez et al.24. This showed that 
rs10908557 on chromosome 1 is in high linkage disequilibrium 
(LD) with nonsynonymous SNPs in CRTC2 (rs11264680; r2 = 0.98) 
and CREB3L4 (rs11264743; r2 = 0.94) (Supplementary Table 5). 
Interestingly, rs11264743 is considered ‘deleterious’ and ‘probably 
damaging’ by SIFT and PolyPhen, respectively (Ensembl release 83). 
In addition, rs2777888 on chromosome 3 is in high LD with two 
nonsynonymous SNPs in MST1R (rs2230590, r2 = 0.95 and rs1062633,  
r2 = 0.95) (Table 1 and Supplementary Table 5).

We subsequently performed a comprehensive analysis using results 
from the Encyclopedia of DNA Elements (ENCODE)25 and Roadmap 
Epigenomics26 projects, as integrated in RegulomeDB27, to identify 
variants that likely influence downstream gene expression via regula-
tory pathways. Among all SNPs that reached P < 5 × 10−8 in the meta-
analyses (n = 322), 50 SNPs in five loci showed the most evidence of 
having functional consequences (Table 1 and Supplementary Table 6).  Ta
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Two sets of SNPs on chromosome 1 (18 SNPs) and chromosome 3 
(25 SNPs) stand out in particular. The most promising SNP in the 
chromosome 1 locus (rs6680140) is located in a site of acetylation of 
histone H3 at lysine 27 (H3K27ac), often found near active regula-
tory elements, and lies in a DNase I hypersensitivity cluster where 
eight proteins are anticipated to bind. One of these proteins is cAMP 
responsive element binding (CREB)-binding protein, encoded by 
CREBBP. In the chromosome 3 locus, rs2526397 is located in a 
transcription factor binding site and is an expression quantitative 
trait locus (eQTL) for HYAL3 in monocytes, while rs2247510 and 
rs1800688 are located in H3K27ac sites and DNase I hypersensitivity 
clusters where a large number of transcription factors are expected 
to bind (Supplementary Table 6). An analysis using Haploplotter 
showed that rs2247510 and rs7628058 in the chromosome 3 locus 
are among the 5% of signals showing the most evidence of positive 
selection in the population. The same applies to the lead SNP of the 
chromosome 14 locus for NEB (rs2415984).

Causal genes
Information on the function and anticipated relevance of genes  
in the 12 loci identified in the SNP-based GWAS that are most  
likely to be causal on the basis of all evidence discussed below is 
provided in Table 2.

Cis- and trans-eQTL and meQTL analyses
Identifying alterations in gene methylation status and/or expression 
levels in relation to GWAS-identified variants may help prioritize causal 
genes. We examined associations with gene expression and methylation 
status for the 12 independent lead SNPs in whole-blood BIOS eQTL  
(n = 2,116) and methylation quantitative trait locus (meQTL; n = 3,841) 
databases in cis and trans28,29. Seven SNPs were associated in cis with the 
expression of 54 unique genes (Table 1 and Supplementary Table 7).  
Five of these seven SNPs were in high LD (r2 > 0.8) with the strongest 
eQTL for at least one of the genes within the corresponding locus, 
indicating that the SNP associated with AFB or NEB and the SNP most 
significantly associated with expression tag the same functional site: 
rs10908557 (associated with the expression of CRTC2 and SLC39A1), 
rs1160544 (AFF3), rs2777888 (RBM6, RNF123 and RBM5), rs2721195 
(CYHR1, GPT, RECQL4 and PPP1R16A) and rs293566 (NOL4L). Three 
SNPs were associated with the expression of a total of eight genes in 
trans (Table 1 and Supplementary Table 8). Of these SNPs, only 
rs2777888 was in high LD (r2 > 0.8) with the strongest eQTL for three 
of its five associated genes: LRFN1, LAMP2 and FGD3.

The meQTL analysis showed that 11 of the 12 independent lead 
SNPs were associated with DNA methylation of a total of 131 unique 
genes in cis (Table 1 and Supplementary Table 9). Seven of the 11 
SNPs were in high LD (r2 > 0.8) with the strongest meQTL for one 
of the corresponding methylation sites: rs10908557 (associated with 
methylation of CRTC2, SLC39A1, CREB3L4, DENND4B and RAB13), 
rs1160544 (AFF3), rs2777888 (CAMKV), rs6885307 (C5orf34), 
rs10056247 (JADE2), rs2721195 (CYHR1) and rs13161115 (EFNA5). 
Three of the SNPs were associated with the same genes for both meth-
ylation and gene expression in cis: rs10908557 (CRTC2), rs1160544 
(AFF3) and rs2721195 (CYHR1) (Supplementary Tables 7 and 9). 
Three SNPs were associated with methylation of a total of ten genes 
in trans (Table 1 and Supplementary Table 10). Of these SNPs, only 
rs2777888 was in high LD (r2 > 0.8) with the strongest meQTL for 
a corresponding methylation site (ASAP3). Of note, rs2777888 was 
also a trans-eQTL.

Gene prioritization
We used four publicly available bioinformatics tools to systematically 
identify genes that are more likely than neighboring genes to cause 
the associations identified by our GWAS. Of all genes that reached  
P < 0.05 in analyses using Endeavor30, MetaRanker31 and ToppGene32, 
eight genes were prioritized for both AFB and NEB: TPM3, GRM7, 
TKT, MAGI2, PTPRD, PTPRM, RORA and WT1. DEPICT—a fourth 
comprehensive and unbiased recently described gene prioritization 
tool33—identified three genes in GWAS significant loci as likely being 
causal for AFB (MON1A, RBM6 and U73166.2) (Supplementary 
Tables 11 and 12).

Gene-based results from RegulomeDB
An analysis using RegulomeDB identified 50 SNPs in five loci that 
most likely have regulatory consequences (Supplementary Table 6). 
Eighteen and 25 of these SNPs are within the chromosome 1 and 
chromosome 3 loci, respectively. Among the genes that, at a protein 
level, bind at the site of one or more of the 18 variants in the locus on 
chromosome 1 are CREBBP, HNF4A, CDX2 and ERG. These genes 
may act upstream in the causal pathway and influence the expres-
sion of causal genes at this locus. Of the 25 SNPs on chromosome 
3, 10 were eQTLs for RBM6 in monocytes and 7 were eQTLs for 
HYAL3 in monocytes. Among the genes that, at a protein level, bind 
at rs2247510 and rs1800688 in the chromosome 3 locus are ARID3A, 
REST and TFAP2C, as well as HNF4A and CDX2, which also bind at 
the chromosome 1 locus.

Figure 1  Manhattan plots of SNPs for age at first birth and number of children ever born in single-genomic-control meta-analysis. (a,b) SNPs are plotted 
on the x axis according to their position on each chromosome against association with AFB (a) and NEB (b). The solid blue line indicates the threshold 
for genome-wide significance (P < 5 × 10−8), and the red line represents the threshold for suggestive hits (P < 5 × 10−6). Blue points represent SNPs in 
a 100- kb region centered on genome-wide significant hits. Loci are annotated with the names of the genes closest to the significant SNPs.
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Table 2  Function and potential relevance for genes in GWAS-identified loci that are most likely causal on the basis of all available 
evidence

Lead SNP Gene Chr. Evidence Gene function and potential role in reproduction and (in)fertility Ref.

rs10908557 CRTC2 1 G, V, ctQ, ctM,  
Q lymph. (R)

Functions as a Ca2+- and cAMP-sensitive coincidence sensor; promotes CREB target gene  
expression; signal mediator in FSH and TGF-β1 steroidogenesis in ovarian granulosa cells

42

rs10908557 CREB3L4 1 N, V, cQ, cM Has a role in protein maturation; involved in spermatid differentiation and male germ cell  
development; expressed in prostate, oocytes, fallopian tube and mammary gland

44,45

rs10908557 GATAD2B 1 V, Q monoc. (R) Transcriptional repressor and a component of nucleosome remodeling complex Mi2/NuRD; 
increased expression in endometriosis; linked to a common gynecological disorder that causes 
pelvic pain and infertility

58,59

rs10908557 SLC39A1 1 V, cQ, cM Zinc uptake transporter; major zinc regulator in prostate cells; involved in the regulation of zinc 
homeostasis by cumulus cells in the oocyte

60,61

rs10908557 DENND4B 1 cM Paralog of DENN1A, which has been implicated in polycystic ovary syndrome; expressed at the 
protein level in the cervix

46,62

rs1160544 AFF3 2 cQ, cM Lymphoid nuclear transcriptional activator implicated in tumorigenesis; same family as AFF3 
and AFF4 (FMR2 family member 4); transcriptional regulator in testicular somatic cells;  
essential for male germ cell differentiation and survival in mice

63,64

rs1160544 LINC01104 2 G, V Unknown
rs2777888 HYAL3 3 cM, Q monoc. (R) Hyaluronidases, including HYAL3, are involved in degradation of hyaluronan, a major  

glycosaminoglycan of the extracellular matrix; acquired during sperm maturation in the  
epididymis and involved in sperm function and the acrosome reaction; required for in vitro 
cumulus penetration in mice, although its absence is not associated with infertility (perhaps 
compensated for by other hyaluronidases)

65

rs2777888 RBM6 3 V, cQ, cM, DEPICT,  
Q monoc. (R)

Involved in RNA splicing 66

rs2777888 RNF123 3 V, cQ, cM,  
Q liver (R)

Has a role in cellular transitioning from quiescence to a proliferative state through its E3 
ubiquitin ligase activity toward cyclin-dependent kinase inhibitor 1B, which controls cell cycle 
progression in G1 phase

66–68

rs2777888 RBM5 3 V, cQ Involved in cell cycle regulation; regulator of pre-mRNA splicing; involved in spermatogenesis 
and fertility in mice

47

rs2777888 MON1A 3 V, cM, DEPICT Involved in the movement and trafficking of proteins (for example, ferroportin) through the  
secretory apparatus

69

rs2777888 U73166.2 3 DEPICT Unknown
rs2777888 MST1R 3 N, V, cM,  

MetaRanker,  
ToppGene and 
Endeavor

Cell surface receptor for MSP with tyrosine kinase activity, expressed on ciliated epithelia  
of the mucociliary transport apparatus of the lung; involved in host defense, expressed in sperm; 
may act in a regulatory system of ciliary motility, together with MSP, which sweeps eggs along 
the oviduct; expressed in mucous membrane and mammary gland

70

rs10056247 JADE2 5 G, V, cM Involved in histone acetylation
rs13161115 EFNA5 5 cM Involved in development and differentiation of the nervous system and folliculogenesis  

regulation; required for normal fertility in female mice; expressed in embryonic stem cells  
and embryoid bodies

50

rs6885307 HCN1 5 G, cM Hyperpolarization-activated cation channel that contributes to the native pacemaker current  
in, for example, neurons; HCN1 channels are present in kisspeptin (Kiss1) neurons in the  
rostral periventricular area of the third ventricle (RP3V), which provide an excitatory drive to 
gonadotropin-releasing hormone (GnRH)-expressing neurons that control fertility

71

rs2347867 ESR1 6 G, cM, binds  
at rs4851269  
on chr. 2 (R)

Transcription factor involved in estrogen-responsive gene expression; essential for sexual  
development and reproductive function in women; genetic variants in ESR1 may influence  
susceptibility to endometriosis or female fertility in patients with endometriosis; involved  
in male fertility by transferring estrogen effect; expressed in myometrium, endometrium, oocytes, 
uterus and fallopian tube

51,52, 
72–74

rs10953766 FOXP2 7 G, cM, binds  
at rs6997  
on chr. 3 (R)

Transcription factor expressed in fetal and adult brain that is involved in speech and language 
development; involved in regulation of neuronal development in the embryonic forebrain;  
expressed in mucous membrane and myometrium

75

rs2721195 CYHR1 8 cQ, cM Histidine-cysteine-rich protein involved in spermatogenesis 53
rs2721195 GPT 8 V, cQ, cM, Q monoc. 

(R)
Involved in intermediary metabolism of glucose and amino acids; may have a role in  
spermatogenesis via testicular glucose metabolism, which is pivotal for the normal occurrence  
of spermatogenesis; levels in the normal range are positively associated with metabolic and  
endocrine abnormalities in women of reproductive age and negatively associated with FSH 
levels, independent of obesity

76,77

rs2721195 RECQL4 8 V, cQ, cM Processing of aberrant DNA structures that arise during DNA replication and repair;  
predominantly expressed in testis

78

rs2721195 PPP1R16A 8 V, cQ, cM, Q monoc. 
(R)

Regulator of protein phosphatase PP1β; present in the sperm tail where it interacts with  
proteins that are important in sperm structure and motility; expressed in mammary gland  
and fallopian tube

79

rs293566 NOL4L 20 cQ, cM Component of cytoplasm and nucleoplasm; expressed in umbilical vein

Evidence categories include the nearest gene (G), nonsynonymous variants (N), gene-based GWAS performed in VEGAS (V), eQTLs in cis and/or trans (ctQ), meQTLs in cis and/or 
trans (ctM), eQTLs (Q) in lymphoblasts (lymph), monocytes (monoc) or liver based on RegulomeDB (R), gene prioritization using either DEPICT or MetaRanker, ToppGene and  
Endeavor, and protein binding at SNPs based on RegulomeDB (R). Chr., human chromosome on which the gene is located; FSH, follicle-stimulating hormone; CREB, cAMP  
response element–binding protein; TGF-β1, transforming growth factor β1; MSP, macrophage-stimulating protein. SNIPPER was used for the literature search, with the search 
terms “fertility,” “sperm,” “ovum” and “reproduction.”
Gene Network was used to find the tissue or organ with high expression for a given gene (AUC > 0.8).
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Five genes encode proteins that bind at the site of both SNPs on 
chromosome 2 that reach P < 5 × 10−8 in the meta-analysis of GWAS. 
One of these is REST; another one, ESR1, is the most likely causal gene 
in the chromosome 6 locus.

Functional network and enrichment analyses
Functional network analysis using five prioritized candidate gene sets 
as input (Supplementary Note) showed no significantly enriched 
biological function. No biological function was significantly enriched 
after correction for multiple testing using the Benjamini–Hochberg 
procedure. Similarly, no reconstituted gene sets and cell or tissue types 
were significantly enriched in the GWAS meta-analysis results based 
on results from the DEPICT analysis (Supplementary Tables 13–20). 
The lack of significantly enriched genes, tissue sets and biological 
functions reflects the need for a larger sample size but also the distal 
nature of the phenotypes, which are influenced by a mixture of bio-
logical, psychological and socioenvironmental factors.

Polygenic prediction
To assess the predictive power of our results, we produced polygenic 
scores for AFB and NEB with sets of SNPs whose nominal P values  
ranged from P < 5 × 10−8 (using only genome-wide significant SNPs) 
to 1 (using all SNPs that passed quality control) using PRSice34 
(Supplementary Note). We then performed a series of four differ-
ent out-of-sample predictions in four independent cohorts: HRS, 
LifeLines, STR and TwinsUK. Across the four cohorts, the mean pre-
dictive power of a polygenic score constructed from all measured SNPs 
is 0.9% for AFB and 0.2% for NEB (Supplementary Fig. 2). Despite the 
low predictive power of the polygenic scores, the results showed that 
an increase of 1 s.d. in the NEB polygenic score is associated with a 9% 
(95% confidence interval (CI) = 5–13%) decrease in the probability  
of women remaining childless, with no significant association  
in men (Supplementary Table 21). When we controlled for right- 
censored data using a survival model for AFB, we found that an increase  
of 1 s.d. in the AFB polygenic score was associated with an 8% (95%  
CI = 7–10%) reduction in the hazard ratio of reproduction in women 
and a 3% (95% CI = 1–5%) reduction in men (Supplementary Table 22).  
As an additional test, we examined whether the aforementioned poly-
genic scores for AFB and NEB could predict related fertility traits such 
as age at menopause and age at menarche (Supplementary Table 23). 
Our estimates indicated that an increase of 1 s.d. in the AFB polygenic 
score was associated with a 3% decrease in the probability of natural 
menopause at any age (95% CI = 1–5%) and a 20-d increase in age at 
menarche (95% CI = 0.4–40 d).

Genetic association with related traits and diseases
Several loci for which the associations with AFB and NEB reached 
genome-wide significance are associated with behavioral and repro-
ductive phenotypes. The lead SNPs in the chromosome 2 and chromo-
some 3 loci have been associated with educational attainment35 and 
the locus on chromosome 5 has been associated with age at menarche2, 
while the locus on chromosome 6 has recently been associated with age 
at first sexual intercourse11 (Supplementary Table 24). Some of the 38 
loci for age at first sexual intercourse that were recently identified11 
in 125,667 UK Biobank participants were also associated with AFB 
(in or near RBM6–SEMA3F and ESR1) and NEB (in or near CADM2 
and ESR1). The lead SNPs for RBM6–SEMA3F (rs2188151) and ESR1 
(rs67229052) are in LD with our lead SNPs for AFB on chromosome 3  
(r2 = 0.44) and chromosome 6 (r2 = 0.94), respectively. An in silico 
pleiotropy analysis showed that our lead SNP in the chromosome 3 
locus (rs2777888) is in LD (r2 = 0.59) with rs6762477, which has been 

associated with age at menarche2, while other SNPs in the same locus 
have been associated with HDL cholesterol36 (rs2013208, r2 = 0.81) 
and body mass index (BMI)37 (rs7613875, r2 = 0.81) (Supplementary 
Table 5). We next performed an exploratory analysis using the proxy 
phenotype method38 to examine whether the SNPs strongly associ-
ated with AFB in women are empirically plausible candidate SNPs 
for related traits such as age at menarche and age at menopause 
(Supplementary Note). After controlling for multiple testing, we 
identified three AFB-associated SNPs near rs2777888 on chromosome 
3 (rs9589, rs6803222 and rs9858889) that are also associated with age 
at menarche (P < 4.10 × 10−4). None of the AFB- or NEB-associated 
SNPs are associated with age at menopause.

We performed a bivariate LD score regression analysis39 to esti-
mate the pairwise genetic correlation with 27 publicly available 
GWAS results for traits associated with human reproductive behavior 
(Supplementary Note). AFB showed significant and positive genetic 
correlation with the human (reproductive) developmental traits of 
age at menarche, voice breaking, age at menopause, birth weight 
and age at first sexual intercourse, as well as with years of education. 
Conversely, having more AFB-increasing alleles was associated with 
a lower genetic risk of smoking (ever, number of cigarettes and later 
onset) and with lower insulin-resistance-related phenotypes, that is, 
BMI, waist–hip ratio adjusted for BMI, fasting insulin, triglyceride 
levels and risk of diabetes (Fig. 3 and Supplementary Table 25).  
All genetic correlations remained significant after Bonferroni cor-
rection for multiple testing (P < 2.6 × 10−3). Years of education  
(P = 6.6 × 10−14) and age at first sexual intercourse (P = 1.14 × 10−15) 
are the only traits that showed significant and negative genetic corre-
lation with NEB. We also observed significant genetic correlations of  
rg = 0.86 (standard error (SE) = 0.052) for AFB and rg = 0.97 (SE = 0.095)  
for NEB between men and women, implying that most genetic  
effects on reproductive behavior resulting from common SNPs are 
shared by both sexes.

DISCUSSION
This GWAS is a large-scale genetic epidemiological discovery effort 
for human reproduction, with implications for population fitness and 
physiological mechanisms linking hypothesized genes and observed 
phenotypes. Related studies previously focused on reproductive  
life span40,41, age at first sexual intercourse11 and more proximal  
infertility phenotypes2–4, largely overlooking AFB and NEB. The 
rapid postponement of AFB and increased infertility and involuntary 
childlessness in many societies7 make it important to uncover the 
genetic and biological architecture of reproduction. We identify ten 

Figure 2  Quantile–quantile plots. (a,b) SNPs for AFB (a) and NEB (b) 
in single-genomic-control meta-analysis. The gray-shaded areas in the 
quantile–quantile plots represent the 95% confidence bands around  
the P values under the null hypothesis.
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new and confirm two recently identified genetic loci that are robustly 
associated with AFB and NEB, as well as variants and genes within 
these loci that potentially drive these associations. Four additional 
loci were identified in a gene-based GWAS.

Two loci that show interesting results in follow-up analyses are 
located on chromosomes 1 and 3. The lead SNPs of the chromosome 
1 locus for AFB and NEB are in LD with likely functional nonsyn-
onymous SNPs in genes encoding (i) CREB-regulated transcription 
co-activator 2 (CRTC2), which at the protein level acts as a critical 
signal mediator in follicle-stimulating hormone (FSH) and transform-
ing growth factor (TGF)-β1–stimulated steroidogenesis in ovarian 
granulosa cells42; and (ii) CREB protein 3 like 4 (CREB3L4)43, which 
in humans is highly expressed in the prostate, ovaries, uterus, placenta 
and testis and has a role in spermatid differentiation44 and male germ 
cell development45. The lead SNP and/or functional variants in LD 
with it are also associated with the methylation status of these two 
genes and expression of CRTC2 in whole blood and lymphocytes. 
Three promising functional variants in the chromosome 1 locus reside 
in binding sites of the transcriptional co-activator CREBBP. In addition 
to a direct effect of the above-mentioned nonsynonymous SNPs on 
protein function, the associations of AFB and NEB with variants in the 
locus on chromosome 1 may thus be mediated by alterations in cAMP 
responsive element binding in men and women. The locus on chromo-
some 1 also harbors DENND4B, a paralog of DENND1A, implicated in 
polycistic ovary syndrome (PCOS)46. Whereas DENND1A is expressed 
at the protein level in the ovary and testis, DENND4B is expressed in 
the cervix and its function and role are less well understood.

The lead SNP of the locus on chromosome 3 (rs2777888) is associated  
with methylation and expression of several genes, in cis and trans, that 
are known to have a role in cell cycle progression and/or sperm function.  

First, rs2777888 is associated with the expression of RNF123 (or KPC1) 
in cis, which has a role in cellular transition from quiescence to a 
proliferative state. Second, rs2777888 or functional variants in LD 
with it may influence the cell cycle by altering the expression of RBM5 
and RBM6 (RNA-binding motif proteins 5 and 6). The former has a 
role in cell cycle arrest and apoptosis induction and regulates haploid 
male germ cell pre-mRNA splicing and fertility in mice. Rmb5-mutant 
mice exhibit spermatid differentiation arrest, germ cell sloughing and 
apoptosis, leading to lack of sperm in ejaculation47. Third, rs2777888 
affects expression of LAMP2 in trans, which is located on the X  
chromosome and encodes a lysosomal membrane protein involved in 
the acrosome reaction, that is, the enzymatic drill allowing sperm to  
penetrate and fertilize ova48. LAMP2 is expressed at the protein level in 
male and female reproductive organs with an effect size of rs2777888 
for LAMP2 mRNA expression that is almost twice as large in women 
than it is in men (Supplementary Fig. 3). This suggests an impor-
tant role for the lysosome in both sperm and ova. Finally, functional 
variants in the chromosome 3 locus are associated with the mRNA 
expression of HYAL3 (hyaluronoglucosaminidase 3) in monocytes. 
The encoded protein degrades hyaluronan, which also has an impor-
tant role in sperm function and the acrosome reaction47,49.

Functional follow-up experiments could disentangle the potential 
interplay between many candidate genes in the loci on chromosomes 
1 and 3 in reproductive behavior and, given our in silico results, infer-
tility. This can be extended to candidate genes in the remaining loci 
identified in the present study, some of which are relevant for fertility: 
mice lacking Efna5 (chromosome 5 NEB locus) are subfertile50, ESR1 
on chromosome 6 encodes an estrogen receptor51,52 and CYHR1 on 
chromosome 8 is involved in spermatogenesis53. Such experiments 
would help in understanding whether binding of estrogen receptor 1,  
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encoded by ESR1 in the locus on chromosome 6, at the site of func-
tional variants in the locus on chromosome 2 drives or mediates the 
association with AFB in the chromosome 2 locus, as well as to identify 
and characterize causal genes. Recent developments in high-through-
put, multiplex mutagenesis using CRISPR/Cas9 allow such experi-
ments to be performed using in vivo model systems54.

AFB and NEB are not only driven by biological processes, but are 
also subject to individual choice and personal characteristics such 
as personality traits, as well as by the historical, cultural, economic  
and social environment (for example, effective contraception and 
childcare availability). Demographic research has shown a strong 
positive association between AFB and educational attainment12. We 
show that the associations between fecundity, reproductive behavior 
and educational attainment are partly driven by genetic factors and 
identified loci that are associated with AFB as well as with, for exam-
ple, age at first sexual intercourse11 and educational attainment35.

Our findings could lead to insights into how postponing reproduc-
tion may be more detrimental for some, on the basis of their genetic 
make-up, than others, fuel experiments to determine ‘how late can 
you wait’ (ref. 55) and stimulate reproductive awareness. Causal genes 
in the loci we identified could potentially serve as novel drug targets, 
to prevent or delay age-related declines in fertility and sperm quality 
or to increase assisted reproductive technology efficiency, but further 
characterization is needed. Our study examines the genetics of repro-
ductive behavior in both men and women, and, to our knowledge, it 
is the first that is adequately powered to identify loci in both women 
and men. We also provide support for Fisher’s theorem that fitness 
is moderately heritable in human populations. Although the effect 
sizes of the identified common variants are small, there are examples 
of GWAS-identified loci of small effect that end up leading to impor-
tant biological insights56,57. Many of our findings suggest a role for 
sperm quality, which is one lead for researchers to pursue. Because 
current sperm tests remain rudimentary, our findings could serve as 
a basis for ‘good quality’ sperm markers. We identified both coding 
and regulatory variants that are potentially causal, as well as a set of 
genes that could underlie the associations we identified. Follow-up 
experiments in animal models are required to confirm and character-
ize the causal genes in these loci.

URLs. Analysis plan predeposited at the Open Science Framework 
website, https://osf.io/53tea/; Gene Network, http://129.125.135.18
0:8080/GeneNetwork/; ReproGen, http://www.reprogen.org/data_
download.html; Sociogenome, http://www.sociogenome.com/; Social 
Science Genetic Association Consortium, http://thessgac.org/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
GWAS of reproductive behavior study design in brief. Genome-wide asso-
ciation analyses of AFB and NEB were performed at the cohort level accord-
ing to a prespecified analysis plan (Supplementary Note). Cohort-uploaded 
results were imputed using the HapMap 2 CEU (r22.b36) or 1000 Genomes 
Project reference sample. Cohorts were asked to only include participants of 
European ancestry, with no missing values for all relevant covariates (sex, birth  
year and cohort-specific covariates), who were successfully genotyped  
over the whole genome and passed cohort-specific quality control filters.  
We followed the quality control protocol of the GIANT Consortium’s recent 
study of human height20 and employed QCGWAS16 and EasyQC17 software, 
which allowed us to harmonize the files and identify possible sources of error 
in association results.

Cohort association results (after applying the quality control filters) were 
combined using sample-size-weighted meta-analysis with genomic control 
correction within each study, implemented in METAL80. SNPs were considered 
genome-wide significant at P values smaller than 5 × 10−8 (α = 5%, Bonferroni 
corrected for 1 million tests). The meta-analyses were carried out by two inde-
pendent analysts. Detailed results for each genome-wide significant locus are 
shown in in Supplementary Figures 4–29.

The total sample size of the meta-analyses is n = 251,151 for AFB pooled 
and n = 343,072 for NEB pooled. The PLINK clumping function81 was used 
to identify the most significant SNPs in associated regions (termed lead 
SNPs). Detailed cohort descriptions, information about cohort-level geno-
typing and imputation procedures, cohort-level measures and quality control 
filters are shown in Supplementary Tables 26 and 27 and discussed in the 
Supplementary Note.

Dominant genetic variation in fertility. We applied a method recently devel-
oped by Zhu et al.82 to estimate dominant genetic effects on the basis of the 
genetic relatedness of unrelated individuals. Our results, based on combined 
TwinsUK and LifeLines samples, showed no evidence of dominant genetic 
effects for either NEB (1.0 × 10−7, SE = 0.07; P = 0.45) or AFB (0.02, SE = 0.08; 
P = 0.43). Results are shown in Supplementary Table 28 and discussed in the 
Supplementary Note.

Bivariate and conditional analyses. As joint analysis of correlated traits may 
boost power for mapping functional loci, we applied a recently developed mul-
tiple-trait analysis method83 to test the association between each variant and 
the two correlated traits AFB and NEB simultaneously using multivariate anal-
ysis of variance (MANOVA) (Supplementary Table 29 and Supplementary 
Note). The analysis was performed on the basis of the genome-wide meta-
analysis summary statistics for each single trait. Although this analysis did not 
identify additional genome-wide significant loci (λ = 0.995), it did account for 
the correlation between the two phenotypes, thus improving the strength of 
two signals on chromosomes 1 and 5, indicating possible pleiotropic architec-
ture for AFB and NEB (Supplementary Fig. 30). The analysis also provided 
a conditional association test of the genetic effect of each variant on AFB 
including NEB as a covariate and the genetic effect on NEB including AFB as 
a covariate (Supplementary Fig. 31).

Population stratification. We used two methods to assess whether our GWAS 
results exhibited signs of population stratification (Supplementary Note). 
First, we used the LD Score intercept method described in Bulik-Sullivan et al.19  
to test whether inflation in χ2 statistics was due to confounding biases such as 
cryptic relatedness and population stratification. In all six cases, the intercept 
estimates were not significantly different from 1, suggesting no appreciable 
inflation of the test statistics attributable to population stratification. Second, 
we conducted a series of individual and within-family regressions using poly-
genic scores as predictors20,21,38 on a data set of dizygotic twins (STR and 
TwinsUK). The regression analyses showed that within-family regression 
coefficients for both AFB and NEB were statistically different from 0 when 
the P-value threshold was sufficiently high (Supplementary Figs. 32 and 33, 
and Supplementary Tables 30 and 31).

Sex-specific effects. In addition to the pooled GWAS for which results are 
presented in the main text, we also ran sex-specific GWAS meta-analyses 

for AFB and NEB (Supplementary Note). The sample sizes for sex-specific 
analysis were as follows: AFB in women, n = 189,656; AFB in men, n = 48,408; 
NEB in women, n = 225,230; NEB in men, n = 103,909. Our results identified 
six genome-wide significant (P < 5 × 10−8) independent SNPs for AFB in 
women and one genome-wide significant independent SNP for NEB in men 
(Supplementary Figs. 34 and 35, and Supplementary Table 32). We also 
used LD Score bivariate regression and GREML bivariate analysis to estimate  
the genetic correlation between men and women on the basis of the sex-specific  
summary statistics from the AFB and NEB meta-analyses. Our estimates 
based on LD bivariate regression indicated genetic correlations between the 
sexes of rg = 0.86 (SE = 0.052) for AFB and rg = 0.97 (SE = 0.095) for NEB. 
Results are shown in Supplementary Tables 33 and 34 and discussed in the 
Supplementary Note.

Polygenic score prediction. We performed out-of-sample prediction and cal-
culated polygenic scores for AFB and NEB, on the basis of genome-wide asso-
ciation meta-analysis results, and used regression models to predict the same 
phenotypes in four independent cohorts: HRS, LifeLines, STR and TwinsUK 
(Supplementary Fig. 2 and Supplementary Note). We ran ordinary least-
squares (OLS) regression models and report R2 as a measure of goodness of 
fit for the model. In addition, we tested how well our polygenic scores for NEB 
could predict childlessness at the end of the reproductive period (using age 45 
for women and 55 for men; Supplementary Table 21). Because AFB is observed 
only in parous women, we adopted an additional statistical model to account 
for censoring (Cox proportional hazard model; Supplementary Table 22)  
and selection (Heckman selection model; Supplementary Table 35). We addi-
tionally tested the predictive value of our polygenic scores for AFB on age 
at menarche (TwinsUK) and age at menopause (LifeLines) (Supplementary 
Table 23). Finally, we examined whether variants associated with menopause 
are associated with AFB. We calculated a polygenic score for age at menopause 
based on recent GWAS results from Day et al.40 and applied the predictor to 
the LifeLines and TwinsUK cohorts (Supplementary Table 36).

Genetic correlations. We used information from 27 publicly available GWAS 
data sets to estimate the number of genetic correlations between AFB or NEB 
and related traits (Fig. 3 and Supplementary Table 25) via LD Score bivariate 
regression. Details on these phenotypes are provided in the Supplementary 
Note. A conservative Bonferroni-corrected P-value threshold of P < 1.85 × 10−3  
(= 0.05/27) was used to define significant associations. We also tested the 
correlation between NEB and AFB using bivariate GREML analysis on the 
Women’s General Health Study (WGHS; n = 40,621).

Lookups and proxy phenotypes. Following up on the results of genetic 
overlap with other phenotypes, we tested in a quasi-phenotype replication 
setting whether the SNPs strongly associated with AFB in women were empiri-
cally plausible candidate SNPs for age at menarche and age at menopause 
(Supplementary Note). We used a two-stage approach applied in other con-
texts38,84. In the first stage, we conducted a meta-analysis of AFB excluding 
cohorts that were part of the meta-analysis for the phenotype we intended to 
replicate. We merged the SNPs from this meta-analysis with the publically 
available association results for the most recent GWAS on age at menarche2 
and age at menopause40 from the ReproGen consortium website1. SNPs that 
were not present in both studies considered were dropped from the analysis. 
We aligned alleles and directions of effect using EasyStrata software85. We then 
selected independent SNPs with P < 1 × 10−5, using the clump procedure in 
PLINK81 (window size of 1,000 kb and LD threshold of r2 > 0.1) to identify 
the most significant SNPs in the associated regions included in both files. 
We defined ‘prioritized SNP associations’ as those that passed the Bonferroni 
correction for the number of SNPs tested (0.05/122 = 4.10 × 10−4, for both 
age at menarche and age at menopause). Our results identified three SNPs 
after Bonferroni correction that could be used as good candidates for age at 
menarche. We did not find any clear ‘candidate SNP’ for age at menopause 
(Supplementary Fig. 36).

Gene-based GWAS analysis. We performed gene-based testing with the  
full GWAS set (~2.5 million HapMap-imputed SNPs) for both phenotypes 
using VEGAS (Supplementary Tables 3 and 4, and Supplementary Note)22,23. 
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This software has the advantage of accounting for LD structure and allowing 
a gene to be defined as a range with boundaries beyond the edges of the gene 
to include intergenic regions in the analysis. We defined genes including an 
additional 50-kb window around each gene. We considered every SNP for the 
gene-based analysis, ran the analyses for each chromosome with up to 106 
permutations and considered P < 2.5 × 10−6 as the threshold for significance 
(0.05/~20.000 genes).

eQTL and meQTL analyses. For each of the 12 SNPs identified in the GWAS, 
local (cis; exons or methylation sites <1 Mb from the SNP) and genome-wide 
(trans; exons or methylation sites >5 Mb from the SNP) effects were identified 
by computing Spearman rank correlations between SNPs and local or global 
exons and methylation sites (Supplementary Note). Bonferroni correction 
for multiple testing was performed for the 12 SNPs tested (P < 2.5 × 10−6 for 
cis-meQTL analysis, P < 1 × 10−8 for trans-meQTL analysis, P < 1.2 × 10−6 
for cis-eQTL analysis, P < 1.3 × 10−8 for trans-eQTL analysis). For each of the 
significant associations, the corresponding exons or methylation sites were 
selected, the strongest eQTLs were identified for these elements and the LD 
between the strongest eQTLs and the corresponding SNP identified in the 
GWAS was computed. LD was computed using BIOS genotypes (genotypes 
used for eQTL and meQTL mapping).

Functional variant analysis using RegulomeDB. We used RegulomeDB27 to 
identify variants among the 322 SNPs that reached P < 5 × 10−8 for associa-
tion with AFB and/or NEB in the meta-analysis of GWAS results that likely 
influence regulation of gene expression (Supplementary Note). RegulomeDB 
integrates results from the Roadmap Epigenomics26 and ENCODE86 projects. 
SNPs showing the most evidence of being functional—defined by having a 
RegulomeDB score <4—were subsequently examined in more detail in terms 
of effects on gene expression (eQTLs) and their protein-binding capacity 
(Supplementary Table 6).

Gene prioritization. Potentially causal genes for the associations identified  
by GWAS were identified using four previously described bioinformat-
ics tools: ToppGene4, Endeavor5, MetaRanker6 and DEPICT7. To this end,  
we first retrieved positional coordinates for all lead SNPs according to 
GRCh37/hg19 using Ensembl BioMart. These coordinates were used to extract 
all genes located within 40 kb of lead SNPs from the UCSC table browser.  
The identified genes then served as input for ToppGene and Endeavor.  
Genes with established roles in fertility served as training genes in this  
procedure, that is, BRCA1, EGFR, ERBB2, ERBB3, ERBB4, HSD17B1, RBM5, 
ESR1, ESR2 and FSHB. For MetaRanker, we provided SNPs that reached  
P < 5 × 10−4 and their chromosomal positions as input, together with the 
above set of training genes. Because ToppGene, Endeavor and MetaRanker 
are biased toward larger and well-described genes, we also performed a gene 
prioritization procedure using DEPICT7. All SNPs that reached P < 5 × 10−4 
in the meta-analysis served as input, and information on prioritized genes, 
gene set enrichment, and tissue and cell type enrichment was extracted. Genes 
were subsequently prioritized if they (i) reached P < 0.05 in DEPICT or (ii) 
reached P < 0.05 in ToppGene, Endeavor and MetaRanker (Supplementary 
Table 37).

Functional network and enrichment analyses. DEPICT was used to identify 
gene set, cell type and tissue enrichment, using the GWAS-identified SNPs 
with P < 5 × 10−4 as input (Supplementary Note). Because of the relatively 
small number of identified loci, DEPICT was only able to perform these analy-
ses for AFB and NEB pooled and for AFB in women. To construct a functional 
association network, we combined five prioritized candidate gene sets into 
a single query gene set that was then used as input for functional network 
analysis24. We applied the GeneMANIA algorithm together with its large set of 
accompanying functional association data87. We used the Cytoscape software 
platform88, extended by the GeneMANIA plugin (data version 8/12/2014, 
accessed 24 April 2016)89. All the genes in the composite network, from either 
the query or resulting gene sets, were then used for functional enrichment 
analysis against Gene Ontology (GO) terms90 to identify the most relevant 
terms, using the same plugin89.

Gene–environment interactions. Previous research based on twin studies 
shows differential heritability of fertility behavior across birth cohorts91,92. 
We used the Swedish Twin Register (STR) to examine whether the effect of a 
polygenic score for AFB or NEB varied across birth cohort. We followed the 
analysis presented in the recent GWAS of education35 and divided the sample 
into six groups on the basis of year of birth. Each group spanned five birth 
years, with the oldest ranging from 1929–1933 and the youngest born from 
1954–1958. Supplementary Table 38 reports the estimated coefficients from 
these regressions. The results indicate a U-shaped trend in AFB and a linear 
decline in NEB, but they do not provide any clear evidence of interaction 
effects between the polygenic scores and birth cohort. We additionally tested 
the interaction effects for educational level and the polygenic scores for AFB 
and NEB in three different samples (LifeLines, STR and HRS). Supplementary 
Table 39 reports the estimated coefficients from these regressions. The results 
indicate that years of education are positively associated with AFB in both the 
LifeLines and STR cohorts and negatively associated with NEB in the HRS 
cohort. With the exception of NEB in the HRS cohort, we found no evidence 
of gene–environment effects with education.

Robustness checks. To estimate the robustness of our results for AFB, we 
conducted two additional analyses. First, we estimated how the coeffi-
cients changed if we controlled for educational attainment. Using data from 
deCODE, we ran an additional association analysis using the ten loci that were 
genome-wide significant in the meta-analysis (P < 5 × 10−8). The analysis 
was restricted to individuals born between 1910 and 1975 who also had data 
available on completed education. The total sample size was 42,187 (17,996 
males and 24,191 females). The analysis was adjusted for sex, year of birth 
(linear, squared and cubed), interaction between sex and year of birth, and 
the first ten principal components. Education is measured by years of educa-
tion, ranging between 10 and 20 years. Supplementary Table 40 reports the 
association results before and after adjusting for educational attainment. Our 
analysis shows that effect sizes shrink after including educational attainment 
as a covariate, with an average reduction of around 15%. We also estimated 
the effect of a polygenic risk score for AFB calculated from meta-analysis data 
excluding the deCODE cohort. The polygenic risk score remained highly sig-
nificant. The effect of 1 s.d. for the AFB score decreased from 0.19 years (69 d) 
without controlling for education to 0.16 years (59 d) when we controlled for 
years of education. Second, we estimated how the coefficients changed after 
controlling for educational attainment and age at first sexual intercourse using 
the UK Biobank cohort (n = 50,954). We ran two association models: the first 
followed the GWAS analysis plan with no additional covariates, and the second  
added years of education and age at first sexual intercourse as covariates.  
The results are presented in Supplementary Figure 37 and Supplementary 
Table 41. Our analysis shows that the effect sizes of our top hits are highly 
concordant (R2 = 0.94). The inclusion of educational attainment and age at first 
sexual intercourse as covariates weakened the effect sizes on average by 40% 
and increased the P values of the estimated coefficients. Overall, we interpret 
this additional analysis as a robustness test that confirms that the top hits from 
our meta-analysis are robust to the inclusion of the confounding factors of 
educational attainment and age at first sexual intercourse.

Positive selection. We performed Haploplotter analysis93 to examine whether 
lead SNPs and/or functional variants identified using RegulomeDB showed 
evidence of positive selection. Three variants showed standardized integrated 
haplotype scores <–2 or >2, indicating that these variants represent the top 5% 
of signals in the population. These SNPs are (i) rs7628058 on chromosome 3 for  
AFB, an eQTL for RBM6 in monocytes; (ii) rs2247510 on chromosome 3 for 
AFB, an eQTL for RBM6 and HYAL3 in monocytes and a binding site for a 
range of transcription factors; and (iii) rs2415984, the lead SNP in the chromo-
some 14 locus for NEB. Results are presented in Supplementary Table 42.

Data availability. Results can be downloaded from the SOCIOGENOME and 
SSGAC website. Data come from multiple studies, most of which are subject 
to a MTA, and are listed in the Supplementary Note. Correspondence and 
requests for materials should be addressed to the corresponding authors or 
info@sociogenome.com.
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