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Spring 2024 - Systems Biology of Reproduction
Lecture Outline - Reproductive Endocrinology Systems
Michael K. Skinner - Biol 475/575

CUE 418, 10:35-11:50 am, Tuesday & Thursday

April 2, 2024

Week 13

Reproductive Endocrinology Systems

- Female Reproductive Endocrinology
- Summary
- Steroidogenesis and Action
- Cycle

- Male Reproductive Endocrinology
- Summary
- Steroidogenesis and Action
- Gonadotropins

- Endocrine Regulation
- Neuroendocrinology
- Endocrine Disruptors

Spring 2024 - Systems Biology of Reproduction
Discussion Outline — Reproductive Endocrinology Systems
Michael K. Skinner — Biol 475/575

CUE 418, 10:35-11:50 am, Tuesday & Thursday

April 4,2024

Week 13

Reproductive Endocrinology Systems
Primary Papers:

1. Stotzel, et al. (2012) Theriogenology 78:1415-1428
2. Toufaily, et al. (2020) J Endocrinology 244(1):111-122
3. Barban, et al. (2016) Nat Genetics 48:1462

Discussion

Student 9: Reference 1 above
e What endocrine parameters were synchronized and what regulatory agent tested?
e What experimental model was used?
e What model was established and validated?

Student 10: Reference 2 above
e What was the experimental design and technology used?
e Why is the LH surge important?
e What was identified regarding the progesterone regulated phasic LH secretion?

Student 11: Reference 3 above
e What was the experimental design and technology used?
e What reproductive factors were used and what traits were associated?
e What conclusions can be drawn on genomic control of reproduction?
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Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS.

Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V.
Endocrinology. 2019 Oct 1;160(10):2471-2484.

Schematic summarizing the changes in epigenetic-
modifying enzymes, histones, and key mediators of
ovarian follicular differentiation and function of
relevance to PCOS. Changes related to the
gonadotropin and gonadotropin receptor, steroidal
milieu, and hyperinsulinemic status in (ieft) granulosa
and (right) theca cells are shown. Significant changes
in gene expression from the current study are shown
with dark-blue shading and the large-magnitude
nonsignificant changes (that need further testing) with
light-blue shading. Numbers in parentheses point to
available evidence supportive of epigenetic-mediated,
gene-expression  changes, with those that are
consistent in prenatal T-treated sheep marked in pink.
Question mark symbols (?) indicate that this link
remains to be established. The differential role of the
histone methylation status, as a result of altered
balance (depicted as a maroon-colored balance) of
histone de/methylases in granulosa and theca cells
governing  steroidogenic  vs insulin  regulation,
respectively, is also shown

Theca-specific estrogen receptor-alpha knockout mice lose fertility prematurely.
Lee S, et al. Endocrinology. 2009 Aug;150(8):3855-62.
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GnRH-A Key Regulator of FSH.
Stamatiades GA, Carroll RS, Kaiser UB.
Endocrinology. 2019 Jan 1;160(1):57-67.




Advances in modeling of the bovine estrous cycle: synchronization with PGF2a.
Stotzel C, Plontzke J, Heuwieser W, Roblitz S. Theriogenology. 2012 Oct 15;78(7):1415-28.

Impact of prolactin receptor isoforms on reproduction.
Binart N, Bachelot A, Bouilly J.
Trends Endocrinol Metab. 2010 Jun;21(6):362-8.




Origin of circulating and tissue estrogens. A, In healthy premenopausal women, estrogen (E2) is produced by the ovaries and
functions as a circulating hormone that acts on distant target tissues. Here WAT is represented. B, In postmenopausal women
and in men, E2 does not function as a circulating hormone; rather, it is synthesized in extragonadal sites from circulating
androgenic precursors such as T, androstenedione (4A), or dehydroepiandrosterone (DHEA). Cellular estrogenic action
depends on: 1) the ER signaling and sensitivity; 2) the activity of enzymes like aromatase involved in the biosynthesis of E2
from androgenic precursors; and 3) the inactivation of E2 in E2 sulfate (E2-S) by the estrogen sulfotransferase (EST).




Physi ical and P ical A

g
Astapova O, Minor BMN, Hammes SR.

Endocrinology. 2019 May 1;160(5):1166-1174.

Actions in the Ovary.

AR actions in granulosa cells. AR works through genomic (dashed lines) and nongenomic (solid lines) pathways to promote growth and differentiation
of granulosa cells, suppress apoptosis and, in dominant follicles, increase steroid synthesis. The effects of granulosa growth factors IGF1, GDF9, and
FSH are all enhanced in the presence of androgens through extranuclear activity of AR. At the gene level, AR induces the expression of antiapoptotic
miRNA miR125b, multiple steroidogenic enzymes, GDF9, and FSH receptor, and regulates the activity of DNA methyltransferase Ezh2 through
of Ezh2 phosphory as well as i regulation of the miRNA miR101 (24-28, 33)

Multi-omics and machine learning for the prevention and management of female reproductive health.
Kharb S, Joshi A.

Front Endocrinol (Lausanne). 2023 Feb 23;14:1081667.

Machine learning approaches using various data to understand genetic and environmental factors

towards prevention and management of disorders through the family reproductive life cycle.
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Hormonal regulation of
spermatogenesis Most
hormones shown can have
both positive and negative
effects, either at the level of
receptor
activation/desensitization or
through activation and
repression of downstream
targets. GnRH,
gonadotrophin releasing
hormone; LH, luteinizing
hormone; FSH, follicle
stimulating hormone; T,
testosterone.
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2. Nongenomic Actions of Androgen in Sertoli Cells 27

Steroid
hormone
L

cellular w——— Protein
function

Figure 1 The classical mechanism of steroid action. Steroid hormones diffuse passively into the
cell and combine with their cognate receptors in either the cytoplasm or the nucleus. In the
cytoplasm, the binding of steroid to the receptor causes conformational changes in the receptor,
allowing it to be released from heat shock proteins. The receptors then dimerize and migrate to
the nucleus. Once in the nucleus, the steroid-bound receptor binds to specific hormone response
clements (HREs) in the promoters of genes and recruits coactivator proteins that in turn alter
chromatin structure and recruit RNA polymerase 1o the transcription initiation site. As a result,
mRNA and proteins are produced that regulate cellular functions. Adapted from Onate, 2001,
with permission from Humana Press, Inc.
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2. Nongenomic Actions of Androgen in Sertoli Cells 45

lohal

Figure S Potentialtesiosterone signaling pathways in Sertol] cells: two poteatial patbways are
proposed for CREB phosphory! In oo pathway (left side, 1),
testosterone (T) binding to AR aliows AR to bind with and activate Src tyrosine kinase,
resulting in the stimulation Ras and Raf-1 kinase and the activation of the MAP kinase
pathway. I the second pathway (right side, 2), testosterone binding 10 AR induces Ca®* influx
into Sertoli cells, causing calmodulin (CaM) to stimulate CaM kinase to translocate 1o the
niscleus and transiently phosphorylate CREB within | minute. Ca® also induces a slower, more
persistent pathway in which protein kinase C (PKC), guanine nucleotide exchange factors
(GEF), or PKA stimulates Ras or a Ras-like GTP binding protein, resulting in the activation
of the MAP kinase pathway. Both pathways are capable of inducing CREB phosphorylation
and CREB-mediated gene expression.

Postnatal Sex Reversal of the Ovaries in Mice

Lacking Estrogen Receptors and
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Estrogen Deficiency, Obesity, and Skeletal Abnormalities
in Follicle-Stimulating Hormone Receptor Knockout
(FORKO) Female Mice*

NATALIA DANILOVICHY, P. SURESH BABU, WEIRONG XINGY, MARIA GERDES,
HANUMANTHAPPA KRISHNAMURTHY, ase M. RAM SAIRAM

 Reproduction Resoarch Laboratery, Clinical Research Institute of Moniréol, Moniréal
K7, Conada

TABLE 2. Examination of vaginal cytology

; Length of " Presence of

Genotype estrous cyle  Duratnel - qoipolial and

_ (days) e cornified cells

FORKO None None Occasional
Heterozygous 6.6 * 3.5% 1502 Normal
Wild-type 4403 22*04 Normal

Values are expressed as mean SEM. °, P < 0.05.

TABLE 1. Breeding performance

Number of snimals Male % Fe

firwt Bitter (%)
x 7 TR

10 %

16 x 16

Weaning success

animals surviving on day 21. All results are expressed as moan SEM
P <005

Weaning success o
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e
Germ cells numbers (millions per testis) in ArKO and w/t mice at the . - -
two age groups. (a) The numbers of spermatogonia, spermatocytes, ) Ly
round spermatids, and elongated spermatids did not differ in the 4.5- ' .
month-old ArKO mice as compared with the w/t mice. (b) No significant oq4 . i
decreases were seen in spermatogonia (P = 0.06) and spermatocyte s N
populations (P = 0.08) in 1-year-old ArKO mice; however, there were 1
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An Age-Related Ovarian Phenotype in Mice with
Targeted Disruption of the Cyp 19 (Aromatase) Gene*

KARA L. BRITT, ANN E. DRUMMOND, VICTORIA A. COX, MITZILEE DYSON,
NIGEL G. WREFORD, MARGARET E. E. JONES, EVAN R. SIMPSON, axo

JOCK K. FINDLAY

Prince Henry’s Institute of Medical Rescarch and Department of Anatormy, Monash University

(N.G.W.), Clayton, Victoria 3168, Australia

ABSTRACT
With the development of a mouse medel of estrogen

present in ArKO ovaries. Thus, the ArKO mouse was infertile as »

due to targeted dikruption of the aromatase gene (the aromatase
knockout (ArKO) mouse), s new exist: rok

Ovarses and serum were
collected from wild-type, heterozygoas, and ArKO mice at 10-12 and
21-23 weeks and 1 y7 of age. The ovaries were assessed histologically
and stereclogically, with primary, secondary, and antral folticles and
corpora lutea counted. The uteri were hypoestrogenic, and serum
Jevels of LH and FSH in ArKO females were elevated above those in
beterozygote and wild-type animals at all ages stodied. Althosgh
estrogen was not ¥ there
a bleck of [mIKuLlr development, and no corpora lutea wero

disrupted and a failure to ovalate
ll'uwvhngxc cystic follicles were present by 21-23 weeks of age. The
ovariang with age, such that by 1 yr there were

no secondary or antral follicles,
atretic. > tissue

by an influx of macrophages and collagen deposition, coincident with
the losa of follicles. I conclusion, the ovarian environment in ArKO
mice does not allow the characteristic development of follicles that
culminates in ovulation and demonstrates an in civo requirement of
estrogen for normal ovarian function in the mouse. (Endocrinology
141: 26142623, 2000)

nd the primary follicles present were
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Discovery of LHRH and development of LHRH analogs for prostate cancer treatment.

Prostate. 2017 Jun;77(9):1036-1054.
Schally AV, Block NL, Rick FG.

Abstract
The dlsoovery, isolation, elucidation of structure, synthesis,
initial testing of the neuropeptide hypothalamic
luteinizing hormone-releasing hormone (LHRH), which
regulates reproduction, is briefly described. The design,
synthesis, and experimental and clinical testing of
agonistic analogs of LHRH is extensively reviewed
focusing on the development of new methods for the
treatment of prostate cancer. Subsequent development of
antagonistic analogs of LHRH is then faithfully recounted
with special emphasis on therapy of prostate cancer and
BPH. The concepts of targeted therapy to peptide
receptors on tumors are re-examined and the development
of the cytotoxic analogs of LHRH and their status is
reviewed. The endeavor to develop better therapies for
prostate cancer, based on LHRH analogs, guided much of
our work.

o
o
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N
|

Glp - His - Trp - Ser - Tyr - D-Lys - Leu - Arg - Pro - Gly - NH2

17



Hypothalamic and pituitary anatomy. Sagittal view of mammalian hypothalamic and pituitary anatomy. The mediobasal
hypothalamus is encompassed by red dashed lines. The pars tuberalis, part of the anterior pituitary, is shaded in gray. AHA,
anterior hypothalamic area; ARC, arcuate nucleus; DMN, dorsomedial nucleus; ME, median eminence; MN, mammillary
nuclei; OC, optic chiasm; POA, preoptic area; PHA, posterior hypothalamic area; PVN, paraventricular nucleus; SCN,
suprachiasmatic nucleus; SO, supraoptic nucleus; VMN, ventromedial nucleus.

(A) Representation of the variations in
pulsatile secretion of GnRH during the
human female lifespan. (B) Summary of
the physiological mechanisms possibly
involved in the control of GnRH
secretion and its action on gonadotrope
cells. (POA: preoptic area; INF:
infundibular  region; ARC: arcuate
nucleus; ME: median eminence; NPY:
neuropeptide Y; GABA: gamma
aminobutirric acids; NA: noradrenaline;
NB: neurokinin B; DYN: dynorphin; SP:
substance P; E2: estradiol; P:
progesterone; SF1: steroidogenic factor
1 transcription factor; Egr1: early growth
response 1 transcription factor; AP1:
activating protein 1 transcription factor;
Gs: Gs alpha subunit; Gq: Gg/11
subunit).

18



Clinical presentations of isolated GnRH deficiency in humans

Pulsatile GnRH secretion s initiated during the late fetal/early neonatal period (“mini-puberty”), followed by quiescence during childhood and

reawakening of the pulsatile secretion in mid-childhood. Presence of anosmia signals a developmental defect in GnRH neuronal migration while,
icrof or cryptorchidism signal fetal I lack of GnRH secretion. Constitutional delay of puberty (CDP) represents a late activation of

the HPG axis while KS and nIHH represent partial or complete failure of pulsatile GnRH secretion. Recovery of pulsatile GnRH secretion in

KS/nIHH subjects in adulthood is termed “Reversal”, while, AHH (adult-onset hypogonadotropic hypogonadism) refers to the onset of isolated

GnRH deficiency during adulthood following a normal mini-puberty and puberty.

19



Physiological roles of the kisspeptin/GPR54 system in the neuroendocrine control of reproduction.
Pineda R, Aguilar E, Pinilla L, Tena-Sempere M.
Prog Brain Res. 2010;181:55-77.

Structure of kisspeptins — the peptide products of the KISS1 gene. Different kisspeptins are generated by proteolytic cleavage
from a common precursor of 145 amino acids, prepro-kisspeptin, which contains a 19-amino-acid signal peptide and a central
54-amino-acid region, kisspeptin-54 (Kp-54; formerly termed metastin). Lower-molecular-weight forms of kisspeptins
include Kp-14, Kp-13 and Kp-10; the latter corresponds to the common C-terminal 10-amino-acid stretch that contains the
RFamide motif and is sufficient to activate GPR54. Adapted from Roa et al. (2008a), with substantial modifications.

Prototypical gonadotropin responses to kisspeptin stimulation in rats. Schematic illustrations are presented of the patterns of
LH and FSH responses to intra-cerebral administration of Kp-10. Both dose-dependent (panel A) and time-dependent (panel
B) gonadotropic responses are shown. Hormonal values are adapted from original data from Navarro et al., 2005a and

Navarro et al., 2005b and our unpublished observations.

The integrated hypothalamic tachykinin-kisspeptin system as a central
coordinator for reproduction.
Navarro VM, Bosch MA, Leén S, et al. A Males
Endocrinology. 2015 Feb;156(2):627-37. c [] VEH
—_ 4 Il NK1R-A
—E' B NK2R-A
) [ NK3R-A
£
= o
|
Kiss1r+/+ Kiss1r-/-
. Females
1.0 )
Serum LH levels in WT (Kiss7r**) and KissTr’~
adult (A) male and (B) diestrous female mice 20 =
minutes after central injection of 600 pmol E
GR73632 (NK1R-A), GR64349 (NK2RA), or D g5 "
senktide (NK3R-A). =
I
Two-way ANOVA + Bonferroni's post hoc test. = a a
Different letters indicate significant differences a
between groups (P <.05). 0.0 [F1
' KissTr+/+ Kiss1r-/-

Kisspeptin/Kisspeptin Receptor System in the Ovary.
Front Endocrinol (Lausanne). 2018 Jan 4;8:365
Hu KL, Zhao H, Chang HM, Yu Y, Qiao J.
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Neuroendocrine regulation of gonadotropins in the
male and the female
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Toufaily C, Schang G, Zhou X, Wartenberg P, Boehm U, Lydon JP, Roelfsema F, Bernard DJ.
J Endocrinol. 2020 Jan;244(1):111-122.

The LH surge is blunted in Pgr-knockout females.
Blood samples were collected four times daily for
10 consecutive days. Representative profiles of the
LH secretion obtained on proestrus from control (A)
and cKO (B) female mice. Different colors indicate
different mice. Gray areas represent the dark
phase of the light/dark cycle. (C) Number of surges
observed in each mouse during the 10 days of the
experiment. (D) Maximal LH levels measured on
proestrus from control (1=9) and cKO (n=9)
females. Student ttests were performed for
statistical analysis. *P<0.05. n.s, non-significant.
Note: maximal values in panel D are lower than in
panels A and B because averages were used in
panel D in mice that surged more than once (see
‘Methods’ section).

Role of Pl4K and PI3K-AKT in ERK1/2 activation by GnRH in the pituitary
gonadotropes.

Bar-Lev TH, Harris D, Tomi¢ M, et al.
Mol Cell Endocrinol. 2015 Nov 5;415:12-23.
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Role of hypothalamus in aging and its underlying cellular mechanisms.

Kim K, Choe HK.
Mech Ageing Dev. 2019 Jan;177:74-79.

The hypothalamus as a regulator of systemic aging. We propose a working model that the hypothalamus controls several aspects of systemic aging.
Here, an age-dependent decline in physiological functions, including disruption of energy homeostasis, shifts in the circadian rhythm, imbalance in GH
levels, and decline in reproduction, is mediated through age-associated changes in the master regulatory neurons, such as the AGRP/NPY, POMC,
AVP, VIP, GHRH, SST, GnRH, and KNDy neurons. Notably, the hypothalamus is also a region where a majority of molecular pathways implicated in
aging, such as nutrient sensing, i ion, neural stem cell, is, and epigenetic regulation, are altered with aging.
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OVERVIEW OF ENDOCRINE DISRUPTOR RESEARCH ACTIVITY
IN THE UNITED STATES

RJ. Kaviock

Endocrine Disruptors
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Nosbolethions Trenbolone

Fig. 1.

THG and related natural and synthetic androgen structures. Note the structural
similarities between the two designer androgens norbolethone and THG with
THG’s parent gestrinone (differing by only a side chain reduction) and the
known potent androgens nandrolone and trenbolone.
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An old culprit but a new story: bi Aand "l
Fertil Steril. 2016 Sep 15;106(4):820-6.
Sartain CV, Hunt PA.




Persistent impairment of hypothalamic KiSS-1 system after exposures to estrogenic compounds at
critical periods of brain sex differentiation.

Navarro VM, et al.
Endocrinology. 2009 May;150(5):2359-67.
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BPA directly decreases GnRH neuronal activity via non-canonical pathway,
Klenke U, Constantin S, Wray S.
Endocrinology. 2016 Mar 2:en20151924. [Epub ahead of print]
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Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality

with disruption of the hypothalamic-pituitary-testicular axis.
Wisniewski P, Romano RM, Kizys MM, et al. ® -

Toxicology. 2015 Mar 2;329:1-9.
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Total sperm production (A), daily sperm production (B), relative

sperm production (C) and relative daily sperm production (D) in rats Gt ateate WA mabe

exposed to bisphgnol A (BPA). Data are shown as the mean = Sperm parameters in male rats exposed to bisphenol A
S.EM., n = 10 animals/group, ANOVA followed by Tukey HSD test, (B”PA). P e for e f,eque‘,"?; o ) Pt
P <0.05and** P <0.01vs. control. integrity, (B) plasma membrane integrity and (C)

mitochondrial activity for the control, 5 mg/kg BW and
25 mg/kg BW BPA-exposed groups. Data are shown as
the mean = S.E.M, n = 10 animals/group, ANOVA
followed by Tukey HSD test, *P < 0.05, **P < 0.01 and
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P <0001 vs, control
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Low-d i activity, i i is and cell proliferation in
human breast cells.
Williams GP, Darbre PD.

Mol Cell Endocrinol. 2019 Apr 15;486:55-64.

Proliferative growth-response curves of MCF-7 cells treated with serial dilutions of the test plotted as ponse sigmoidal
curves with log of molarity vs. cell growth to the of maximal response. The cells were grown in phenol
red-free DMEM, 5% DCFCS, with a nil addition/vehicle (negative control) in the presence of the serial test concentrations, for 7 dayat 37° , in
humidified air containing 10% carbon dioxide. Technical triplicate cell counts were averaged and expressed as a percentage of the maximal response
relative to the untreated control, with jization and curve using GraphPad Prism 8.

Figure 1.

Hormonal regulation of
spermatogenesis Most
hormones shown can have
both positive and negative
effects, either at the level of
receptor
activation/desensitization or
through activation and
repression of downstream
targets. GnRH,

T gonadotrophin releasing
hormone; LH, luteinizing
hormone; FSH, follicle
stimulating hormone; T,
testosterone.
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Genome-wide analysis identifies 12 loci i ing human
Nat Genet. 2016 Dec;d8(12):1462-1472.

Barban N, Jansen R, de Vlaming R, et al.
Abstract
The genetic archi of human beh ge at first birth

(AFB) and number of children ever born (NEB)-has a strong relationship
with fitness, human development, infertility and risk of neuropsychiatric
disorders. However, very few genetic loci have been identified, and the
underlying mechanisms of AFB and NEB are poorly understood. We report
a large genome-wide association study of both sexes including 251,151
individuals for AFB and 343,072 individuals for NEB. We identified 12

loci that are signi iated with AFB and/or NEB in a
SNP-based genome-wide association study and 4 additional loci
associated in a gene-based effort. These loci harbor genes that are likely to
have a role, either directly or by affecting non-local gene expression, in
human reproduction and infertiiity, thereby increasing understanding of
these complex traits.

Manhattan plots of SNPs for AFB (age at first birth) and NEB (number of
children ever born) in single genomic control meta-analysisSNPs are
plotted on the x-axis according to their position on each chromosome against
assodiation ith AFB (panel @) and NEB (panel b). The sold biye ne incicates
the threshold for genome-wide significance (P<5x10-%) and the red line, the
threshold for suggestive hits (P<5x10-%). Blue points indicate SNPs in a £100
KB region around genome-wide significant hits. Gene labels are annotated as
the nearby genes to the significant SNPs.

Genetic overlap between AFB and NEB and other related traitsResults from Linkage-Disequilibrium (LD) Score regressions:
estimates of genetic correlation with developmental, reproductive, behavioral, neuropsychiatric and anthropometric phenotypes for

which GWAS summary statistics were available in the public domain. The length of the bars indicates the estimates of genetic
correlation. Grey error bars indicate 95% confidence intervals. The mark “*” indicates that the estimate of genetic correlation is
statistically significant after controlling for multiple testing (P<0.05/27=1.85x10-3).

Largt I ide met: lysis of pol ic ovary sy suggests shared genetic architecture for different
diagnosis ci

Day F, Karaderi T, Jones MR, Meun C, et al.

PLoS Genet. 2018 Dec 19;14(12):e1007813.

Manhattan plot showing results of meta-analysis for PCOS status, adjusting for age.

The inverse log10 of the p value (-og10(p)) is plotted on the Y axis. The green dashed line designates the minimum p value for genome-wide
significance (<5.0 x 10-8). Genome wide significant loci are denoted with a label showing the nearest gene to the index SNP at each locus. SNPs with p
values <1.0x102 are not depicted
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Regulation of endocrine by the mi i :
Williams CL, Garcia-Reyero N, Martyniuk CJ, Tubbs CW, Bise:
Gen Comp Endocrinol. 2020 Feb 12;292:113437.
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