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Abstract

Background: Pre-eclampsia is the most common complication occurring during pregnancy. In the majority of
cases, it is concurrent with other pathologies in a comorbid manner (frequent co-occurrences in patients), such as
diabetes mellitus, gestational diabetes and obesity. Providing bronchial asthma, pulmonary tuberculosis, certain
neurodegenerative diseases and cancers as examples, we have shown previously that pairs of inversely comorbid
pathologies (rare co-occurrences in patients) are more closely related to each other at the molecular genetic level
compared with randomly generated pairs of diseases. Data in the literature concerning the causes of pre-eclampsia
are abundant. However, the key mechanisms triggering this disease that are initiated by other pathological
processes are thus far unknown. The aim of this work was to analyse the characteristic features of genetic networks
that describe interactions between comorbid diseases, using pre-eclampsia as a case in point.

Results: The use of ANDSystem, Pathway Studio and STRING computer tools based on text-mining and database-
mining approaches allowed us to reconstruct associative networks, representing molecular genetic interactions
between genes, associated concurrently with comorbid disease pairs, including pre-eclampsia, diabetes mellitus,
gestational diabetes and obesity. It was found that these associative networks statistically differed in the number of
genes and interactions between them from those built for randomly chosen pairs of diseases. The associative
network connecting all four diseases was composed of 16 genes (PLAT, ADIPOQ, ADRB3, LEPR, HP, TGFB1, TNFA, INS,
CRP, CSRP1, IGFBP1, MBL2, ACE, ESR1, SHBG, ADA). Such an analysis allowed us to reveal differential gene risk factors
for these diseases, and to propose certain, most probable, theoretical mechanisms of pre-eclampsia development
in pregnant women. The mechanisms may include the following pathways: [TGFB1 or TNFA]-[IL1B]-[pre-eclampsia];
[TNFA or INS]-[NOS3]-[pre-eclampsia]; [INS]-[HSPA4 or CLU]-[pre-eclampsia]; [ACE]-[MTHFR]-[pre-eclampsia].

Conclusions: For pre-eclampsia, diabetes mellitus, gestational diabetes and obesity, we showed that the size and
connectivity of the associative molecular genetic networks, which describe interactions between comorbid
diseases, statistically exceeded the size and connectivity of those built for randomly chosen pairs of diseases.
Recently, we have shown a similar result for inversely comorbid diseases. This suggests that comorbid and inversely
comorbid diseases have common features concerning structural organization of associative molecular genetic
networks.
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Background
Pre-eclampsia (PE) is the leading cause of maternal and
foetal morbidity and mortality. It is a pregnancy compli-
cation, predominantly occurring after 20-weeks of gesta-
tion, as well as in labour, and it is characterized by
multiple organ dysfunction syndromes, including the
dysfunction of the kidneys, liver, vascular and nervous
systems, and the foetoplacental complex [1,2]. The gen-
eral clinical symptoms of PE are oedema, proteinuria
and hypertension. The clinical outcome of PE may not
always be predictable. Either form of PE can be extre-
mely insidious, rapidly progressing, and, even in the
absence of one of its general symptoms, may lead to life
threatening complications for the mother and foetus [3].
In 70-80% of cases, PE is secondary to an underlying
disease [1]. Pre-eclampsia risk factors include cardiovas-
cular diseases (arterial hypertension), kidney, liver and
gastrointestinal tract diseases, endocrine disorders (obe-
sity, diabetes mellitus), and autoimmune diseases (anti-
phospholipid syndrome) [1,3,4]. According to meta-
analysis data, women with a history of PE have 1.79
times the risk of venous thromboembolism, 1.81 times
the risk of stroke, 2.16 times the risk of ischemic heart
disease and 3.7 times the risk of hypertensive disease,
compared with women without PE [5]. Thus far, it
remains unclear whether the presence of pathological
processes before pregnancy predisposes one to PE, or
whether defects in multiple organs and systems, induced
by PE, are responsible for the development of extrageni-
tal diseases in the future. Such joint manifestations of
diseases are called comorbidities [6] or syntropies [7].
Likewise, inversely comorbid [8] or dystropic [9] dis-
eases statistically rare co-occur in patients as compared
with co-occurrence that can be expected by chance. Pre-
viously, for asthma, tuberculosis, certain cancers and
neurodegenerative diseases, we have shown that inver-
sely comorbid diseases are more closely related to each
other at the molecular level in comparison with ran-
domly chosen pairs of diseases [10].
In recent years, bioinformatics methods have been

widely used for modelling different pathological pro-
cesses, analysing the molecular mechanisms of their
development, identifying possible markers, and systema-
tizing available data. Ample evidence regarding the influ-
ence of genetics on comorbidities has accumulated in the
literature. Computer-based, text-mining methods were
developed for efficient extraction of knowledge from the
scientific literature. At the present time, COREMINE and
MeSHOPs, which analyse the co-occurrence of biomedi-
cal terms [11,12], and STRING [13] and the MedScan
system, which are based on the parsing of natural lan-
guage texts [14], are widely used.
We have developed the ANDSystem, which was

designed for the automated extraction of knowledge

from natural language texts regarding the properties of
molecular biological objects and their interactions in liv-
ing systems [15]. Using this system, we have recon-
structed protein-protein networks for proteins that are
associated with water-salt metabolism and sodium
deposition processes in healthy volunteers [16], as well
as protein-protein interaction networks for Helicobacter
pylori, which are associated with the functional diver-
gence of H. pylori, isolated from patients with early gas-
tric cancer [17]. We have also reconstructed associative
networks representing molecular genetic interactions
between proteins, genes, metabolites and molecular pro-
cesses associated with myopia and glaucoma [18], and
with cardiovascular diseases [19].
In the current study, we used the ANDSystem for the

reconstruction of associative networks (the preeclampsia
associome) representing molecular genetic interactions
between genes associated with PE, diabetes mellitus
(DM), gestational diabetes (GD) and obesity (Ob). We
conducted an analysis of these networks to reveal differ-
ential and common risk factors for these diseases.
Finding pathways common to the indicated multifac-

torial diseases would contribute to a better understand-
ing of the characteristic features of pre-eclampsia
pathogenesis, as well as to the development of new diag-
nostic, preventative and therapeutic methods.

Results
Pre-eclampsia: its association, via comorbid genes, with
diabetes mellitus, obesity and gestational diabetes
The main goal of the current study was to identify comor-
bid genes whose dysfunction or mutation represent com-
mon risk factors for diseases that are concurrent with PE.
To this end, we relied on published data [3,4] regarding the
four most significant and widespread pathologies concur-
rent with PE: DM, Ob, GD and pyelonephritis. Further-
more, using the ANDSystem and Pathway Studio software,
we reconstructed associative networks (disease-protein/
gene-disease) comprising interactions between the above
diseases via their associated genes. Subsequently, reduction
was achieved by eliminating pyelonephritis, as genes asso-
ciated with nephritis were not associated with PE and the
other analysed disorders. Using the ANDSystem, we identi-
fied 1,051 proteins/genes associated with PE, Ob, DM and/
or GD. Using Pathway Studio, 1,138 proteins/genes were
identified. The results of both programs were in good
agreement regarding the number of genes in groups asso-
ciated with particular diseases (Figure 1). Unfortunately, we
were not able to use STRING for the reconstruction of
such networks, as this program does not provide informa-
tion about protein/gene-disease associations.
The number of proteins/genes common to different

combinations of the examined diseases is shown in
Figure 1. We assumed that comorbid diseases are more
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closely interrelated, via the common proteins/genes
associated with them, as compared with randomly cho-
sen disease pairs. To test this assumption, we calculated
the distribution of three relation indices of random dis-
ease-protein/gene-disease networks built for random
disease pairs: IAB (number of shared proteins), JAB (Jac-
card index) and MAB (Meet/Min). All three disease pairs
(PE & DM, PE & GD, PE & Ob) were significantly con-
nected by the IAB and JAB indices at p < 0.05 (Figure 2).
Only PE & DM pair was significantly different by MAB

index (p < 0.05) from randomly generated pairs of dis-
eases. Thus, PE and DM were found to be the most signif-
icantly associated disease pair for all three relation indices.
Next, we tested the hypothesis whether comorbid pro-

teins/genes common to comorbid disease pairs interact
more closely compared to a set of randomly chosen pro-
teins/genes. Comparison of the associative molecular

genetic networks with random ones demonstrated that
the networks that describe the interactions between the
comorbid proteins/genes for all three disease pairs (PE &
GD, PE & DM, and PE & Ob) exhibited significantly
greater connectivities than those of the random networks
(p < 0.001).
Of particular interest was an appended analysis of the

associative molecular genetic networks built for proteins
associated concurrently with four comorbid diseases
(PE, DM, Ob and GD). The three programs used to

Figure 1 Venn diagram demonstrating the intersections of the
lists of genes associated with the analysed diseases (PE, DM, GD,
Ob) according to the ANDSystem (A) and Pathway Studio (B).

Figure 2 Comparison of analysed and random networks by
intersection (A), Jaccard (B) and Meet/Min (C) indices. Bars show
the distribution of the value for the features of the associative
networks for randomly chosen disease pairs. Arrows indicate PE &
GD, PE & DM and PE & Ob comorbid disease pairs. Asterisks indicate
the position of inversely comorbid disease pairs (bronchial asthma
and pulmonary tuberculosis) [10].
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build this network were the ANDSystem, Pathway Studio
and STRING (Figure 3). As Figure 3A shows, the
ANDSystem network comprised 32 objects: 16 proteins
and 16 genes, as well as 142 interactions. The ANDSystem

has an advantageous feature: an object pair can also be
associated concurrently with links of several types. For
this reason, the number of associated object pairs, 87,
was smaller than the number of links. The ANDSystem

Figure 3 ANDSystem (A), STRING (B) and Pathway Studio (C) networks describing shared proteins/genes. Interactions between proteins/
genes concurrently shared in PE, DM, Ob and GD are shown. In the ANDSystem network, proteins are shown as balls, and patterns with double
helices designate genes. In the STRING network, proteins/genes are shown as balls (gene names are given). The colour and shape of the arrows
indicate the type of association between the objects in all the networks.
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represented cases of the regulation of protein activity (six
links), including up-regulation (two links) and down-
regulation (three links) of protein activity; gene expression
regulation (37 links), including up-regulation (seven links)
and down-regulation (seven links); protein-protein interac-
tions (two links); protein transport regulation (10 links);
catalysis (one link); expression (16 links) and association
(70 links). To compare the ANDSystem network with
those of the STRING and Pathway Studio, the ANDSys-
tem network was transformed into a protein-protein inter-
action network, with links from the genes assigned to their
respective proteins, while links from genes as separate
vertices were deleted from the network. Such a network
contained 45 interconnected protein pairs.
The STRING network (Figure 3B) contained 16 pro-

teins/genes, and 45 gene pairs connected by 47 links,
including five different types: activation (four links),
expression with inhibition (seven links), binding (one
link), post-translational modification (one link), and func-
tional links (34 links). The functional links in STRING
were determined on the basis of Neighbourhood in the
Genome, Gene Fusions, Co-occurrence Across Genomes,
Co-Expression, Experimental/Biochemical Data, Associa-
tion in Curated Databases, and Co-Mentioned in
PubMed Abstracts [13].
The network built by Pathway Studio (Figure 3C) con-

tained 16 proteins/genes, and 62 pairs of genes connected
by 98 links, including six different types: binding (five
links), expression (55 links), molecular transport (19
links), promoter binding (two links), protein modification
(one link) and regulation (16 links).
There was a significant difference between the comor-

bid and random networks (p < 0.001), not only for dis-
ease pairs, but also for the associative molecular genetic
networks that describe the interactions between proteins/
genes associated concurrently with all four diseases (PE,
DM, GD, Ob) (Figure 3A). These results demonstrated
that comorbid proteins/genes are presumably involved in
shared biological processes. This can explain the
increased number of interactions between proteins/
genes, as compared with those for associative molecular
genetic networks of randomly chosen proteins/genes.
Confirmation of this hypothesis would shed light on the
molecular mechanisms underlying the interactions
between comorbid diseases.

Analysis of overrepresentation of Gene Ontology
(GO) processes
Overrepresentation of GO biological processes was ana-
lysed for the group of proteins/genes associated with sin-
gle diseases (PE, DM, GD and Ob) and pairs of diseases
(PE & DM, PE & GD, PE & Ob), as well as concurrently
with all four diseases. In each of these cases, more than
1,000 overrepresented processes were found (Additional

file 1). Among these were a high number of quite general
processes for which thousands of genes have been anno-
tated. The connectivity rate (CR) was calculated for each
process listed in Additional file 1 to check how closely
the proteins/genes, which caused an overrepresentation
of processes, interacted. After ranking the overrepre-
sented biological processes according to the CRs, 313
processes had the highest CR (equal to 1) (see Additional
file 1). Just as expected, generalized, nonspecific biologi-
cal processes had smaller CR values in the majority of
cases as compared with specialized processes involving a
relatively small number of genes.
Among the overrepresented biological processes with a

maximum CR were positive regulation of monooxygenase
activity, regulation of fat cell differentiation, regulation of
lipid metabolic process, nitric oxide and carbon monoxide
metabolism, regulation of protein kinase B signalling
cascade, regulation of NF-kappa B transcription factor
activity, regulation of glucose metabolism and transport,
regulation of cellular response to oxidative stress, regula-
tion of cytokine production, regulation of cell cycle pro-
cess and others. Thus, the use of the CR index in the GO
enrichment analysis revealed the specific GO processes
and lower the rank of less informative general processes.

Reconstruction of associative pathways describing
potential molecular mechanisms via comorbid genes
involved in overrepresented GO biological processes
The next step of the current study was to reconstruct the
molecular pathways connecting PE with DM, Ob, and GD,
via interactions between the specific and comorbid genes.
The Pathway Discovery module of the ANDVisio software
was used to trace separate pathways in the network of
molecular genetic interactions associated concurrently
with all four pathologies. The Pathway Discovery module
was used to search for pathways in the network using pat-
terns set by the user.
The patterns were of the following type: <PE> - <any

protein/gene specific to PE> - <any comorbid protein/
gene> - <any protein/gene specific to Ob or GD, or DM>
- <Ob or GD, or DM>. The program chose all the path-
ways meeting the pattern’s criteria: the starting link was
PE; the second link of the chain should be one of the pro-
teins/genes associated with PE, exceptions were proteins/
genes comorbid for all four diseases (4-comorbid); the
third link should be one of the 4-comorbid proteins/
genes (PLAT, ADIPOQ, ADRB3, LEPR, HP, TGFB1,
TNFA, INS, CRP, CSRP1, IGFBP1, MBL2, ACE, ESR1,
SHBG, ADA); the fourth link should be one of the pro-
teins specific to Ob, GD, or DM, with the exception of 4-
comorbid proteins/genes. The last link should be one of
the diseases (Ob, GD or DM). The total number of iden-
tified pathways was more than 50. These were combined
into a single pathway network (Figure 4).
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Common, as well as specific, risk factors were distin-
guished for the following combinations of diseases: PE
and DM; PE and Ob; PE and DM, Ob; PE and DM, Ob,
GD; (see Figure 4). The largest number of connections
was obtained for the TNFA, TGFB1 and INS genes,
which revealed specialized GO processes with maximum
CRs, such as: «positive regulation of protein kinase B
signalling», «cascade regulation of NF-kappa B

transcription factor activity», «regulation of mitosis»,
«regulation of nuclear division», «regulation of protein
secretion MAPK cascade», «positive regulation of pro-
tein transport», «regulation of protein complex assem-
bly», «positive regulation of cell migration», «positive
regulation of secretion», «positive regulation of cellular
component movement», «positive regulation of orga-
nelle organization», «regulation of mitotic cell cycle»,

Figure 4 Associative network comprising genes connecting PE with DM, OB and GD.

Glotov et al. BMC Systems Biology 2015, 9(Suppl 2):S4
http://www.biomedcentral.com/1752-0509/9/S2/S4

Page 6 of 12



«regulation of immune effector process», «intracellular
protein kinase cascade», «regulation of cellular compo-
nent biogenesis», «regulation of cell cycle process»,
«regulation of organelle organization», «regulation of
cell cycle» (see Additional file 1).
An associative pathway network connecting PE, via

the PLAT, ADIPOQ, LEPR, TGFB1, TNFA, INS, IGFBP1,
ACE and ESR1 genes, with DM, OB and GD incorpo-
rated 66 genes with 167 connections (see Figure 4).
Most of these connections (78) corresponded to the
“association” type (shown in black). Sixty-nine of them
could be referred to “expression regulation” types and
13 as “co-expression” (shown in red); eight comprised
“down regulation”, “degradation regulation”, and “degra-
dation downregulation” (shown in violet).
The differential network of PE risk factors included

seven genes (interleukin-1-beta (IL1B), endothelial
(NOS3) NO-synthase, heat shock 70 kDa protein 4
(HSPA4), apolipoprotein J (CLU) and 5,10-methylenete-
trahydrofolate reductase (MTHFR).
Thus, whereas all the identified PE risk factors might

be treated as potential markers of this disease, the most
probable molecular mechanism underlying PE, DM, OB
and GD includes the pathway starting from the TGFB1,
TNFA, INS and ACE genes, through the IL1B, NOS3,
HSPA4 (HSP74), CLU and MTHFR genes, and even-
tually to PE.
Thus, the probable chains of molecular events on the

way to combined PE, in this context, are as follows:
TGFB1 or TNFA - IL1B - PE; TNFA or INS - NOS3 -
PE; INS - HSPA4 or CLU - PE; ACE - MTHFR - PE.

Discussion
The associative networks analysed in this work (see
Figures 1, 2, 3, 4) appeared to be significant for the
understanding of the nature of PE, thereby supporting
the hypothesis that PE represents a stable complex of
clinical manifestations [1,3,4]. The key players in the
reconstructed networks are comorbid genes which, on
the one hand, contribute to the development of PE and
its pathogenically related disorders, and, on the other
hand, may play the role of “triggers” in the presence of
other pre-eclampsia-promoting factors (genes and pro-
teins). Comorbid genes are characteristic of many multi-
factorial diseases [20]. Moreover, many comorbid
diseases may involve various pathophysiological mechan-
isms [20], and the construction of associative networks
makes it possible to understand their molecular
interrelations.
An analysis of reconstructed associative networks,

which describe interactions between comorbid proteins/
genes associated with different pair combinations of PE
with DM, Ob, and GD, demonstrated that comorbid dis-
eases differ in a statistically significant manner from

random disease pairs. The differences concern both the
number of common genes associated with the diseases
and the interactions between such genes. The number
of vertices in the comorbid networks, as well as the
number of interactions between the vertices, exceeded
those of random disease pairs. At the same time, the
density of connections in the associative molecular
genetic network describing the interactions between
proteins/genes associated concurrently with all four dis-
eases also differed significantly from those of the ran-
dom networks formed by random sets of proteins/genes.
Interestingly, we also observed the same regularity for
inversely comorbid diseases [10]. It has been shown that
the associative networks reconstructed for pairs of inver-
sely comorbid diseases, including bronchial asthma and
pulmonary tuberculosis, as well as nine pairs formed by
neurodegenerative (Parkinson disease, schizophrenia,
Alzheimer disease) and cancer diseases (colorectal neo-
plasms, prostatic neoplasms, lung neoplasms), signifi-
cantly differed from the networks that describe
interactions between random diseases. An example of
the mutual arrangement of inversely comorbid (bron-
chial asthma and pulmonary tuberculosis) and comorbid
diseases is shown in Figure 2.
Our current results are in many respects consistent

with those of epidemiological studies worldwide. It has
been amply demonstrated that the common risk factors
of PE were DM, Ob and GD [1,2,21-26]. In most stu-
dies, DM is a leading risk factor, as it occurs in more
than half of the women with PE [1,2,24]. Furthermore,
DM is more strongly associated with a late-onset of the
disease, which prevails among all the cases [24,25]. A
study of twin gestations supports our reasoning. In this
study, an evaluation of associated factors in PE gesta-
tions and a comparison of the incidence of pregnancy
complications among twins with and without PE
demonstrated that a high pregnancy body mass index
(BMI) and diabetes were associated with PE [27].
We identified 16 genes encoding shared proteins in

the molecular network, built using the literature- and
database-mining (ANDSystem, Pathway Studio and
STRING), that simultaneously connected with PE, DM,
GD and Ob. Most shared genes determined in this
study encode proteins controlling energy metabolism,
and are associated with the immune response and
inflammation.
An analysis of the associations of these genes with PE

and DM, GD and Ob obtained in case-control, family-
based, and meta-analyses studies, which we conducted
using the HuGE Navigator, revealed that 14 of the 16
shared genes were associated with at least one of the
diseases (see Table 1). Two genes (CSRP1 and PLAT)
had never been shown to be associated with PE and
DM, GD and Ob. Four shared genes (ACE, ADIPOQ,
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MBL2, TNFA) were found to be associated with all the
diseases.
We believe that the identification of these genes in the

current study is of importance because they encode pro-
teins important for the development of diseases, as con-
firmed by experimental studies (Table 1).
Angiotensin-converting enzyme (ACE) plays a key role

in regulating blood pressure by influencing vascular
tone by activating the vasoconstrictor angiotensin II and
inactivating the vasodilatory peptide bradykinin. Inter-
individual differences in blood ACE levels are at least in
part explained by the presence of an insertion/deletion
(I/D) polymorphism in intron 16 of the ACE gene, with
higher ACE levels observed in D allele carriers. The
results of many studies confirmed the association of
ACE polymorphism with PE [28]. Other studies have
indicated that the ACE gene is a factor that contributes
to the manifestation of GD [29], diabetic nephropathy
and Ob [30,31].
It has been shown that polymorphisms in the adipo-

nectin gene (ADIPOQ) modulate the circulating concen-
tration of adiponectin. Abnormal adiponectin levels, as
well as ADIPOQ polymorphisms, have been associated
with PE [32]. Some variants of this gene are associated
with the occurrence of GD [33], while other polymorph-
isms may contribute to type 2 DM risk [34] and Ob in
adults [35].
Mannose-binding lectin (MBL) is involved in the

maintenance of an inflammatory environment in the
uterus. High MBL levels have been associated with suc-
cessful pregnancies, whereas low levels are involved in
PE development. Association between polymorphisms in

the structural and promoter regions of the MBL2 gene
and PE have been evaluated [36]. MBL gene polymorph-
isms are associated with GD and with type 2 DM
[37,38]; in addition, MBL deficiency may confer a risk of
Ob and insulin resistance [39].
Tumour necrosis factor-alpha (TNF-a) participates in

the immune response and inflammation. Many studies
have showed that there is an association between the
TNFA gene and PE among Europeans [2,40]. The -308
G–>A polymorphism of the TNFA promoter gene is
involved in the pathophysiology of insulin resistance and
GD [41]. The same polymorphism is a genetic risk fac-
tor for the development of type 2 DM [42]. Individuals
who carry the -308A TNFA gene variant have a 23%
greater risk of developing obesity compared with con-
trols, and they showed significantly higher systolic arter-
ial blood pressure and plasma insulin levels, supporting
the hypothesis that the TNFA gene is involved in the
pathogenesis of the metabolic syndrome [43].
The PE associome contains more links than each of the

individual networks. The identified, shared genes have
been classified according to GO. Such a network was
needed for a GO overrepresentation analysis. The pre-
sence of processes identified by the GO analysis in the
pathogenesis of PE is not surprising. The central hypoth-
esis of our understanding of PE is that it results from
ischaemia of the placenta, which in turn releases factors
into the maternal circulation that are capable of inducing
the clinical manifestations of the disease [2]. Multiple
pathogenetic mechanisms have been implicated in this
disorder, including an imbalance between angiogenic and
anti-angiogenic factors, autoantibodies to the type-1
angiotensin II receptor, platelet and thrombin activation,
defective deep placentation, intravascular inflammation,
endothelial cell activation and/or dysfunction, and oxida-
tive and endoplasmic reticulum stress that promote the
differentiation of trophoblasts from a proliferative to an
invasive phenotype, regulate cell homeostasis through
their involvement in post-translational modifications and
protein folding, and induce the release of proinflamma-
tory cytokines and chemokines. Other mechanisms
include hypoxia and trophoblast invasion, which down-
regulate the expression of transforming growth factor b3
(TGF-b3) and hypoxia-inducible factors (HIF-1a and
HIF-2a) [2,44]. These results indicated the contribution
of common, non-specific, pathological processes to the
development of PE, DG, GD and Ob.
In addition to the identification of common proteins/

genes associated with different pathological processes,
another goal of the study was to find unique markers for
PE. To do so, we reconstructed potential mechanisms of
molecular interactions using the ANDSystem software, a
program that allows the identification of the largest num-
ber of links (see Figure 4). Although the central network

Table 1. Statistics of gene-disease associations for PE,
DM, GD and Ob obtained with the HuGE Navigator

Gene name PE DM GD Ob

ACE 39 244 2 77

ADA - 6 - -

ADIPOQ 4 156 4 176

ADRB3 1 49 4 145

CRP 2 20 - 28

CSRP1 - - - -

ESR1 7 21 - 36

HP 2 36 - 5

IGFBP1 - 7 - 5

INS 1 88 4 26

LEPR 7 35 1 154

MBL2 4 14 1 1

PLAT 2 3 - 1

SHBG - 6 1 7

TGFB1 8 33 - 8

TNFA 24 132 5 83

The number of associations determined by case-control, family-based and
meta-analysis studies are shown.
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core of these pathways contained only nine common
genes (PLAT, ADIPOQ, LEPR, TGFB1, TNFA, INS,
IGFBP1, ACE, ESR1), it incorporated 68 genes with 174
connections between them, and differential factor risks of
PE were identified: the IL1B, NOS3, HSPA4, CLU and
MTHFR genes. The contributions of many of these genes
to the pathogenesis of PE has been confirmed by numer-
ous studies [2,45-50]. Here, we showed for the first time
that these genes can be specifically involved in the patho-
genesis of PE. However, it is not yet clear why these genes
have a greater involvement in PE. The possible trigger
mechanisms of combined PE are linked to the processes
that are carried out by the products of the identified
genes, namely, inflammation (IL1B), endothelial dysfunc-
tion (NOS3), heat shock and stress (HSPA4), stabilizing
cell membranes at diverse fluid-tissue interfaces and pro-
tecting the vascular endothelium from an attack by some
factors in plasma, such as active complement complexes
(CLU), and homocysteine metabolism (MTHFR).
In addition, the results are of particular importance in

regard to the theory of confounding assumptions as false
mechanisms of genetic association when the factor is
associated with a confound, but not the phenotype, and a
confound, in turn, is associated with the phenotype
[51,52]. The identified genes can act as such a confound.

Conclusions
The current results broaden our knowledge of the molecu-
lar mechanisms of the interactions between comorbid dis-
eases. This reconstruction of associative molecular genetic
networks that describe interactions between PE and
comorbid diseases (GD, Ob, and DM) differed significantly
from partner networks built for random disease pairs. Net-
works between PE and comorbid diseases had a larger
number of genes and links between them. With this in
mind, it is of interest that similar features of associative
network structure have been observed for inversely comor-
bid diseases [10]. It can be suggested that comorbid and
inversely comorbid relationships between diseases involve
larger sets of closely interrelated genes larger than those
for random pairs of diseases. In the future, we intend to
perform a scale analysis that connects different disease
pairs to detect potential comorbid/inversely comorbid dis-
eases for all the possible disease pairs via which these dis-
eases can interact. Reconstruction and analysis of the PE
associome is useful for revealing the genetic factors
involved in the pathogenesis of the disease and for identify-
ing its differential risk factors, as well as for modelling the
theoretical mechanisms of PE development in pregnant
women with underlying diseases, such as DB, Ob or GD.

Methods
We used three systems that allowed the automated
reconstruction of networks that describe the interactions

between proteins/genes and diseases: STRING [13],
Pathway Studio [14] and ANDSystem [15].
The ANDSystem was developed for the automated

extraction of facts and knowledge regarding the relation-
ships between proteins, genes, metabolites, microRNAs,
cellular components, molecular processes, and their
associations with diseases from published scientific texts
and databases. To extract knowledge from texts in the
ANDSystem, the shallow parsing method was applied.
Pathway Studio is a software application developed for
the navigation and analysis of biological pathways, gene
regulation networks and protein interaction maps. The
program uses the natural language processing approach
to extract knowledge from the texts of scientific publica-
tions. STRING is a database and a web resource that
contains information about protein-protein interactions
(including physical and functional interactions) that is
mainly based on the use of text-mining methods.
The associative networks for the considered disease

pairs were graphs whose vertices were diseases and
human proteins/genes, while the edges were the associa-
tions between diseases and proteins.
The following indices of relation between a pair of

associative networks were used: (1) the intersection
index, IAB = |A ∩ B| equal to the intersection size of pro-
tein sets A and B composed of proteins concurrently
associated with diseases DA and DB; (2) the Jaccard
index [53] was calculated as the ratio of IAB to the com-
bination of sets A and B involving at least one of the

diseases DA and DB, JAB =
IAB

|A ∪ B| ; (3) Meet/Min [54]

was calculated as MAB =
IAB

min(|A| , |B|), where the

denominator denotes the size of the minimum of sets A
and B.
The statistical significance of the relation indices for

the analysed diseases in the associative networks was
determined by comparing these networks with the asso-
ciative ones formed by pairs of randomly chosen diseases.
For such an analysis, we used the ANDSystem because
this program allows the comparison of reconstructed net-
works with random ones generated using the ANDCell
knowledge base. All the interactions between proteins,
genes, metabolites, diseases and other objects described
by the ANDSystem are deposited in the ANDCell knowl-
edge base, which is a module of this system [15]. The
total number of diseases described in ANDCell was
4,075; of these, 991 were not found to be associated with
any human protein. Such diseases were discarded from
the analysis. To build the distribution of the relation
indices for random disease pairs, 10,000 random disease
pairs were generated (see Additional file 2). The P-value
for the analysed disease pairs was calculated as the
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proportion of 10,000 random networks with the same or
larger CR as in the examined pairs of diseases. The asso-
ciative networks were reconstructed using the ANDSys-
tem and Pathway Studio programs. STRING was not
used for this purpose because it gave no information
regarding interactions between protein/gene and dis-
eases. The associative networks for the analysed disease
pairs included only interactions of the disease-protein/
gene type; the interactions between proteins/genes were
discounted. As a result, to analyse the interactions
between proteins/genes in the associative networks, addi-
tional protein/gene-protein/gene associative molecular
genetic networks were built using the ANDSystem, Path-
way Studio and STRING. The statistical significance of
the connectivity of the associative molecular genetics net-
works built for the analysed disease pairs was also deter-
mined by comparing them with random networks. In
such a case, for each analysed associative molecular
genetic networks, 1,000 random networks were generated
using the ANDSystem (only human proteins/genes were
considered).
The statistical significance (p-value) of the difference

between the connectivity of the analysed network and that
of the random networks was also determined, like in the
case of the associative networks, as the proportion of ran-
dom networks with the same or greater number of links
between the vertices compared with the number of links
in the analysed network. The random molecular genetic
networks were built according to the following rules. Pro-
teins/genes considered as vertices in the random networks
were taken from the ANDCell knowledge base. To ensure
that the proteins/genes in the random networks were
represented at a level of study close to that of the pro-
teins/genes from the analysed networks, we considered
only those random proteins/genes whose connectivity rate
was the same as connectivity rate of proteins/genes from
the analysed networks. The set Qi was formed for each i-
th vertex of the analysed network. Qi was composed of all
the proteins/genes from the ANDCell knowledge base
having an interaction number in ANDCell equal to the
protein/gene interactions in the knowledge base repre-
sented by the i-th vertex. The protein/gene for the i-th
vertex of the random network was chosen by chance for
the set Qi . The links between the vertices in the random
networks were set according to the interactions described
in the ANDCell knowledge base.
The results of the automated extraction of information

regarding the interactions between proteins/genes and
diseases were tested manually. The recognition correct-
ness of the object names in the text, as well as the pre-
sence of their interactions, was tested. The lists of
shared and specific proteins were reduced by expert eva-
luation to retain only those participating in the patho-
genesis of both diseases for shared proteins, and in the

pathogenesis of either disease for specific proteins, as
shown previously [10].
The BINGO tool [55] was used to evaluate the overre-

presentation of the biological processes for the consid-
ered protein/gene set. The enrichment was evaluated
using a hypergeometric test with the Benjamini and
Hochberg FDR correction using the whole annotation as
a reference set. The human Uniprot-GOA Gene Asso-
ciation file (release 2013_05) was used as the custom
annotation file. In addition to the statistical significance
of the overrepresentation, the overrepresented GO pro-
cesses were characterized by the CR of the respective
proteins/genes in the associative molecular genetics net-
work built for intersection of the four studied diseases.
The CR for the protein group of the examined network
involved in the overrepresented GO biological process
was calculated as the ratio of the number of the protein
pairs connected by the network protein pairs of the
given group to the number of all possible pairwise com-
binations of proteins of this group. As is known, the
reconstruction quality of the molecular genetic networks
is related frequently to the problem of the completeness
of information regarding the interactions between pro-
teins. For this reason, to build the network, we took
advantage of three independent programs: ANDSystem,
Pathway Studio and STRING, with their parameters set
by default.

Additional material

Additional file 1: Excel spreadsheet file containing information
regarding the characteristics of overrepresented biological
processes.

Additional file 2: Excel spreadsheet file containing information
regarding the distribution of the relation indices of the disease-
protein-disease associative networks.
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Abstract More than 135 million births occur each year; yet, the molecular underpinnings of

human parturition in gestational tissues, and in particular the placenta, are still poorly understood.

The placenta is a complex heterogeneous organ including cells of both maternal and fetal origin,

and insults that disrupt the maternal-fetal dialogue could result in adverse pregnancy outcomes

such as preterm birth. There is limited knowledge of the cell type composition and transcriptional

activity of the placenta and its compartments during physiologic and pathologic parturition. To fill

this knowledge gap, we used scRNA-seq to profile the placental villous tree, basal plate, and

chorioamniotic membranes of women with or without labor at term and those with preterm labor.

Significant differences in cell type composition and transcriptional profiles were found among

placental compartments and across study groups. For the first time, two cell types were identified:

1) lymphatic endothelial decidual cells in the chorioamniotic membranes, and 2) non-proliferative

interstitial cytotrophoblasts in the placental villi. Maternal macrophages from the chorioamniotic

membranes displayed the largest differences in gene expression (e.g. NFKB1) in both processes of

labor; yet, specific gene expression changes were also detected in preterm labor. Importantly,

several placental scRNA-seq transcriptional signatures were modulated with advancing gestation in

the maternal circulation, and specific immune cell type signatures were increased with labor at term

(NK-cell and activated T-cell signatures) and with preterm labor (macrophage, monocyte, and

activated T-cell signatures). Herein, we provide a catalogue of cell types and transcriptional profiles

in the human placenta, shedding light on the molecular underpinnings and non-invasive prediction

of the physiologic and pathologic parturition.
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Introduction
Parturition is essential for the reproductive success of viviparous species (Romero et al., 2006a); yet,

the mechanisms responsible for the onset of labor remain to be elucidated (Norwitz et al., 1999;

Norwitz et al., 2015). Understanding human parturition is essential to tackle the challenge of pre-

maturity, which affects 15 million neonates every year (Muglia and Katz, 2010; Blencowe et al.,

2012; Romero et al., 2014a). Bulk transcriptomic studies of the cervix (Hassan et al., 2006;

Hassan et al., 2007; Hassan et al., 2009; Bollopragada et al., 2009; Dobyns et al., 2015), myome-

trium (Charpigny et al., 2003; Romero et al., 2014b; Mittal et al., 2010; Mittal et al., 2011;

Chan et al., 2014; Stanfield et al., 2019), and chorioamniotic membranes (Haddad et al., 2006;

Mittal et al., 2009; Nhan-Chang et al., 2010) revealed that labor is a state of physiological inflam-

mation; however, finding specific pathways implicated in preterm labor still remains an elusive goal.

A possible explanation is that gestational tissues, and especially the placenta, are heterogeneous

composites of multiple cell types, and elucidating perturbations in the maternal-fetal dialogue

requires dissection of the transcriptional activity at the cell type level, which is not possible using

bulk analyses. Recent microfluidic and droplet-based technological advances have enabled charac-

terization of gene expression at single-cell resolution (scRNA-seq) (Klein et al., 2015;

Macosko et al., 2015). Previous work in humans (Tsang et al., 2017; Pavličev et al., 2017; Vento-

Tormo et al., 2018) and mice (Nelson et al., 2016) demonstrated that scRNA-seq can capture the

multiple cell types that constitute the placenta and identify their maternal or fetal origin. Such stud-

ies showed that single-cell technology can be used to infer communication networks across the dif-

ferent cell types at the maternal-fetal interface (Vento-Tormo et al., 2018). Further, the single-cell-

derived placental signatures were detected in the cell-free RNA present in maternal circulation

(Tsang et al., 2017), suggesting that non-invasive identification of women with early-onset pre-

eclampsia is feasible. However, these studies included a limited number of samples and did not

account for the fact that different pathologies can arise from dysfunction in different placental com-

partments. In addition, the physiologic and pathologic processes of labor have never been studied

at single-cell resolution.

Results and discussion
In this study, a total of 25 scRNA-seq libraries were prepared from three placental compartments:

basal plate (BP), placental villous (PV), and chorioamniotic membranes (CAM) (Figure 1A). These

were collected from nine women in the following study groups: term no labor (TNL), term in labor

(TIL), and preterm labor (PTL). scRNA-seq libraries were prepared with the 10X Chromium system

and were processed using the 10X Cell Ranger software, resulting in 79,906 cells being captured

and profiled across all samples (Supplementary file 1). We used Seurat (Butler et al., 2018) to nor-

malize expression profiles and identified 19 distinct clusters, which were assigned to cell types based

on the expression of previously reported marker genes (Tsang et al., 2017; Pavličev et al., 2017;

Vento-Tormo et al., 2018) (see Materials and methods, Figure 1—figure supplement 1 and

Supplementary file 2–3). The uniform manifold approximation and projection (UMAP Becht et al.,

2019) was used to display these clusters in two dimensions (Figure 1B). With this approach, the local

and global topological structure of the clusters is preserved, with subtypes of the major cell lineages

(trophoblast, lymphoid, myeloid, stromal, and endothelial sub-clusters) being displayed proximal to

each other. The trophoblast lineage reconstruction displayed in Figure 1—figure supplement 2

shows the progression from cytotrophoblasts to either extravillous trophoblasts or syncytiotropho-

blasts, which recapitulates the differentiation structure previously reported (Tsang et al., 2017;

Vento-Tormo et al., 2018).

The cell type composition differed both among placental compartments (Figure 1C) and due to

the presence of physiologic and pathologic processes of labor (i.e. term in labor and preterm labor)

(Figure 1D). While extravillous trophoblasts (EVT) were present in all three compartments, cytotro-

phoblasts (CTB) were especially pervasive in the placental villi, which is explained by the fact that

CTBs are abundant in the parenchyma of the placentas. CTBs were also present in the basal plate

since this placental compartment is adjacent to the placental villi (Figure 1A). The phenotypic simi-

larities between trophoblasts in proximity to the decidua parietalis (layer attached to the chorioamni-

otic membranes) and those found in the basal plate have been previously documented
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Figure 1. Transcriptional map of the placenta in human parturition. (A) Study design illustrating the placental compartments and study groups. (B)

Uniform Manifold Approximation Plot (UMAP), where dots represent single cells and are colored by cell type. (C) Distribution of single-cell clusters by

placental compartments. (D) Average proportions of cell types by placental compartments and study groups. (E) Distribution of single cells by maternal

or fetal origin. STB, Syncytiotrophoblast; EVT, Extravillous trophoblast; CTB, cytotrophoblast; HSC, hematopoietic stem cell; npiCTB, non proliferative

interstitial cytotrophoblast; LED, lymphoid endothelial decidual cell.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Heatmap of the top gene expression markers defining each cell-type.

Figure supplement 2. UMAP plot highlighting the trophoblast cell-types and their inferred differentiation path using slingshot R package.

Figure supplement 3. Single marker gene expression UMAP plot for genes differentially expressed between CTB and npiCTB.

Figure supplement 4. Analysis of the fetal/maternal origin of the cell-types based on data from three pregnancies with a male fetus.

Figure supplement 5. Alluvial diagram showing the correspondence between our final curated cluster labels and automated cell-labeling methods.

Figure 1 continued on next page
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(Genbačev et al., 2015; Garrido-Gomez et al., 2017). Importantly, non-proliferative interstitial cyto-

trophoblasts (npiCTB) were identified for the first time in the placental villi as forming a distinct clus-

ter. This new cluster was also observed in the basal plate, but not in the chorioamniotic membranes,

suggesting that this type of trophoblast has specific functions in the placental tree. Lineage recon-

struction by slingshot (Street et al., 2018) revealed that npiCTBs are likely derived from conven-

tional CTBs (Figure 1—figure supplement 2). The non-proliferative nature of npiCTBs was

evidenced by the reduced expression of genes involved in cell proliferation such as XIST, DDX3X,

and EIF1AX (Figure 1—figure supplement 3). npiCTBs displayed an increased expression of PAGE4

(Figure 1—figure supplement 3), a gene expressed by CTBs isolated from pregnancy terminations

(Genbacev et al., 2011), suggesting that this type of trophoblast cell is present earlier in gestation.

As expected, trophoblast cell types were of fetal origin, and decidual cells present in the basal plate

(including the decidua basalis) and chorioamniotic membranes (including the decidua parietalis)

were of maternal origin (Figure 1E and Figure 1—figure supplement 4).

In terms of immune cell types, the chorioamniotic membranes largely contained lymphoid and

myeloid cells of maternal origin, including T cells (mostly in a resting state), NK cells, and macro-

phages (Figure 1C and E and Figure 1—figure supplement 4). In contrast, the basal plate included

immune cells of both maternal and fetal origin, such as T cells (mostly in an active state), NK cells,

and macrophages. The placental villi contained more fetal than maternal immune cells, namely

monocytes, macrophages, T cells, and NK cells. Two macrophage subsets were found in placenta

compartments: macrophage 1 of maternal origin that was predominant in the chorioamniotic mem-

branes, and macrophage 2 of fetal origin that was mainly present in the basal plate and placental

villi. Together with previous single cell studies of early pregnancy (Vento-Tormo et al., 2018), these

results highlight the complexity and dynamics of the immune cellular composition of the placental

tissues, including the maternal-fetal interface (i.e. decidua), from early gestation to term or preterm

delivery.

Importantly, a new lymphatic endothelial decidual (LED) cell type of maternal origin was identified

in the chorioamniotic membranes, forming a distinct transcriptional cluster that was separate from

other endothelial cell-types (Figure 1C and E). LED cells were rarely observed in the basal plate and

were completely absent in the placental villous. Similar to other endothelial cell types, LED cells

highly expressed CD34, CDH5, EDNRB, PDPN, and TIE1 (Figure 2—figure supplement 1). The sig-

nature genes of this novel cell type were enriched for pathways involving cell-cell and cell-surface

interactions at the vascular wall, extracellular matrix organization (Figure 2—figure supplement 2),

tight junction, and focal adhesion (Figure 2—figure supplement 3), indicating that LEDs possess

the machinery required to mediate the influx of immune cells into the chorioamniotic membranes.

Immunostaining confirmed the co-expression of LYVE1 (lymphatic marker) and CD31 (endothelial

molecule marker) in the vessels of the decidua parietalis of the chorioamniotic membranes, but not

in the basal plate or placenta (Figure 2A). The co-localization of LYVE1 and CD31 proteins (i.e. LED

cells) in the chorioamniotic membranes is shown in Figure 2B and Figure 2—video 1. LED cells also

expressed the common endothelial cell marker CD34 (Figure 2C, green arrow). LYVE1 was also

expressed by the fetal macrophages present in the placental villi and basal plate (Figure 2C, red

arrow), yet the protein was only visualized by immunostaining in immune cells located in the villous

tree (Figure 2A, red arrows). This finding conclusively shows the presence of lymphatic vessels in the

decidua parietalis of the chorioamniotic membranes, providing a major route for maternal lympho-

cytes (e.g. T cells) infiltrating the maternal-fetal interface (Arenas-Hernandez et al., 2019).

For cell types that were present in more than one placental compartment, major differences in

gene expression were identified across locations, indicative of further specialization of cells depend-

ing on the unique physiological functions of each microenvironment (Figure 3—figure supplement

1 and Supplementary file 4). Differences in the transcriptional profiles were particularly large for

Figure 1 continued

Figure supplement 6. Heatmap showing the correspondence between our final curated cluster labels and automated cell-labeling methods.

Figure supplement 7. Uniform Manifold Approximation Plot (UMAP), where dots representing single cells and color represents Seurat predicted cell

type labels.

Figure supplement 8. Doublet analysis by DoubletFinder.

Pique-Regi et al. eLife 2019;8:e52004. DOI: https://doi.org/10.7554/eLife.52004 4 of 22

Research article Genetics and Genomics Human Biology and Medicine

https://doi.org/10.7554/eLife.52004


C
e
ll 

s
e
g
m

e
n
ta

ti
o
n
 

m
a
p

C
D

3
1
-A

F
4
8
8

L
Y

V
E

1
-A

F
5
9
4

M
e
rg

e

CAMPVBPA

UMAP1

U
M

A
P

2

LYVE1

CD34

CAMPVBP
B C

DAPI CD31

20µm

DAPI

LYVE1-AF594

CD31-AF488

Merge

D
A

P
I

50µm

Figure 2. Identification of LED cells in the chorioamniotic membranes. (A) Cell segmentation map (built using the DAPI nuclear staining) and

immunofluorescence detection of LYVE-1 (red) and CD31 (green) in the basal plate (BP), placental villi (PV), and chorioamniotic membranes (CAM). Red

arrows point to fetal macrophages expressing LYVE1 but not CD31, and green arrows indicate lymphatic endothelial decidual cells (LED cells)

Figure 2 continued on next page
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maternal macrophages as well as EVTs, NK cells, and T cells in the chorioamniotic membranes com-

pared to the other compartments. Genes differentially expressed in the chorioamniotic membranes

were enriched for interleukin and Toll-like receptor signaling as well as for the NF-kB and TNF path-

ways (Figure 3—figure supplements 2–4). These results are consistent with previous reports show-

ing a role for these mediators in the inflammatory process of labor (Romero et al., 1989a;

Romero et al., 1990b; Romero et al., 1992a; Romero et al., 1990a; Santhanam et al., 1991;

Romero et al., 1993; Romero et al., 1991; Hsu et al., 1998; Keelan et al., 1999; Young et al.,

2002; Osman et al., 2003; Kim et al., 2004; Abrahams et al., 2004; Kumazaki et al., 2004;

Koga et al., 2009; Belt et al., 1999; Yan et al., 2002; Lindström and Bennett, 2005; Vora et al.,

2010; Romero, 1989b; Romero et al., 1992b; Lonergan et al., 2003). Conversely, the placental vil-

lous and basal plate were more similar to each other, with most differentially expressed genes (DEG)

between these compartments being noted in fibroblasts (335 DEG, q < 0.1 and fold change >2)

(Figure 3—figure supplements 1 and 5–10). DEGs in the placental villous fibroblasts showed

enrichment in smooth muscle contraction, the apelin and oxytocin signaling pathways (Figure 3—

figure supplement 9), while DEGs in CAM fibroblasts were enriched in elastic fiber formation and

extracellular matrix pathways (Figure 3—figure supplement 2). The latter finding indicates that the

same cell type (e.g. fibroblasts) may have distinct functions in different microenvironments of the

placenta.

Next, we assessed changes due to term and preterm labor in each cell type (Supplementary file

5). The largest number of DEGs between the term labor and term no labor groups were observed in

the maternal macrophages (macrophage 1), followed by the EVT (144 and 37, respectively, q < 0.1;

Figure 3A). The largest number of DEGs between the preterm labor and term labor groups were

observed in EVT and CTB (37 and 33, respectively, q < 0.1; Figure 3A). Figure 3B displays the gene

expression changes between TIL and TNL or PTL and TNL that are shared between the two labor

groups, representing the common pathway of parturition (defined as the anatomical, physiological,

biochemical, endocrinological, immunological, and clinical events that occur in the mother and/or

fetus in both term and preterm labor Romero et al., 2006b). Non-shared differences in gene

expression with labor at term and in preterm labor were mostly observed in trophoblast cell types

such as CTB and EVT as well as in stromal cells (Figure 3C). Some of these changes may be

explained by the unavoidable confounding effect of gestational age since placentas from women

without labor in preterm gestation cannot be obtained in the absence of pregnancy complications.

Specifically, the expression of NFKB1 by maternal macrophages was higher in women with term

labor compared to non-labor controls, and this increase was further accentuated in preterm labor

(Figure 3D). Consistent with the induction of the NFkB pathway, the labor-associated DEGs in mac-

rophages involved biological processes such as activation of immune response and regulation of

pro-inflammatory cytokine production (Figure 3—figure supplement 11A). These results are in line

with previous studies showing that decidual macrophages undergo an M1-like macrophage polariza-

tion (i.e. pro-inflammatory phenotype) during term and preterm labor (Xu et al., 2016).

When comparing the effect sizes between the PTL/TNL and TIL/TNL juxtapositions on the same

gene and cell type, positive correlations were observed for most of the placental cell types

(Figure 3E). Genes displaying differential effects in term and preterm labor are mostly found in tro-

phoblast cell types (see off-diagonal points in the scatter plot), which may be explained by the phe-

nomenon of gene expression decoherence (Lea et al., 2019). This lack of proper correlation

between biomarkers to their expected normal relationships is commonly found in pathological

Figure 2 continued

expressing both LYVE1 and CD31. (B) Co-expression of LYVE1 and CD31 (i.e. LED cells) in the chorioamniotic membranes. (C) Single-cell expression

UMAP of LYVE-1 (red) and CD34 (green) in the placental compartments.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Single marker gene expression UMAP plot for genes that are more highly expressed in lymphatic endothelial decidual (LED)

cells.

Figure supplement 2. Clusterprofiler dot plot showing the ReactomeDB Pathways enriched for genes that define each cell-type.

Figure supplement 3. Clusterprofiler dot plot showing the Kegg Pathways enriched for genes that define each cell-type.

Figure 2—video 1. Video with the 3D reconstruction of the lymphatic endothelium in the decidua present in the CAM compartment.

https://elifesciences.org/articles/52004#fig2video1
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Figure 3. Cell type specific expression changes in term and preterm labor. (A) Number of differentially expressed genes (DEGs) among study groups

(TNL, term no labor; TIL, term in labor; PTL, preterm labor) by direction of change. Shared (B) and non-shared (C) expression changes in term labor and

preterm labor relative to the term no labor group (q < 0.01). The length of each whisker represents the 95% confidence interval. (D) The expression of

NFKB1 by maternal macrophages in the placental compartments (BP, basal plate; PV, placental villous; CAM, chorioamniotic membranes) and study

groups. The notch represents the 95% confidence interval of the median. (E) Differences and similarities in expression changes with preterm labor and

term labor by three major cell types (immune, stromal/endothelial, and trophoblast cells).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Stacked bar plot summarizing differentially expressed genes across compartments for a cell types that are present on all three of

them.

Figure supplement 2. Clusterprofiler dot plot showing the ReactomeDB Pathways enriched for genes that are significantly more highly expressed in

the CAM compartment relative to the other compartments for each cell-type.

Figure supplement 3. Clusterprofiler dot plot showing the Kegg Pathways enriched for genes that are significantly more highly expressed in the CAM

compartment relative to the other compartments for each cell-type.

Figure supplement 4. Clusterprofiler dot plot showing gene ontology (GO) terms enriched for genes that are significantly more highly expressed in

the CAM compartment relative to the other compartments for each cell-type.

Figure supplement 5. Clusterprofiler dot plot showing the ReactomeDB Pathways enriched for genes that are significantly more highly expressed in

the BP compartment relative to the other compartments for each cell-type.

Figure supplement 6. Clusterprofiler dot plot showing the Kegg Pathways enriched for genes that are significantly more highly expressed in the BP

compartment relative to the other compartments for each cell-type.

Figure supplement 7. Clusterprofiler dot plot showing gene ontology (GO) terms enriched for genes that are significantly more highly expressed in

the BP compartment relative to the other compartments for each cell-type.

Figure supplement 8. Clusterprofiler dot plot showing the ReactomeDB Pathways enriched for genes that are significantly more highly expressed in

the PV compartment relative to the other compartments for each cell-type.

Figure 3 continued on next page
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conditions. Lastly, in EVT the DEGs with labor were enriched for genes implicated in cellular

response to stress, including the WNT and NOTCH pathways, as well as cell cycle checkpoints (Fig-

ure 3—figure supplement 11B), further supporting the hypothesis that the cellular senescence

pathway (i.e. cell cycle arrest) is implicated in the physiologic (Behnia et al., 2015; Polettini et al.,

2015) and pathologic (Hirota et al., 2010; Gomez-Lopez et al., 2017) processes of labor.

To demonstrate the translational value of single-cell RNA signatures derived from the placenta,

we conducted an in silico analysis in public datasets (Tarca et al., 2019; Paquette et al., 2018) to

test whether the single-cell signatures could be non-invasively monitored in the maternal circulation

throughout gestation (Figure 4A). Previous studies have correlated bulk mRNA expression in the

maternal circulation with gestational age at blood draw (Tarca et al., 2019; Al-Garawi et al., 2016),

risk for preterm birth (Paquette et al., 2018; Heng et al., 2014; Sirota et al., 2018;

Knijnenburg et al., 2019), or both (Heng et al., 2016; Ngo et al., 2018). First, using whole blood

bulk RNAseq data, we quantified the expression of single-cell signatures in the maternal circulation.

We found that the expression of the single-cell signatures of macrophages, monocytes, NK cells, T

cells, npiCTB, and fibroblasts is modulated with advancing gestational age (Figure 4B–C, Figure 4—

figure supplement 1A). These results validate the T-cell and monocyte signature changes with ges-

tational age that were previously reported (Tsang et al., 2017; Tarca et al., 2019); yet, here we

show that novel placental single-cell signatures (e.g., npiCTB and fibroblast) can also be non-inva-

sively monitored in maternal circulation (Figure 4—figure supplement 1A). In addition, for the first

time, we report that the expression of the single-cell signatures of NK-cells and activated T-cells

were upregulated in women with spontaneous labor at term compared to gestational-age matched

controls without labor (Figure 4D). Furthermore, we found that the average expression of the sin-

gle-cell signatures of macrophages, monocytes, activated T cells, and fibroblasts were increased in

the circulation of women with preterm labor and delivery compared to gestational age-matched

controls (24–34 weeks of gestation) (Figure 4E and Figure 4—figure supplement 1B). These find-

ings are in line with previous reports indicating a role for these immune cell types in the pathophysi-

ology of preterm labor (Arenas-Hernandez et al., 2019; Hamilton et al., 2012; Shynlova et al.,

2013; Gomez-Lopez et al., 2016).

Conclusion
In summary, this study provides evidence of differences in cell type composition and transcriptional

profiles among the basal plate, placental villi, and chorioamniotic membranes, as well as between

the pathologic and physiologic processes of labor at single-cell resolution. Using scRNAseq technol-

ogy, two novel cell types were identified in the chorioamniotic membranes and placental villi. In

addition, we showed that maternal macrophages and extravillous trophoblasts are the cell types

with the most transcriptional changes during the process of labor. Importantly, many of the genes

differentially expressed in these cell-types replicate for both conditions of labor. This result shows

that we have enough statistical power to detect the changes in gene expression with a large effect

size that are general or a common molecular pathway in parturition; yet, additional studies are

needed to characterize the different etiologies of the preterm labor syndrome. Lastly, we report that

maternal and fetal transcriptional signatures derived from placental scRNA-seq are modulated with

advancing gestation and are markedly perturbed with term and preterm labor in the maternal circu-

lation. These results highlight the potential of single-cell signatures as biomarkers to non-invasively

monitor the cellular dynamics during pregnancy and to predict obstetrical disease. The current study

represents the most comprehensive single-cell analysis of the human placental transcriptome in

physiologic and pathologic parturition.

Figure 3 continued

Figure supplement 9. Clusterprofiler dot plot showing the Kegg Pathways enriched for genes that are significantly more highly expressed in the PV

compartment relative to the other compartments for each cell-type.

Figure supplement 10. Clusterprofiler dot plot showing gene ontology (GO) terms enriched for genes that are significantly more highly expressed in

the PV compartment relative to the other compartments for each cell-type.

Figure supplement 11. Clusterprofiler dot plot showing ReactomeDB pathways enriched using gene set enrichment analysis (GSEA) for genes

differentially expressed in term labor compared to term no labor condition.
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Figure 4. In silico analysis to quantify scRNA-seq signatures in the maternal circulation. (A) Diagram of the longitudinal study used to generate bulk

RNAseq data (GSE114037) (Tarca et al., 2019) to evaluate changes in scRNA-seq signatures with advancing gestation. Whole blood samples were

collected throughout gestation from women who delivered at term. (B and C) Variation of scRNA-seq signature expression in the maternal circulation

with advancing gestation. (D) Diagram of the cross-sectional study used to generate bulk RNAseq data (GSE114037) to evaluate changes in scRNA-seq

Figure 4 continued on next page
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Materials and methods

Sample collection and processing, single-cell preparation, library
preparation, and sequencing
Human subjects
Immediately after delivery, placental samples [the villi, basal plate (including the decidua basalis) and

chorioamniotic membranes (including the decidua parietalis)] were collected from women with or

without labor at term or preterm labor at the Detroit Medical Center, Wayne State University School

of Medicine (Detroit, MI). Labor was defined by the presence of regular uterine contractions at a fre-

quency of at least two contractions every 10 min with cervical changes resulting in delivery. Women

with preterm labor delivered between 33–35 weeks of gestation whereas those with term labor

delivered between 38–40 weeks of gestation (Supplementary file 6). The collection and use of

human materials for research purposes were approved by the Institutional Review Boards of the

Wayne State University School of Medicine. All participating women provided written informed con-

sent prior to sample collection.

Single-cell preparation
Cells from placental villi, basal plate, and chorioamniotic membranes were isolated by enzymatic

digestion, using previously described protocols with modifications (Tsang et al., 2017; Xu et al.,

2015). Briefly, placental tissues were homogenized using a gentleMACS Dissociator (Miltenyi Biotec,

San Diego, CA) either in an enzyme cocktail from the Umbilical Cord Dissociation Kit (Miltenyi Bio-

tec) or in collagenase A (Sigma Aldrich, St. Louis, MO). After digestion, homogenized tissues were

washed with ice-cold 1X phosphate-buffered saline (PBS) and filtered through a cell strainer (Fisher

Scientific, Durham, NC). Cell suspensions were then collected and centrifuged at 300 x g for 5 min.

at 4˚C. Red blood cells were lysed using a lysing buffer (Life Technologies, Grand Island, NY). Next,

cells were washed with ice-cold 1X PBS and resuspended in 1X PBS for cell counting, which was per-

formed using an automatic cell counter (Cellometer Auto 2000; Nexcelom Bioscience, Lawrence,

MA). Lastly, dead cells were removed from the cell suspensions using the Dead Cell Removal Kit

(Miltenyi Biotec) and cells were counted again using an automatic cell counter.

Single-cell preparation using the 10x genomics platform
Viable cells were used for single-cell RNAseq library construction using the Chromium Controller

and Chromium Single Cell 3’ version two kit (10x Genomics, Pleasanton, CA), following the manufac-

turer’s instructions. Briefly, viable cell suspensions were loaded into the Chromium Controller to gen-

erate gel beads in emulsion (GEM) with each GEM containing a single cell as well as barcoded

oligonucleotides. Next, the GEMs were placed in the Veriti 96-well Thermal Cycler (Thermo Fisher

Scentific, Wilmington, DE) and reverse transcription was performed in each GEM (GEM-RT). After

the reaction, the complementary cDNA was cleaned using Silane DynaBeads (Thermo Fisher Scen-

tific) and the SPRIselect Reagent kit (Beckman Coulter, Indianapolis, IN). Next, the cDNAs were

amplified using the Veriti 96-well Thermal Cycler and cleaned using the SPRIselect Reagent kit.

Indexed sequencing libraries were then constructed using the Chromium Single Cell 3’ version two

kit, following the manufacturer’s instructions.

Library preparation
cDNA was fragmented, end-repaired, and A-tailed using the Chromium Single Cell 3’ version two

kit, following the manufacturer’s instructions. Next, adaptor ligation was performed using the

Figure 4 continued

signatures with labor at term (Tarca et al., 2019). Differences in the expression of scRNA-seq signatures between women with spontaneous labor at

term (TIL) and term no labor controls (TNL). (E) Diagram of the cross-sectional study used to generate bulk RNAseq data (GSE96083) to evaluate

changes in scRNA-seq signatures in preterm labor (Paquette et al., 2018). Differences in the expression of scRNA-seq signatures between women with

spontaneous preterm labor (PTL) and gestational-age matched controls (GA control).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Quantification of scRNA-seq signatures in maternal circulation (continued from main Figure 4).
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Chromium Single Cell 3’ version two kit followed by post-ligation cleanup using the SPRIselect

Reagent kit to obtain the final library constructs, which were then amplified using PCR. After per-

forming a post-sample index double-sided size selection using the SPRIselect Reagent kit, the quality

and quantity of the DNA were analyzed using the Agilent Bioanalyzer High Sensitivity chip (Agilent

Technologies, Wilmington, DE). The Kapa DNA Quantification Kit for Illumina platforms (Kapa Bio-

systems, Wilmington, MA) was used to quantify the DNA libraries, following the manufacturer’s

instructions.

Sequencing
Sequencing of the single-cell libraries was performed by NovoGene (Sacramento, CA) using the Illu-

mina Platform (HiSeq X Ten System).

Immunofluorescence
Samples of the chorioamniotic membranes, placenta villi, and decidua basal plate were embedded

in Tissue-Tek Optimum Cutting Temperature (OCT) compound (Miles, Elkhart, IN) and snap-frozen

in liquid nitrogen. Ten-mm-thick sections of each OCT-embedded tissue were cut using the Leica

CM1950 (Leica Biosystems, Buffalo Grove, IL). Frozen slides were thawed to room temperature,

fixed with 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA), and washed with 1X

PBS. Non-specific background signals were blocked using Image-iT FX Signal Enhancer (Life Tech-

nologies) followed by blocking with antibody diluent/blocker (Perkin Elmer, Waltham, MA) for 30

min. at room temperature. Slides were then incubated with the rabbit anti-LYVE-1 antibody (Novus

Biologicals, Centennial, CO) and the Flex mouse anti-human CD31 antibody (clone JC70A, Dako

North America, Carpinteria, CA) for 90 min. at room temperature. Following washing with 1X PBS

and blocking with 10% goat serum (SeraCare, Milford, MA), the slides were incubated with second-

ary goat anti-rabbit IgG–Alexa Fluor 594 (Life Technologies) and goat anti-mouse IgG–Alexa Fluor

488 (Life Technologies) for 30 min. at room temperature. Finally, the slides were washed and cover-

slips were mounted using ProLong Gold Antifade Mountant with DAPI (Life Technologies). Immuno-

fluorescence was visualized using a confocal fluorescence microscope (Zeiss LSM 780; Carl Zeiss

Microscopy GmbH, Jena, Germany) at the Microscopy, Imaging, and Cytometry Resources Core at

the Wayne State University School of Medicine. Tile scans were performed from the chorioamniotic

membranes, placental villi, and basal plate and the complete imaging fields were divided into six-by-

six quadrants.

scRNA-seq data analyses
Raw fastq files obtained from Novogene were processed using Cell Ranger version 2.1.1 from 10X

Genomics. First, sequence reads for each library (sample) were aligned to the hg19 reference

genome using the STAR (Dobin et al., 2013) aligner, and expression of gene transcripts docu-

mented in the ENSEMBL database (Build 82) were determined for each cell. Gene expression was

determined by the number of unique molecular identifiers (UMI) observed per gene (QC metrics are

shown in Supplementary file 7). Second, data were aggregated and down-sampled to take into

account differences in sequencing depth across libraries using Cell Ranger Aggregate to obtain

gene by cell expression data. Third, Seurat (Butler et al., 2018) was used to further clean and nor-

malize the data. Then, only data from cells with a minimum of 200 detected genes, and from genes

expressed in at least 10 cells were retained. Cells expressing mitochondrial genes at a level of >10%

of total gene counts were also excluded, resulting in 77,906 cells and 25,803 genes (summary in

Supplementary file 1). Gene read counts were normalized with the Seurat ‘NormalizeData’ function

(normalization.method = LogNormalize, scale.factor = 10,000). Genes showing significant variation

across cells were selected based on ‘LogVMR’ dispersion function and ‘FindVariableGenes’. Ribo-

somal and mitochondrial genes were next removed, yielding 3147 highly variable genes which were

subsequently analyzed using Seurat ‘RunPCA’ function to obtain the first 20 principal components.

Clustering was done using Seurat ‘FindClusters’ function based on the 20 PCAs (resolution of 0.7).

Visualization of the cells was performed using Uniform Manifold Approximation and Projection for

Dimension Reduction (UMAP) algorithm as implemented by the Seurat ‘runUMAP’ function and

using the first 20 principal components.
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Assigning cell type labels to single-cell clusters (Appendix 1)
Multiple methods were utilized to label the cell clusters identified by Seurat. First, marker genes

showing distinct expression in individual cell clusters compared to all others were identified using

the Seurat FindAllMarkers function with default parameters (Supplementary file 3). Marker genes

with significant specificity to each cluster (Figure 1—figure supplement 1 and Supplementary file

3) were compared to those reported elsewhere (Tsang et al., 2017; Pavličev et al., 2017). We also

used previous known markers used by our group and https://www.proteinatlas.org/ to manually

curate the labels. Further, the xCell (http://xcell.ucsf.edu/#) (Aran et al., 2017) tool was utilized to

compare the pseudo-bulk expression signatures of the initial clusters to those of known cell types.

Additionally, we compared our manually curated cluster cell type labels to those derived from

two automated cell labeling methods: SingleR (Aran et al., 2019) and Seurat (Stuart et al., 2019),

using a human cell atlas reference and the placenta single-cell data in early pregnancy (Vento-

Tormo et al., 2018) (see Appendix 1 for more details, Figure 1—figure supplements 5–7). Finally,

we used the R package DoubletFinder (McGinnis et al., 2019) (https://github.com/chris-mcginnis-

ucsf/DoubletFinder) to identify potential doublets. None of our clusters were impacted by doublets

(Figure 1—figure supplement 8).

Identification of cell-type maternal/fetal origin
We used two complementary approaches to determine the maternal/fetal origin of each cell-type.

First, we used the samples derived from pregnancies where the neonate was male (3/9 cases, 8/25

samples) and we derived a fetal index based on the sum of all the reads mapping to genes on the Y

chromosome relative to the total number of reads mapping to genes on the autosomes (Figure 1—

figure supplement 4). The second method was based on genotype information derived from the

scRNA-seq reads that overlap to known genetic variants from the 1000 Genomes reference panel

using the freemuxlet approach implemented in popscle (Figure 1E). The freemuxlet approach

extends the demuxlet (Kang et al., 2018) method, which can be useful for cases in which separate

genotype information for each individual is not available. The software available at https://github.

com/statgen/popscle/ was used with the ‘–nsample 2’ option to map each cell barcode to one of

the two possible genomes: fetal or maternal. The trophoblast cells are of fetal origin; therefore, we

used this information to determine the fetal genome.

Trophoblast trajectory analysis
We used the slingshot R package (Street et al., 2018) to reconstruct the trophoblast cell lineages

from our single-cell gene expression data. This method works by building a minimum spanning tree

across clusters of cells and has been reviewed as one of the most accurate tools for this task

(Saelens et al., 2019). This analysis focused on the trophoblast cell-types (STB, CTB, EVT, and

npiCTB), in which we used as input the unmerged cluster labels (i.e., four sub-clusters for CTB, and

two for EVT) and the matrix of cell embedding in UMAP (see Figure 1—figure supplement 2).

Differential gene expression
To identify genes differentially expressed among locations (independent of study group), we created

a pseudo-bulk aggregate of all the cells of the same cell-type. Only cell types with a minimum of 100

cell in each location were considered in this analysis. Differences in cell type specific expression were

estimated using negative binomial models implemented in DESeq2 (Love et al., 2014), including a

fixed effect for each individual and location. The distribution of p-values for DEGs between pairs of

compartments was assessed using a qq-plot to ensure the statistical models were well calibrated

(Supplementary file 3). To detect DEGs across study groups we aggregated read counts across

locations for each cell-type cluster, excluding cell-types with less than 100 cells in each study group

(15 clusters). Differences in cell-type specific expression among study groups were estimated using

negative binomial models implemented in Deseq2. Differential gene expression was inferred based

on FDR adjusted p-value (q-value <0.1) and fold change >2.0.

Gene ontology and pathway enrichment analyses
The clusterProfiler (Yu et al., 2012) package in R was utilized for the identification and visualization

of enriched pathways among differentially expressed genes identified as described above. The
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functions ‘enrichGO’, ‘enrichKEGG’, and ‘enrichPathway’ were used to identify over-represented

pathways based on the Gene Ontology (GO), KEGG, and Reactome databases, respectively. Similar

enrichment analyses were also conducted using Gene Set Enrichment Analysis (GSEA)

(Subramanian et al., 2005) which does not require selection of differentially expressed genes as a

first step. Significance in all enrichment analyses were based on q < 0.05.

In silico quantification of single-cell signatures in maternal whole blood
mRNA
Analysis of transcriptional signatures with advancing gestation and with
labor at term
Whole-blood samples collected longitudinally (12 to 40 weeks of gestation) from women with a nor-

mal pregnancy who delivered at term with (TIL) (n = 8) or without (TNL) (n = 8) spontaneous labor,

were profiled using DriverMap and RNA-Seq, as previously described (Tarca et al., 2019) and data

were available as GSE114037 dataset in the Gene Expression Omnibus. The log2 normalized read

counts were averaged over the top genes (up to 20, ranked by decreasing fold change) distinguish-

ing each cluster from all others as described above (single-cell signature). Whole blood single-cell

signature expression in patients with three longitudinal samples was modeled using linear mixed-

effects models with quadratic splines in order to assess the significance of changes with gestational

age. Differences in single-cell signature expression associated with labor at term (TIL vs. TNL) were

assessed using two-tailed equal variance t-tests. In both analyses, adjustment for multiple signature

testing was performed using the false discovery rate method, with q < 0.1 being considered

significant.

Analysis of transcriptional signatures in preterm labor
Whole blood RNAseq gene expression profiles from samples collected at 24–34 weeks of gestation

were previously described (Paquette et al., 2018) and data were available as GSE96083 dataset in

the Gene Expression Omnibus. The study included samples from 15 women with preterm labor who

delivered preterm, and 23 gestational age matched controls. Log2 transformed pseudo read count

data were next transformed into Z-scores based on mean and standard deviation estimated in the

control group. Single cell signatures were quantified as the average of Z-scores of member genes

and compared between groups using a two-tailed Wilcoxon test. Adjustment for multiple signature

testing was performed using the false discovery rate method, with q < 0.1 being considered a signif-

icant result.

Data and materials availability
The scRNA-seq data reported in this study has been submitted to NIH dbGAP repository (accession

number phs001886.v1.p1). All other data used in this study are already available through Gene

Expression Omnibus (accession identifiers GSE114037 and GSE96083) and through ArrayExpress (E-

MTAB-6701). All software and R packages used herein are detailed in the Materials and methods.

Scripts detailing the analyses are also available at https://github.com/piquelab/sclabor. To enable

further exploration of the results we have also provided a Shiny App in Rstudio available at: http://

placenta.grid.wayne.edu/.
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Paquette AG,
Shynlova O,
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Vento-Tormo R,
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ting RA, Turco MY,
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Stephenson E, Po-
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Holmqvist S, Hen-
riksson J, Zou A,
Sharkey AM, Millar
B, Innes B, Wood
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Bulmer JN, Wright
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MJT, Haniffa M,
Moffett A, Teich-
mann SA

2018 Reconstructing the human first
trimester fetal-maternal interface
using single cell transcriptomics -
10x data
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rayexpress/experiments/
E-MTAB-6701/

ArrayExpress, E-
MTAB-6701
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Appendix 1

Cell type labeling procedures
Multiple methods and resources were utilized to label the clusters identified by Seurat. First,

we used the function FindAllMarkers to identify the genes with significant changes in

expression between each cluster and the rest of the cells using min.pct=0.33 and requiring

FDR adjusted q < 10% and a log(FC)> 0.5 to determine significance. Clusters with no

significant differences at this threshold were merged resulting in a total of 19 clusters. For

each cluster, we generated a pseudo-bulk gene expression profile and xCell (http://xcell.ucsf.

edu/) (Aran et al., 2017) was used to compare the gene expression signatures of our clusters

with those of known cell types to the default n = 64 xCell reference which includes immune

cells, progenitor, epithelial, and extracellular matrix cells. Eight of the original clusters clearly

identified with known cell types in the xCell reference panel that includes T-cell, B-cell,

Macrophage, HSC, Fibroblast and Monocyte.

The next method we used is by comparing the marker genes identified by Seurat

FindAllMarkers that passed the threshold to previously published scRNAseq marker genes

(Tsang et al., 2017; Pavličev et al., 2017; Vento-Tormo et al., 2018) and common known

markers used by our group and others https://www.proteinatlas.org/search/placenta

(Figure 1—figure supplement 1). This resolved many of our placental (non-immune) cell

clusters in the following cell types: cytotrophoblast, extravillous trophoblast,

syncytiotrophoblast, decidual, endothelial, and stromal cells. To further resolve genes

differentially expressed between clusters in close proximity to each other (e.g., T-cell

subtypes), we ran Seurat FindMarkers function to contrast gene expression between each

cluster pair, and determined as differentially expressed genes those showing a minimum

logFC> 0.25 and q < 0.1. Using this analysis, we were able to label two subgroups of T cells as

activated or resting. Clusters that were distinct but could not be clearly separated into well-

known cell sub-types or cellular states were assigned a number (e.g., Stromal-1, Stromal-2).

Some of the differences between these clusters are likely due to the maternal/fetal origin of

each cell type as shown in Figure 1B (i.e., Macrophage 1 is likely maternal and Macrophage 2

is likely fetal) as shown by genotype analysis freemuxlet (see Materials and methods).

Additionally, we used DoubletFinder https://github.com/chris-mcginnis-ucsf/DoubletFinder

(McGinnis et al., 2019) to identify doublet cells and to ensure that none of our clusters were

confounded by doublets (Figure 1—figure supplement 8).

Finally, we also compared our manually curated cell type identification to that derived from

automated cell labeling methods SingleR (Aran et al., 2019) and Seurat (Stuart et al., 2019),

(see Figure 1—figure supplement 5 and Figure 1—figure supplement 6). Automated

annotation provides a convenient way of transferring biological knowledge across datasets,

thereby reducing the burden of interpreting clusters, but it is important to manually curate the

cell labels using well established biological knowledge. If the reference database is not specific

for the same tissue or similar conditions, this could lead to incorrect assignments. For SingleR,

we used the vignette detailed in https://bioconductor.org/packages/devel/bioc/vignettes/

SingleR/inst/doc/SingleR.html using the human primary cell atlas (HPCA) reference provided

by SingleR and the human placenta first trimester (HPFT) single cell data made available by

another group (Vento-Tormo et al., 2018) downloaded from https://www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-6701/. For Seurat, we used only the latter reference and

the standard workflow detailed in https://satijalab.org/seurat/v3.1/integration.html, and we

removed any cell label with a max score > 0.001 (with almost identical results if the threshold

was 0.01 or 0.0001). Similarly, we only used the pruned labels provided by SingleR.

Lymphoid cell types
Four of our clusters correspond to lymphocyte cell-types: B-cell, NK-cell, T-cell activated, and

T-cell resting. The cluster labeled as B-cell has an xCell score of 0.88 and express very highly

CD79A. The automated labeling methods also clearly identify this cluster as B-cell when using

the HPCA reference, while it was identified as Plasma cell when using the HPFT reference
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panel, as no cell type is labeled as B-cell in HPFT and Plasma cell would make sense as a close

match. The cluster labeled NK-cell express very highly GNLY and NKG7 genes, and is also very

well matched to NK-cell in the HPCA reference or one of the many NK cell types in HPFT

(Vento-Tormo et al., 2018), which was a major focus of that study that also enriched for more

rare NK cell types as they have a very important role in first trimester pregnancy, but here we

only see evidence for one NK-cell cluster in (Figure 1—figure supplement 7). Our two

clusters labeled as T-cells also closely matched the T-cell types for both reference panels and

had xCell scores > 0.5, but only one T cell type is provided by those reference panels. Here,

our two clusters differed in some of the genes being expressed that showed that one of the

clusters was more active as indicated by signaling factors such as pro-inflammatory cytokine

TNF and AP-1 factors such as FOSL and JUNB.

Myeloid cell types
Three of our clusters closely matched myeloid cell types: Macrophage 1, Macrophage 2, and

Monocyte. Each of these clusters closely matched to their respective cell types (xCell score >

0.8) and also when using SingleR and Seurat automated label transfer from both reference

panels. Macrophage 2, which seemed to be of fetal origin, matched the Hofbauer cell type

from the HPFT reference (Vento-Tormo et al., 2018), which are fetal resident macrophages

found in the human placenta.

Trophoblasts and other cell types
The major trophoblast cell types (CTB, EVT, and STB) expressed the markers that were

defined in Tsang et al. (2017). The newly identified npiCTB also expressed the canonical CTB

markers, but had a significantly higher expression of PAGE4 and decreased expression of

DDX3X, EIF1AX, and XIST that indicate a non-proliferative state. Using automated cell labeling

methods, CTB matched with VCT as defined in HPFT (Vento-Tormo et al., 2018), except for a

small proportion that matched the SCT profile in HPFT (Vento-Tormo et al., 2018)

(Figure 1—figure supplement 7). This finding may be due to differences in the expression

profile of the trophoblast cells types between early and late pregnancy. The SCT in the

reference panel (first trimester placental scRNA-seq data) may also include the profile of the

transient stage between CTB and STB. This is supported by the trajectory analysis shown in

Figure (Figure 1—figure supplement 2). Our EVT and STB clusters matched the labels from

the automated method using the HPFT reference panel. Other small clusters showing stromal

cells matched related cell types described in HPFT (Vento-Tormo et al., 2018).
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Preterm birth buccal cell 
epigenetic biomarkers to facilitate 
preventative medicine
Paul Winchester1, Eric Nilsson2, Daniel Beck2 & Michael K. Skinner2*

Preterm birth is the major cause of newborn and infant mortality affecting nearly one in every ten 
live births. The current study was designed to develop an epigenetic biomarker for susceptibility 
of preterm birth using buccal cells from the mother, father, and child (triads). An epigenome-wide 
association study (EWAS) was used to identify differential DNA methylation regions (DMRs) using 
a comparison of control term birth versus preterm birth triads. Epigenetic DMR associations with 
preterm birth were identified for both the mother and father that were distinct and suggest potential 
epigenetic contributions from both parents. The mother (165 DMRs) and female child (136 DMRs) at 
p < 1e−04 had the highest number of DMRs and were highly similar suggesting potential epigenetic 
inheritance of the epimutations. The male child had negligible DMR associations. The DMR associated 
genes for each group involve previously identified preterm birth associated genes. Observations 
identify a potential paternal germline contribution for preterm birth and identify the potential 
epigenetic inheritance of preterm birth susceptibility for the female child later in life. Although 
expanded clinical trials and preconception trials are required to optimize the potential epigenetic 
biomarkers, such epigenetic biomarkers may allow preventative medicine strategies to reduce the 
incidence of preterm birth.

Abbreviations
EWAS	� Epigenome-wide association study
DMRs	� Differential DNA methylation regions
PTB	� Preterm birth
ms-AFP	� Maternal serum levels of alpha-fetoprotein
ms-hCG	� Human chorionic gonadotropin
FSH	� Follicle stimulating hormone
MeDIP	� Methylated DNA immunoprecipitation
MeDIP-Seq	� Methylated DNA immunoprecipitation followed by next generation sequencing
FT	� Full term
FDR	� False discovery rate
PCA	� Principal component analysis
CTL	� Control
Aopep	� Aminopeptidase O
DOHAD	� Developmental Origins of Health and Disease
PSA	� Prostate Specifi  Antigen

Preterm birth (PTB) is childbirth that occurs at less than 37 weeks of gestation. Worldwide, preterm birth rates 
are estimated at 11%, accounting for about 14.8 million of the live births of 20141. Complications of being 
born preterm were the leading cause of mortality in children less than five years of age in 20152. Children who 
survive preterm birth are at increased risk of developing future adverse health outcomes, including cognitive 
disabilities, seizures, visual and hearing impairment, and cardiovascular problems3–11. Although there are many 
risk factors associated with preterm birth including genetic variants, exposure to environmental toxicants, pres-
ence of multiple fetuses, preeclampsia and ethnicity, more than half of premature birth cases have an unknown 
etiology9,10,12,13. Reliable biomarkers for preterm birth could greatly help in predicting which pregnancies are at 
risk and would improve clinical management and health outcomes for the children.
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A number of potential biomarkers for preterm birth have been identifi d. Maternal serum levels of alpha-
fetoprotein (ms-AFP) and human chorionic gonadotropin (ms-hCG) have been used clinically6–8. Although 
many associations between mid-trimester ms-hCG and/or ms-AFP levels and adverse pregnancy outcomes are 
statistically significant, the sensitivity and positive predictive value are too low for them to be clinically useful 
as screening tests for preterm birth3,14. Other proposed biomarkers of PTB risk include selected inflammatory 
cytokines15–18, metabolic lipid products17,19, specific gene mRNA transcripts20,21, cervicovaginal proteome22, and 
micro-RNA transcripts20,23,24. Urinary oxidative stress metabolites have also been proposed as biomarkers of 
preterm birth25,26. These biomarkers are not extensively used and are not considered efficient or ideal27. Either 
the assays for proteins and metabolites are technically challenging and expensive, or the specific ty and sensitivity 
of the assays in predicting preterm birth need to be improved27.

Previous studies have proposed that epigenetic alterations should be considered for use as biomarkers to 
predict preterm birth28–31. Epigenetics is defi ed as “molecular factors and processes around DNA that regulate 
genome activity, independent of DNA sequence, and that are mitotically stable”32. Epigenetic factors and pro-
cesses include DNA methylation, histone modifications, non-coding RNA, and chromatin structure changes33. 
Assays for DNA methylation have the advantage of using smaller sample size due to high sensitivity of the assays, 
as well as being less expensive and technically demanding than assays for proteins and metabolic products. DNA 
methylation changes can also be detected in easily obtained surrogate samples (i.e., marker cells not directly 
associated with the etiology of the pathology), such as cheek buccal epithelial cells34. This is due to the fact that 
epigenetic differences can be heritable, so all somatic cells derived from the embryo of an individual have cell-
specific epigenetic changes derived from the germline33. Altered DNA methylation sites caused by fetal toxicant 
exposure, abnormal nutrition, or stress have been found in previous studies to be associated with increased risk 
of disease in exposed offspring and their descendants (i.e., epigenetic transgenerational inheritance)35–37.

There is evidence that epigenetic differences are associated with preterm birth in the placenta38 and tissues 
of children born preterm. Studies that compared DNA methylation in umbilical cord blood between preterm 
and full-term children found from 31 to 296 differentially methylated sites38–40. One study found DNA meth-
ylation differences in umbilical cord tissue between preterm and full-term children39. These results indicate 
that DNA methylation changes may occur with preterm birth and suggest that DNA methylation changes are 
worth investigating as a viable biomarker for predicting preterm birth. Although all cell types have the same 
DNA sequence present, a limitation of examining DNA methylation changes in a mixed cell population, such 
as blood with over 20 different cell types, is that each cell type has a unique epigenome and DNA methylation 
profile driving the cell type specific ty32. Thus, small changes in the relative numbers of different cell types in 
a mixed population can suggest an epigenetic difference, but are in fact due to the changes in cell population 
numbers32,33. Therefore, purifi d individual cell types are preferred to effectively assess epigenetic differences 
and potential disease biomarkers41,42.

Changes in DNA methylation at particular genomic loci have been reported as biomarkers associated with 
human diseases. Sperm samples from men with idiopathic infertility (i.e. infertility from no known cause, and not 
related to low sperm count or motility) were found to have 217 differential DNA methylation regions (DMRs) at 
a p value of p < 1e−05 compared to sperm samples from fertile men43. In addition, 56 DMRs were found between 
initially infertile men who responded to follicle stimulating hormone (FSH) therapy versus those who did not, 
suggesting that DNA methylation may be used as a biomarker of responsiveness to this therapy43. Recently it 
was reported that a set of 805 DMRs in sperm was potentially associated with men having an increased risk of 
having a child with autism44. Previously, it has been shown that DNA methylation at the SLC9B1 gene in blood 
samples from pregnant women between 24 and 32 weeks gestation can predict whether the fetus is at risk for fetal 
intolerance of labor, which can cause fetal hypoxia, and is an indication for performing a Caesarean section45. 
In a recent study, we have used buccal cells as an easily obtained purified cell population to identify epigenetic 
(i.e., DNA methylation) biomarkers for female rheumatoid arthritis46. Although sperm epigenetic biomarkers 
refl ct epigenetic inheritance of disease in off pring and subsequent generations, a surrogate cell such as buccal 
cells can reflect early embryo impacts on all somatic cells to be used for disease assessment46,47. Together, these 
studies indicate that epigenetic biomarkers of preterm birth susceptibility or pathology potentially exist and 
are worthy of further development. Identification of maternal biomarkers associated with preterm birth could 
help in the prediction and clinical management of at-risk pregnancies and allow for better preventative care for 
preterm birth children. Clinical management protocols that could be used to reduce the incidence of preterm 
birth and infant morbidity include: enhanced surveillance of at-risk pregnancies, timely use of prenatal steroids 
and tocolytics, application of protective uterine monitoring, hospitalization and operative delivery. Epigenetics 
may also point the way to specific gene targets for future pharmaceutical agents where epigenetically identified 
“at risk” women could be given gene-specific therapeutics.

The current study was designed to develop epigenetic biomarkers for preterm birth that could be used in a 
clinical setting to predict preterm birth susceptibility. Buccal cells were obtained from the mother, father, and 
child from control (> 37 week gestation) and premature (< 37 week gestation) populations and compared. The 
goal was to find in maternal and paternal buccal cells DMRs which could distinguish preterm from term birth. 
Clearly the infant epigenetic biomarker is not used to predict potential preterm birth, but can potentially be used 
to assess later life disease susceptibility in the individual. These epigenetic biomarkers identifi d can now be pro-
spectively tested for their positive and negative predictive power in subsequent investigations. The generational 
study presented suggests potential epigenetic inheritance aspects for preterm birth.
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Results
The objective of the study was to develop an epigenetic (i.e., DNA methylation) biomarker for preterm birth 
(PTB). One of the least invasive and easiest purifi d cell types to collect is a buccal swab from the cheek, which is 
greater than 90% pure squamous epithelial cells48. Any contaminating bacterial molecular data can be removed 
during the analysis. Buccal cells were obtained from participants with a home collection swab kit and sent 
directly to the lab for storage and analysis. The participants were recruited prior to collection or analysis from 
Indiana University (IU) Health Hospitals (Riley Hospital for Children, IUH Methodist, IUH North) and Fran-
ciscan Health, Indianapolis, Indiana. Approvals to conduct the study were obtained from Indiana University 
Institutional Review Board (IRB) #1901985132 and the Franciscan Institutional Review Board (IRB), #1489434-
5. Informed consent and HIPAA authorization was obtained from all participants and from a parent and/or 
guardian for participants that were minors prior to the clinical sample collection. The buccal cells were collected 
from the mother, father, and newborn child (triads) to assess epigenetic biomarkers in each group separately. 
The triad samples were collected, approximately nine days following delivery. Th s period was used to allow the 
PTB case child to mature and allow an effective buccal cell collection. The full term (FT) birth controls had 21 
triad participants and the pre-term birth (PTB) cases had 19 triad participants. Although the majority were of 
non-Hispanic white Caucasian backgrounds, a number of triads in each population were of African American 
descent, Supplemental Table S1. The presence of the African American participants did not appear to affect the 
analysis and similar methylation data was observed in these samples, as assessed with a principal component 
analysis (PCA), Supplemental Figure S1. The samples were collected in 2019 and early 2020, Supplemental 
Table S1. The mean maternal age was 28.1 years (controls) and 28.7 years (PTB cases) and mean paternal age 
30.8 years (controls) and 30.4 years (PTB cases) with no statistical difference between the control or PTB case 
groups, with no statistical difference between the groups, Supplemental Table S1. The newborn gestational age 
at birth, mean ± SD was 38.8 ± 0.94 weeks for the control group and 30.2 ± 3.24 weeks for the PTB case group, 
with statistical difference (p ≤ 0.001), Supplemental Table S1. The Supplemental Table S1B presents the clinical 
demographics for the populations. The preterm pregnancies were found to be signifi antly more likely to be mul-
tiparous and less likely to be primiparous. Therefore, PTB occurrences were more likely to have had one or more 
of the following clinical conditions: (1) to have had a previous preterm birth or pregnancy loss; (2) more likely to 
have preeclampsia; (3) to have a medically indicated delivery; and/or (4) to have a delivery accompanied by fetal 
distress and lower APGAR scores. Preterm infants naturally would have had lower birth weights, shorter gesta-
tion, and longer hospital stay. Other maternal characteristics were not signifi antly different between groups (i.e., 
maternal age, paternal age, BMI, insurance source, substance use, diabetes, thyroid placental disorders, cervical 
disorders, infections, neuropsychiatric disorders), Supplemental Table S1B. Since there were no major outliers in 
the PCA analysis, the various clinical parameters within the PTB group appear not to be variables for the DMRs, 
but expanded studies are required to thoroughly assess, Supplemental Figure S1. Buccal cells were collected from 
each group as outlined in the Methods. All samples were stored at − 80 °C until DNA preparation and analysis.

DNA was isolated from the buccal cell collections and analyzed with a methylated DNA immunoprecipitation 
(MeDIP) procedure to obtain methylated DNA for subsequent sequencing (Seq) for an MeDIP-Seq protocol49, 
as described in the Methods. Th s procedure can provide a genome-wide assessment of greater than 90% of the 
genome, compared to approximately 50–70% for bisulfite sequencing or less than 1% for array analysis50. Dif-
ferential DNA methylation regions (DMRs) were identifi d by comparing the control and PTB case samples for 
each mother, father, or child triad. DMRs identifi d were obtained for each group and presented in Fig. 1a for 
the mother, Fig. 1b for the father, Fig. 1c for the female child, and Fig. 1d for the male child. The DMRs at vari-
ous edgeR p-value statistical thresholds are presented, and p < 1e−04 was used for all subsequent data analysis, 
which was selected as it also provided a reasonable false discovery rate (FDR). The number of adjacent DMR 
1 kb windows are shown at a signifi ance level of p < 1e−04 and the majority of DMR for each group had a single 
1 kb window with some higher numbers of significant adjacent windows, Fig. 1a–d. Maternal buccal cells had 
165 DMRs, paternal 73 DMRs, female child 136 DMRs, and male child 61 DMRs. The FDR p-value was less than 
0.1 for 100% of the mother DMRs, 75% for the father DMRs, 50% for the female child, and 25% (i.e., 14 DMRs) 
for the male child. Therefore, the male child had less signifi ant DMRs, Fig. 1d. Approximately 50% of DMRs 
showed an increase and 50% a decrease in DNA methylation in each group, Fig. 1e and f and Supplemental 
Figure S2. An overlap of the DMRs demonstrated each group was primarily distinct at p < 1e−04, except for the 
mother and female child, which shared 31 DMRs in common, Fig. 2a. Further analysis of potential overlaps 
used an extended overlap analysis with a comparison of the p < 1e−04 DMRs with the other groups at a p < 0.05 
threshold. Th s extended overlap demonstrated much higher levels of overlaps with maternal DMRs having a 
49% overlap with the paternal, 58% with the female child, and 30% with the male child. Paternal DMRs had a 
75% overlap with the mother, 64% with the female child, and 47% with the male child. The female child overlaps 
were higher and ranged from 34 to 58%, while the male child overlap ranged from 18 to 28%, Fig. 2b. Therefore, 
preterm birth DMR were identifi d in the buccal cells of the mother and father, as well as in the female children 
following a preterm birth.

The lists of DMRs and genomic information are presented in Supplemental Table S2 for the mother, Sup-
plemental Table S3 for the father, Supplemental Table S4 for the female child, and Supplemental Table S5 for the 
male child. These tables present for each group the DMR name, chromosomal location, start and stop nucleotide 
number, statistics information (p value and FDR), log-fold methylation change (increase positive or decrease 
negative) for each DMR, gene associations (within 10 kb of gene) and functional categories for the associated 
genes. The chromosomal locations of the DMRs (red arrowheads) for each group are presented in Fig. 3. The 
DMRs are present on most chromosomes throughout the genome. The black boxes indicate clusters of DMRs at 
similar regions. Although some individual DMR overlaps at a 1 kb level are observed, Fig. 2, no obvious gross (Mb 
size) chromosomal regions or sites are in common between the mother, father or female child genomes, Fig. 3. 
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The size of the DMRs for each group is 1 or 2 kb with a CpG density less than 3 CpG/100 bp, Supplemental Fig-
ure S3. These regions with low CpG density are considered CpG desserts51, which represents the majority (> 90%) 
of the genome, but some DMRs are observed at higher 8–10 CpG/100 bp density associated with CpG islands50.

A principal component analysis (PCA) of the DMRs for the control and case comparison for each group 
are presented in Supplemental Figure S1. Generally, the case and control DMR principal component 1 and 2 
separated samples by treatment group, Supplemental Figure S1A–D. The African American samples circled 
generally clustered with the appropriate case or control groups, Supplemental Figure S1. Therefore, the racial 
background did not appear to have major impacts. As previously mentioned, the various clinical parameters in 
Supplemental Table S1b did not correlate with outliers in the PCA analysis, Supplemental Figure S1. Therefore, 
the DMRs identified appear to reflect PTB rather than specific pathology parameters or race.

Figure 1.   DMR identifi ation and numbers. The number of DMRs found using different p-value cutoff 
thresholds. The All-Window column shows all DMRs. The Multiple Window column shows the number of 
DMRs containing at least two nearby signifi ant windows (1 kb each). The number of DMRs with the number 
of signifi ant windows (1 kb per window) at a p value threshold of p < 1e−04 for DMR is bolded. (a) Mother 
DMRs; (b) Father DMRs; (c) Female child DMRs; (d) Male child DMRs; (e) Mother; and (f) Father log-fold-
change DMR alterations. The red circles are statistically signifi ant DMRs showing log-fold change distribution 
(i.e., increase or decrease DNA methylation).
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A blinded test set of samples were collected to help validate the predictive ability of the PTB samples identi-
fied. Five triads for control and five triads for PTB case were collected for analysis. These samples were blinded 
to the WSU investigators during the analysis and prediction. This test set was analyzed and the data used in 
dendrogram, machine learning and PCA analysis, as previously described44. The accuracy for the test set mother 
was 50%, father was 40%, and female child 60%. However, after the analyses of the unblinded samples, a very 
heterogenous equal mixture of moderate, very, and extreme PTB were present. In addition, some batch effects 
within the assay were detected. Due to the low sample size (n = 5) of the test set and heterogeneity of the samples, 
this blinded test set analysis was potentially compromised and marginally successful, so not utilized for further 
analysis. As now discussed in the Discussion section, expanded clinical trials with larger sample size and larger 
test sample size are required to optimize and validate the epigenetic biomarkers (DMRs) identifi d.

The fi al analysis investigated the DMR associated genes with each mother, father, and child DMR sets. 
The DMRs within 10 kb of a gene were considered to include proximal and distal promoter regions, as well as 
the gene. The DMR associated genes listed in Supplemental Tables S2–S5 were identified for gene functional 
category, Fig. 4a. The cytoskeleton, transport, transcription, and signaling categories were prominent in each 
group. The DMR associated gene groups were analyzed for KEGG pathways with ≥ 3 genes in the pathway, and 
the pathways and genes presented for each group, Fig. 4b. The mother DMR associated genes had the highest 
number of pathways with metabolism, synaptic vesicle cycle, and a number of signaling pathways prominent. 
The father had metabolism pathway, and male child no pathways. Interestingly, both the mother and female 
child had microRNA pathways represented (highlighted), Fig. 4b. Th s refl cts DMRs shared between them that 
contain a cluster of genes and non-coding RNA, including Aopep (aminopeptidase O) and the micro-RNAs Mir 
24-1, Mir 27b, Mir 23b, and Mir 3074. Therefore, an additional epigenetic mechanism altered in preterm birth 
appears to involve ncRNA that was common between the mother and daughter DMRs.

A presentation of the mother, father, and child DMR associated genes with network links, as determined 
by Pathway Studio (Elsevier, Inc.), are presented in Fig. 5. For each group the three disease states most over-
represented in the list of DMR-associated genes are presented. Also included are any DMR associated genes with 
known associations with disease terms Premature Birth, Very Premature Birth, Preterm Labor, and Premature 
Rupture of Membranes. The mother, father, and female child groups all had DMR-associated genes previously 
shown to be linked to preterm birth. These known genes include Rock1, Ghrl1, Fkbp5, Sigirr, Kdr, Mir24-1, 

Figure 2.   DMR group overlaps. (a) DMR p < 1e−04 Venn diagram overlap. (b) Extended overlaps with 
p < 1e−04 and p < 0.05 comparisons. DMR number and percent (%) overlap presented within the rows.
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Cacna1c, Neu1, Nlrp1, F7 and F10, Fig. 5. This helps validate the potential PTB DMR biomarkers identifi d, as 
well as identify potential new DMRs and associated genes for PTB to consider.

Discussion
Preterm birth is a major health concern worldwide, affecting more than one in 10 pregnancies1. Even when 
preterm children survive, they are at higher risk of developing chronic disease conditions3–5. These include 
hypertension, diabetes, metabolic and lipid disorders, heart disease, kidney disease, sleep apnea, and all cause 

Figure 3.   DMR chromosomal locations. The DMR locations on the individual chromosomes is represented 
with an arrowhead and a cluster of DMRs with a black box. All DMRs containing at least one signifi ant window 
at a p value threshold of p < 1e−04 for DMR are shown. (a) Mother DMRs; (b) Father DMRs; (c) Female child 
DMRs; and (d) Male child DMRs. The chromosome number versus size (megabase) is presented.
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mortality5. Th s is in part due to the stresses placed on the late-stage fetus, impacting their normal development. 
These impacts are studied in light of the Developmental Origins of Health and Disease (DOHAD) hypothesis. 
Previous studies have correlated many adult-onset diseases with fetal and early life developmental stresses52–54. 
The potential to predict preterm birth, and provide interventions to reduce its incidence, would have a signifi ant 
impact on human health.

Figure 4.   DMR gene associations (a) DMR (p < 1e−04) associated gene function category frequency. (b) DMR 
associated gene pathways for mother, father, and female child.
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In this study buccal swab samples were collected from mothers, fathers and newborn infants approximately 
nine days following birth in cases where preterm birth occurred, and similarly in control full-term births. The 
buccal epithelial cells were analyzed for sites of DNA methylation in genomic regions when differences in meth-
ylation (DMRs) were detected. Mothers, fathers, and children all showed DMR signatures related to preterm birth 
(Figs. 1, 2). Male children had negligible DMR and a lower false discovery rate confid nce than the other groups. 
The results of this study suggest that potential epigenetic tests of mothers, as well as fathers, could help predict the 
risk of preterm birth. However, extended prospective longitudinal pre-conception trials are required to optimize 
the potential biomarkers and assess the associations with different clinical parameters for preterm birth such as 
preeclampsia or obesity. Although the infant buccal analyses are not predictive of PTB, the epigenetic differences 

Figure 5.   Associated gene networks and correlations. (a) Mother DMR associated gene correlations. (b) Father 
DMR associated gene correlations. The gene correlations and associated genes are presented for each disease 
group. (c) Female child DMR associated gene correlations. (d) Male child DMR associated gene correlations. 
The gene correlations and associated genes are presented for each disease pathology.
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seen in children who have experienced preterm birth could potentially be used to assess later life disease (e.g., 
preterm birth) susceptibility and improve future preventative clinical management approaches. While it has 
been reported that paternal exposure to phenols is associated with increased incidence of preterm birth55, most 
previous studies have found that paternal lifestyle factors do not predict gestation length56. The current study 
identifi d epigenetic changes in both the mothers and fathers of children born preterm, suggesting potential 
maternal and paternal epigenetic components. Future expanded epigenetic analysis applied to both the mother 
and father may better assess risk of preterm birth, compared to assays of the mother alone.

The statistical confidence and accuracy of the prediction needs to be improved with expanded clinical trials 
with larger numbers of samples and trials monitoring individuals prior to conception of the child. Although, the 
current study demonstrates that epigenetic biomarkers in maternal and paternal buccal cells may be useful, larger 
studies are needed for predicting preterm birth. In the current study, buccal samples were collected from mothers 
and fathers immediately after the birth of their child. In the future, prospective studies with sample collection 
during pregnancy and prior to birth will be needed in order to develop a more clinically relevant predictive assay. 
Although a prospective study is anticipated to have similar DMR biomarkers, this remains to be confirmed.

In considering the accuracy of the epigenetic biomarkers observed, it is important to optimize with expanded 
clinical trials that include subpopulations of various sources of PTB such as obesity or preeclampsia. Interest-
ingly some major disease biomarkers work approximately within a 50% accuracy range with either false positives 
or false negatives to consider. For example, for the major male prostate disease biomarker of Prostate Specifi  
Antigen (PSA) for prostate cancer, the standard PSA cut-off of 4 ng/mL has low sensitivity. With this cut-off only 
20.5% of the prostate cancer cases test positive and nearly 80% of prostate cancer cases are missed. The specific ty 
at this cut-off is high (93.6%), meaning only 6.2% of men who do not have prostate cancer falsely test positive57. 
Another example is the ovarian cancer Ca125 biomarker which has a low accuracy for screening with both false 
positives and false negatives being problematic. However, for both PSA and Ca125, monitoring an individual 
over time does improve the accuracy of the assay to over 70% for monitoring, but not screening58,59. In addition, 
use of additional biomarkers in concert with the PSA and Ca125 has been found to improve the accuracy of 
screening to approximately 50%60. Due to the general low accuracy of such disease biomarkers, there have been a 
number of qualification and verification parameters put in place to improve and allow greater discovery efforts to 
be made for disease biomarkers61,62. Clearly disease biomarkers are essential for future medicine, but the current 
major protein-based biomarkers developed have limited use for general screening due to low accuracy. The cur-
rent study provides large numbers of unique epigenetic-based DMR sites throughout the genome, which appear 
to relate to preterm birth. Th s is a unique molecular approach that may improve biomarker development. The 
study’s observations are encouraging and support the concept that epigenetic biomarkers derived from surrogate 
marker cells may be used as a biomarker for preterm birth. However, like PSA and Ca125, further clinical trials 
are needed to refine and validate the use of epigenetic biomarkers to predict preterm birth.

Previous studies have attempted to identify changes in DNA methylation in pregnant women that could be 
used as biomarkers of preterm birth. Parets et al.63 collected peripheral blood leukocyte samples from African 
American women at the start of labor that delivered either preterm (24–34 weeks; n = 16) or at term (39–41 
weeks; n = 24). DNA methylation was assessed using the HumanMethylation450 BeadChip by Illumina. No 
DNA methylation biomarkers for preterm birth were identifi d, but these researchers did report that there were 
many DNA methylation changes that were shared between mothers that delivered preterm and their infants63. 
In a larger study of African American women, Hong et al.64 collected peripheral blood leukocyte samples at 
the time of labor from 150 women who delivered preterm, and 150 who delivered at term. DNA methylation 
was assessed using the Illumina HumanOmni2.5-4v1 array. Forty-five DMR were identifi d, of which two were 
found to be retained in a follow-up replication analysis64. Knijnenburg et al.65 performed a study that evaluated 
genomic variants, gene expression and DNA methylation simultaneously in whole blood samples taken in the 
day or two after birth. Two hundred seventy preterm and five hundred twenty-one full term maternal samples 
were evaluated. DNA methylation was assessed using the Illumina Methylation 450K array. No genomic vari-
ants were associated with preterm birth. However, 215 differentially expressed genes and two DMRs were found 
to be associated with preterm birth. There were greater numbers of molecular differences associated with very 
early preterm birth (< 28 weeks of gestation). Analysis of the 44 cases of these very early births showed that 217 
genetic variants, 838 differentially expressed genes and 811 DMRs were associated65. A combined approach 
like this that uses multiple types of biomarkers shows promise for developing accurate clinical assays to predict 
preterm birth in the future. As previously mentioned, a limitation of all these studies is the use of mixed cell 
populations, which can suggest the presence of an epigenetic change, but which is in fact due to alterations in cell 
population numbers32,33. Purified individual cell types are more effective to both identify and assess epigenetic 
differences as disease biomarkers41,42.

A number of the previous studies have used the Illumina array platform to identify DMRs as biomarkers 
of preterm birth63–65. These array platforms are biased toward detection of DMR in high density CpG islands, 
which constitute less than 1% of the genome50. However, the majority of the genome has a low density (1–3%) 
1–3 CpG/100 bp density 50. The MeDIP procedure used in the current study is biased toward detection of DNA 
methylation in regions of lower CpG density of < 5 CpG/100 bp, which corresponds to > 95% of the genome50. 
Using the genome-wide MeDIP procedure to identify DNA methylation alterations increases the feasibility of 
finding robust epigenetic biomarkers of preterm birth.

In the current study, only approximately half of the DMRs had nearby associated genes. Although the regula-
tory role of the DMRs to alter gene expression requires further investigation, the potential functional correla-
tions of the DMR-associated genes for each group were evaluated. Genes involved in cytoskeleton, transcription 
and signaling were prominent in the gene sets (Figs. 4, 5). Among the disease states associated with these gene 
sets, the cancer pathways were frequently seen, possibly due to signaling abnormalities being prominent in 
cancer pathways. The mother, father and female child gene sets included DMR associated genes that have been 
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previously associated with preterm birth (Fig. 5). This occurred even though cheek buccal cells are not directly 
involved in gestation, which suggests surrogate marker cell samples can be useful to detect epigenetic biomark-
ers of disease. Th s is supported by a recent study that used buccal cells to identify epigenetic biomarkers for 
female rheumatoid arthritis46.

Conclusions
In conclusion, genome-wide differential DNA methylation regions for preterm birth were detected in buccal cells 
of mothers, fathers, and female children. This provides a “proof of concept” that DNA methylation analysis of 
buccal swabs of parents may be used to potentially predict preterm birth. However, the accuracy and predictive 
ability of the biomarker needs to be improved with future clinical trials, as discussed. Such a preterm birth risk 
or susceptibility biomarker would allow for better obstetrical management to prevent preterm birth, mitigate 
morbidity in unprevented preterm births (through timely administration of prenatal steroids, magnesium sulfate, 
tocolytics and optimal delivery procedures), and thus improve the health and long-term outcomes for many chil-
dren. Unanticipated preterm births continue to catch providers by surprise, and often lead to major morbidities 
such as intraventricular hemorrhage, severe lung disease and other irreversible injuries. The presence of preterm 
birth associated DMRs in parental buccal cells suggests potential parental early life exposures and/or ancestral 
impacts are involved in the etiology of preterm birth. Rodent models have shown that environmental exposures 
in early pregnancy when epigenetic programming occurs in the fetus impact DMRs in every somatic cell type 
in the body across the life span of the exposed fetus and its descendants. Parents’ buccal cells, thus, may have 
the epigenetic changes resulting from ancestral exposure and can potentially be used as biomarkers for risk of 
preterm birth. This assay could also potentially be used in the future to identify environmental exposures and 
risk factors that promote preterm birth.

Methods
Clinical sample collection and analysis.  St. Franciscan Hospital and Indiana University School of Medi-
cine. IU Health Hospitals (Riley Hospital for Children, IUH Methodist, IUH North) and Franciscan Health, 
Indianapolis, Indiana, USA provided samples for the current study. Informed consent and HIPAA authorization 
was obtained from all participants prior to the clinical sample collection. The study protocol was approved by 
the Indiana University Institutional Review Board (IRB) #1901985132 and the Franciscan Institutional Review 
Board (IRB), #1489434-5. All research was performed in accordance with relevant guidelines/regulations. 
Informed consent and HIPAA authorization was obtained from all participants prior to sample collection. For 
sample collection involving human participants that are minors, informed consent from a parent and/or legal 
guardian for study participation was obtained prior to sample collection. Buccal samples were collected from the 
mother, father, and child in instances where pre-term birth occurred (case), or where term birth occurred (con-
trol), approximately nine days following birth. Th s period was used to allow the case PTB child to mature and 
allow and effective buccal cell collection. The demographic data for these subjects is presented in Supplemental 
Table S1. Buccal swabs were stored at -80 C until use.

DNA preparation.  Frozen human buccal samples were thawed for analysis. Genomic DNA from buccal 
samples was prepared as follows: The buccal brush was suspended in 750 µL of cell lysis solution and 3.5 µL of 
Proteinase K (20 mg/mL). Th s suspension was incubated at 55 ºC for 3 h, then vortexed and centrifuged briefly. 
The lysis solution was then transferred to a new 1.5 µL microcentrifuge tube. The microcentrifuge tube with the 
buccal brush was centrifuged again to retain any remaining solution which was combined with the transferred 
lysis solution. The buccal brush was discarded and 300 µL of protein precipitation solution (Promega, A795A, 
Madison, WI) was added to the lysis solution. The sample was incubated on ice for 15 min, then centrifuged at 
4C for 30 min. The supernatant was transferred to a fresh 2 mL microcentrifuge tube and 1000 µL ice cold iso-
propanol was added along with 2 µL glycoblue. Th s suspension was mixed thoroughly and incubated at − 20 ºC 
overnight. The suspension was then centrifuged at 4ºC for 20 min, the supernatant was discarded, and the pellet 
was washed with 75% ethanol, then air-dried and resuspended in 100 µL H2O. DNA concentration was meas-
ured using the Nanodrop (Thermo Fisher, Waltham, MA).

Methylated DNA immunoprecipitation (MeDIP).  Methylated DNA Immunoprecipitation (MeDIP) 
with genomic DNA was performed as follows: individual DNA samples (2–4 ug of total DNA) were diluted to 
130 µL with 1 × Tris–EDTA (TE, 10 mM Tris, 1 mM EDTA) and sonicated with the Covaris M220 using the 
300 bp setting. Fragment size was verifi d on a 2% E-gel agarose gel. The sonicated DNA was transferred from 
the Covaris tube to a 1.7  mL microfuge tube, and the volume was measured. The sonicated DNA was then 
diluted with TE buffer (10 mM Tris HCl, pH7.5; 1 mM EDTA) to 400 µL, heat-denatured for 10 min at 95 C, then 
immediately cooled on ice for 10 min. Then 100 µL of 5X IP buffer and 5 µg of antibody (monoclonal mouse anti 
5-methyl cytidine; Diagenode #C15200006) were added to the denatured sonicated DNA. The DNA-antibody 
mixture was incubated overnight on a rotator at 4 C. The following day magnetic beads (Dynabeads M-280 
Sheep anti-Mouse IgG; 11201D) were pre-washed as follows: The beads were resuspended in the vial, then the 
appropriate volume (50 µL per sample) was transferred to a microfuge tube. The same volume of Washing Buffer 
(at least 1 mL 1XPBS with 0.1% BSA and 2 mM EDTA) was added and the bead sample was resuspended. The 
tube was then placed into a magnetic rack for 1–2 min and the supernatant was discarded. The tube was removed 
from the magnetic rack and the beads were washed once. The washed beads were resuspended in the same vol-
ume of 1xIP buffer (50 mM sodium phosphate ph7.0, 700 mM NaCl, 0.25% TritonX-100) as the initial volume 
of beads. 50 µL of beads were added to the 500 µL of DNA-antibody mixture from the overnight incubation, 
then incubated for 2 h on a rotator at 4 C. After the incubation, the bead-antibody-DNA complex was washed 
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three times with 1X IP buffer as follows: The tube was placed into a magnetic rack for 1–2 min and the super-
natant was discarded, then the magnetic bead antibody pellet was washed with 1xIP buffer 3 times. The washed 
bead antibody DNA pellet was then resuspended in 250 µL digestion buffer with 3.5 µL Proteinase K (20 mg/
mL). The sample was incubated for 2–3 h on a rotator at 55 C, then 250 µL of buffered Phenol–Chloroform- 
Isoamylalcohol solution was added to the sample, and the tube was vortexed for 30 s and then centrifuged at 
14,000 rpm for 5 min at room temperature. The aqueous supernatant was carefully removed and transferred to 
a fresh microfuge tube. Then 250 µL chloroform were added to the supernatant from the previous step, vortexed 
for 30 s and centrifuged at 14,000 rpm for 5 min at room temperature. The aqueous supernatant was removed 
and transferred to a fresh microfuge tube. To the supernatant 2 µL of glycoblue (20 mg/mL), 20 µL of 5 M NaCl 
and 500 µL ethanol were added and mixed well, then precipitated in -20 C freezer for 1 h to overnight. The pre-
cipitate was centrifuged at 14,000 rpm for 20 min at 4 C and the supernatant was removed, while not disturbing 
the pellet. The pellet was washed with 500 µL cold 70% ethanol in − 20 C freezer for 15 min then centrifuged 
again at 14,000 rpm for 5 min at 4 C and the supernatant was discarded. The tube was spun again briefly to col-
lect residual ethanol to the bottom of the tube and as much liquid as possible was removed with gel loading tip. 
The pellet was air-dried at RT until it looked dry (about 5 min) then resuspended in 20 µL H2O or TE. DNA 
concentration was measured in Qubit (Life Technologies) with ssDNA kit (Molecular Probes Q10212).

MeDIP‑Seq analysis.  The MeDIP DNA samples (50 ng of each) were used to create libraries for next gen-
eration sequencing (NGS) using the NEBNext Ultra RNA Library Prep Kit for Illumina (San Diego, CA) starting 
at step 1.4 of the manufacturer’s protocol to generate double stranded DNA. After this step the manufacturer’s 
protocol was followed. Each sample received a separate index primer. NGS was performed at WSU Spokane 
Genomics Core using the Illumina HiSeq 2500 with a PE50 application, with a read size of approximately 50 bp 
and approximately 5–35 million reads per sample, and 6–7 sample libraries each were run in one lane.

Molecular bioinformatics and statistics.  Basic read quality was verifi d using information produced by 
the FastQC program66. Reads were filtered and trimmed to remove low quality base pairs using Trimmomatic67. 
The reads for each sample were mapped to the GRCh38 human genome using Bowtie268 with default parameter 
options. The mapped read files were then converted to sorted BAM files using SAMtools69. To identify DMR, the 
reference genome was broken into 1000 bp windows. The MEDIPS R package70 was used to calculate differential 
coverage between control and exposure sample groups. The edgeR p value71 was used to determine the relative 
difference between the two groups for each genomic window. Windows with an edgeR p-value less than 10–4 
were considered DMRs. The DMR edges were extended until no genomic window with an edgeR p-value less 
than 0.1 remained within 1000 bp of the DMR. CpG density and other information was then calculated for the 
DMR based on the reference genome. DMR were annotated using the NCBI provided annotations. The genes 
that overlapped with DMR were then input into the KEGG pathway search72,73 to identify associated pathways. 
The DMR associated genes were then sorted into functional groups by reducing Panther74 protein classifi ations 
into more general categories. All MeDIP-Seq genomic data obtained in the current study have been deposited in 
the NCBI public GEO database (GEO #: GSE194227).

Blinded test set analysis was performed to classify test samples into case or control groups. Samples from ten 
novel trios were collected to evaluate the efficacy of using the DMR sets identified as a biomarker for preterm 
birth. The test samples were processed identically to the samples used in the main analysis. PCA and cluster 
dendrogram analyses were used to search for test samples that clustered with the known samples when only DMR 
sites were considered. Additionally, linear discriminant analysis (LDA) and random forest (RF) classification was 
performed to identify which blinded samples were preterm birth, as previously described44.

Ethics approval and consent to participate.  Approvals to conduct the study were obtained from Indi-
ana University Institutional Review Board (IRB) #1901985132 and the Franciscan Institutional Review Board 
(IRB), #1489434-5.

Data availability
All molecular data have been deposited into the public database at NCBI (GEO # GSE194227), and R code com-
putational tools are available at GitHub (https://​github.​com/​skinn​erlab/​MeDIP-​seq) and www.​skinn​er.​wsu.​edu.
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