Spring 2024 – Systems Biology of Reproduction Lecture Outline – Fetal Development & Birth Systems Michael K. Skinner – Biol 475/575 CUE 418, 10:35-11:50 am, Tuesday & Thursday April 16, 2024 Week 15

Fetal Development & Birth Systems

Maternal – Fetal Interface During Gestation

- Implantation / Trophoblasts
- Vasculature
- Abnormal Conditions

Endocrinology of Pregnancy

- Steroidogenesis and Gestation
- Placental Fetal Unit

Abnormal Pregnancy Factors

- Immune abnormalities
- Preeclampsia
- Risk Factors
- Systems Biology Analysis

Birth and Parturition

- Endocrine
- Pre-term Birth
- Systems Approach to Fetal and Placental Development

Environmental Insults / Exposures

- Various Exposures and Interface
- Examples Exposures

Required Reading

Bazer FW and Fields MJ (2018) Pregnancy and Parturition, Mammals. in: Encyclopedia of Reproduction 2nd Edition, Ed: MK Skinner. Elsevier. Vol. 6, Pages 450-457.

Forhead AJ and Fowden AL (2018) Formation and Growth of the Fetus. in: Encyclopedia of Reproduction 2nd Edition, Ed: MK Skinner. Elsevier. Vol. 3, Pages 370-379.

REFERENCES

- Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev. 2023 Oct 1;103(4):2623-2677.
- Haider S, Beristain AG. Human organoid systems in modeling reproductive tissue development, function, and disease. Hum Reprod. 2023 Aug 1;38(8):1449-1463.
- Ribatti D, Annese T. Chick embryo in experimental embryology and more. Pathol Res Pract. 2023 May;245:154478.
- Sakowicz A, Bralewska M, Rybak-Krzyszkowska M, Grzesiak M, Pietrucha T. New Ideas for the Prevention and Treatment of Preeclampsia and Their Molecular Inspirations. Int J Mol Sci. 2023 Jul 28;24(15):12100.
- Chang KJ, Seow KM, Chen KH. Preeclampsia: Recent Advances in Predicting, Preventing, and Managing the Maternal and Fetal Life-Threatening Condition. Int J Environ Res Public Health. 2023 Feb 8;20(4):2994.
- Shynlova O, Nadeem L, Lye S. Progesterone control of myometrial contractility. J Steroid Biochem Mol Biol. 2023 Nov;234:106397.
- Conde-Agudelo A, Romero R. Vaginal progesterone for the prevention of preterm birth: who can benefit and who cannot? Evidence-based recommendations for clinical use. J Perinat Med. 2022 Dec 7;51(1):125-134.
- Zhang L, Liu J, Feng X, Lash GE. Unraveling the mysteries of spiral artery remodeling. Placenta. 2023 Sep 26;141:51-56.
- Winchester P, Nilsson E, Beck D, Skinner MK. Preterm birth buccal cell epigenetic biomarkers to facilitate preventative medicine. Sci Rep. 2022 Mar 1;12(1):3361.
- Dakhel S, Davies WIL, Joseph JV, et al. Chick fetal organ spheroids as a model to study development and disease. BMC Mol Cell Biol. 2021 Jul 5;22(1):37.
- Zhang B, Kim MY, Elliot G, et al. Human placental cytotrophoblast epigenome dynamics over gestation and alterations in placental disease. Dev Cell. 2021 May 3;56(9):1238-1252.e5.
- Knudsen TB, Spielmann M, Megason SG, Faustman EM. Single-cell profiling for advancing birth defects research and prevention. Birth Defects Res. 2021 Apr 15;113(7):546-559.
- Bais AS, Cerqueira DM, Clugston A, et al. Single-cell RNA sequencing reveals differential cell cycle activity in key cell populations during nephrogenesis. Sci Rep. 2021 Nov 17;11(1):22434.
- Zhao Z, Fan R, Xu W, et al. Single-cell dynamics of chromatin activity during cell lineage differentiation in Caenorhabditis elegans embryos. Mol Syst Biol. 2021 Apr;17(4):e10075.
- Mishra A, Lai GC, Yao LJ, et al. Microbial exposure during early human development primes fetal immune cells. Cell. 2021 Jun 24;184(13):3394-3409.e20.
- Khader N, Shchuka VM, Shynlova O, Mitchell JA. Transcriptional control of parturition: insights from gene regulation studies in the myometrium. Mol Hum Reprod. 2021 May 8;27(5):gaab024.
- Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol. 2022 Feb;20(2):67-82.

- Lu-Culligan A, Chavan AR, Vijayakumar P, et al. Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface. Med (N Y). 2021 May 14;2(5):591-610.e10.
- Sen Santara S, Crespo AC, Mulik S, et al. Decidual NK cells kill Zika virus-infected trophoblasts. Proc Natl Acad Sci U S A. 2021 Nov 23;118(47):e2115410118.
- Banerjee S, Huang Z, Wang Z, et al. Etiological Value of Sterile Inflammation in Preeclampsia: Is It a Non-Infectious Pregnancy Complication? Front Cell Infect Microbiol. 2021 Aug 16;11:694298.
- Oghbaei F, Zarezadeh R, Jafari-Gharabaghlou D, et al. Epithelial-mesenchymal transition process during embryo implantation. Cell Tissue Res. 2022 Jan 13.
- Zhang X, Wei H. Role of Decidual Natural Killer Cells in Human Pregnancy and Related Pregnancy Complications. Front Immunol. 2021 Aug 26;12:728291.
- He J-P, Tian Q, Zhu Q-Y, Liu J-L. Single-cell analysis of mouse uterus at the invasion phase of embryo implantation. Cell Biosci. 2022 Feb 5;12(1):13.
- Guo J, Sosa E, Chitiashvili T, et al. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell. 2021 Apr 1;28(4):764-778.e4.
- Blakeway H, Prasad S, Kalafat E, et al. COVID-19 vaccination during pregnancy: coverage and safety. Am J Obstet Gynecol. 2022 Feb;226(2):236.e1-236.e14.
- Opichka MA, Rappelt MW, Gutterman DD, et al. Vascular Dysfunction in Preeclampsia. Cells. 2021 Nov 6;10(11):3055.
- Quitterer U, AbdAlla S. Pathological AT1R-B2R Protein Aggregation and Preeclampsia. Cells. 2021 Oct 1;10(10):2609.
- Vidal Jr MS, Deguit CDT, et al. G-Protein Coupled Receptor Dysregulation May Play Roles in Severe Preeclampsia-A Weighted Gene Correlation Network Analysis of Placental Gene Expression Profile. Cells. 2022 Feb 22;11(5):763.
- Li C, Cao M, Zhou X. Role of epigenetics in parturition and preterm birth. Biol Rev Camb Philos Soc. 2021 Dec 22. doi: 10.1111/brv.12825. Online ahead of print.
- Busse M, Redlich A, Hartig R, et al. Imbalance between inflammatory and regulatory cord blood B cells following pre-term birth. J Reprod Immunol. 2021 Jun;145:103319.
- Bhatti G, Romero R, Gomez-Lopez N, et al. The amniotic fluid cell-free transcriptome in spontaneous preterm labor. Sci Rep. 2021 Jun 29;11(1):13481.
- Nolte C, De Kumar B, Krumlauf R. Hox genes: Downstream "effectors" of retinoic acid signaling in vertebrate embryogenesis. Genesis. 2019 Jul;57(7-8):e23306.
- Taylor DM, Aronow BJ, Tan K, et al. The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Dev Cell. 2019 Apr 8;49(1):10-29.
- Pei D, Shu X, Gassama-Diagne A, Thiery JP. Mesenchymal-epithelial transition in development and reprogramming. Nat Cell Biol. 2019 Jan;21(1):44-53.
- Gauda EB, McLemore GL. Premature birth, homeostatic plasticity and respiratory consequences of inflammation. Respir Physiol Neurobiol. 2020 Mar;274:103337.
- McCarthy R, Jungheim ES, Fay JC, et al. Riding the Rhythm of Melatonin Through Pregnancy to Deliver on Time. Front Endocrinol (Lausanne). 2019 Sep 13;10:616.
- Heazell AEP, Newman L, Lean SC, Jones RL. Pregnancy outcome in mothers over the age of 35. Curr Opin Obstet Gynecol. 2018 Dec;30(6):337-343.

- Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019 Sep;76(18):3479-3496.
- Hahn S, Hasler P, Vokalova L, et al. Feto-Maternal Microchimerism: The Pre-eclampsia Conundrum. Front Immunol. 2019 Mar 29;10:659.
- Szilagyi A, Gelencser Z, Romero R, et al. Placenta-Specific Genes, Their Regulation During Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. Int J Mol Sci. 2020 Jan 17;21(2).
- Chang G, Mouillet JF, Mishima T, et al. Expression and trafficking of placental microRNAs at the feto-maternal interface. FASEB J. 2017 Jul;31(7):2760-2770.
- Pique-Regi R, Romero R, Tarca AL, et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. Elife. 2019 Dec 12;8. pii: e52004.
- Maeda KJ, Showmaker KC, Johnson AC, et al. Spontaneous superimposed preeclampsia: chronology and expression unveiled by temporal transcriptomic analysis. Physiol Genomics. 2019 Aug 1;51(8):342-355.
- Gibbs I, Leavey K, Benton SJ, Grynspan D, Bainbridge SA, Cox BJ. Placental transcriptional and histologic subtypes of normotensive fetal growth restriction are comparable to preeclampsia. Am J Obstet Gynecol. 2019 Jan;220(1):110.e1-110.e21.
- Koc A, Kirbiyik O, Kutbay YB, Ozyilmaz B, et al. Fetal HLA-G alleles and their effect on miscarriage. Adv Clin Exp Med. 2018 Sep;27(9):1233-1237.
- Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018 Nov;563(7731):347-353.
- Zhang Z, Wang X, Zhang L, et al Wnt/β-catenin signaling pathway in trophoblasts and abnormal activation in preeclampsia (Review). Mol Med Rep. 2017 Aug;16(2):1007-1013.
- Kamrani A, Alipourfard I, Ahmadi-Khiavi H, et al. The role of epigenetic changes in preeclampsia. Biofactors. 2019 Sep;45(5):712-724.
- Ridder A, Giorgione V, Khalil A, Thilaganathan B. Preeclampsia: The Relationship between Uterine Artery Blood Flow and Trophoblast Function. Int J Mol Sci. 2019 Jul 2;20(13).
- Mahendroo M. Cervical hyaluronan biology in pregnancy, parturition and preterm birth. Matrix Biol. 2019 May;78-79:24-31.
- Monangi NK, Brockway HM, House M, Zhang G, Muglia LJ. The genetics of preterm birth: Progress and promise. Semin Perinatol. 2015 Dec;39(8):574-83.
- Pereyra S, Sosa C, Bertoni B, Sapiro R. Transcriptomic analysis of fetal membranes reveals pathways involved in preterm birth. BMC Med Genomics. 2019 Apr 1;12(1):53.
- Mesiano SA, Peters GA, Amini P, Wilson RA, Tochtrop GP, van Den Akker F. Progestin therapy to prevent preterm birth: History and effectiveness of current strategies and development of novel approaches. Placenta. 2019 Apr;79:46-52.
- LifeCycle Project-Maternal Obesity and Childhood Outcomes Study Group, Voerman E, Santos S, Inskip H, et al. Association of Gestational Weight Gain With Adverse Maternal and Infant Outcomes. JAMA. 2019 May 7;321(17):1702-1715.
- Mark PJ, Crew RC, Wharfe MD, Waddell BJ. (2017) Rhythmic Three-Part Harmony: The Complex Interaction of Maternal, Placental and Fetal Circadian Systems. J Biol Rhythms. 32(6):534-549.

- Pavličev M, Wagner GP, Chavan AR, Owens K, Maziarz J, Dunn-Fletcher C, Kallapur SG, Muglia L, Jones H. (2017) Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res. 27(3):349-361.
- Paulesu L, Rao CV, Ietta F, Pietropolli A, Ticconi C. (2018) hCG and Its Disruption by Environmental Contaminants during Human Pregnancy. Int J Mol Sci. 20;19(3).
- Bidarimath M, Tayade C. (2017) Pregnancy and spontaneous fetal loss: A pig perspective. Mol Reprod Dev. 84(9):856-869.
- Degner K, Magness RR, Shah DM. (2017) Establishment of the Human Uteroplacental Circulation: A Historical Perspective. Reprod Sci. 24(5):753-761.
- Conrad KP, Rabaglino MB, Post Uiterweer ED. (2017) Emerging role for dysregulated decidualization in the genesis of preeclampsia. Placenta. 60:119-129.
- Chang G, Mouillet JF, Mishima T, et al. (2017) Expression and trafficking of placental microRNAs at the feto-maternal interface. FASEB 31(7):2760-2770.
- Areia AL, Rodrigues P, Alarcão A, et al. (2016) Is Preterm Labor Influenced by the Maternal-Fetal Interface? Fetal Pediatr Pathol. 36(2):89-105.
- Ronovsky M, Berger S, Zambon A, et al (2017) Maternal immune activation transgenerationally modulates maternal care and offspring depression-like behavior. Brain Behav Immun. 63:127-136.
- Sun M, Song MM, Wei B, Gao Q, et al. (2016) 5-Hydroxymethylcytosine-mediated alteration of transposon activity associated with the exposure to adverse in utero environments in human. Hum Mol Genet. 25(11):2208-2219.
- Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. (2016) Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update. 22(5):535-60.
- Fallen S, Baxter D, Wu X, Kim TK, et al. (2018) Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour. J Cell Mol Med. 2018 Mar 8. doi: 10.1111/jcmm.13570. [Epub ahead of print]
- Zhang G, Feenstra B, Bacelis J, et al. (2017) Genetic Associations with Gestational Duration and Spontaneous Preterm Birth. N Engl J Med. 377(12):1156-1167.
- Palma-Gudiel H, Cirera F, Crispi F, Eixarch E, Fañanás L. (2018) The impact of prenatal insults on the human placental epigenome: A systematic review. Neurotoxicol Teratol. 2018 Mar - Apr;66:80-93.
- Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J. (2017) Environmental influences on ovarian dysgenesis - developmental windows sensitive to chemical exposures. Nat Rev Endocrinol. 13(7):400-414.
- Wijayarathna R, de Kretser DM. (2016) Activins in reproductive biology and beyond. Hum Reprod Update. 2016 Apr;22(3). pii: dmv058.
- Huch M, Koo BK. (2015) Modeling mouse and human development using organoid cultures. Development. 15;142(18):3113-25.
- Makieva S, Saunders PT, Norman JE. (2014) Androgens in pregnancy: roles in parturition. Hum Reprod Update. 2014 Jul-Aug;20(4):542-59.
- Ibrahim SA, Ackerman WE 4th, et al. (2016) Inflammatory gene networks in term human decidual cells define a potential signature for cytokine-mediated parturition. Am J Obstet Gynecol. 214(2):284.e1-284.e47.

- Nair RR, Verma P, Singh K. (2016) Immune-endocrine crosstalk during pregnancy. Gen Comp Endocrinol. 2016 Mar 7. pii: S0016-6480(16)30047-8. doi: 10.1016/j.ygcen.2016.03.003. [Epub ahead of print]
- Dos Santos E, Duval F, Vialard F, Dieudonné MN. (2015) The roles of leptin and adiponectin at the fetal-maternal interface in humans. Horm Mol Biol Clin Investig. 24(1):47-63.
- Du MR, Wang SC, Li DJ. (2014) The integrative roles of chemokines at the maternalfetal interface in early pregnancy. Cell Mol Immunol. 11(5):438-48.
- Wang LH, Baker NE. (2015) E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. Dev Cell. 9;35(3):269-80.
- Lash GE. (2015) Molecular Cross-Talk at the Feto-Maternal Interface. Cold Spring Harb Perspect Med. 18;5(12). pii: a023010. doi: 10.1101/cshperspect.a023010.
- Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H, Moretti C. (2014) Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update. 20(6):884-904.
- Glotov AS, Tiys ES, Vashukova ES, Pakin VS, Det al., (2015) Molecular association of pathogenetic contributors to pre-eclampsia (pre-eclampsia associome). BMC Syst Biol. 9 Suppl 2:S4.
- Vink J, Feltovich H. (2016) Cervical etiology of spontaneous preterm birth. Semin Fetal Neonatal Med. 21(2):106-12.
- Mor G, Kwon JY. (2015) Trophoblast-microbiome interaction: a new paradigm on immune regulation. Am J Obstet Gynecol. 213(4 Suppl):S131-7.
- Pappas A, Chaiworapongsa T, Romero R, et al. (2015) Transcriptomics of maternal and fetal membranes can discriminate between gestational-age matched preterm neonates with and without cognitive impairment diagnosed at 18-24 months. PLoS One. 10(3):e0118573.
- Shiozaki A, Yoneda S, Yoneda N, et al. (2014) Intestinal microbiota is different in women with preterm birth: results from terminal restriction fragment length polymorphism analysis. PLoS One. 5;9(11):e111374.
- Dardas M, Gill SR, Grier A, Pryhuber GS, Gill AL, Lee YH, Guillet R. (2014) The impact of postnatal antibiotics on the preterm intestinal microbiome. Pediatr Res. 76(2):150-8.
- Fisher SJ. (2015) Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol. 2015 Oct;213(4 Suppl):S115-22.
- Lowe WL Jr, Karban J. (2014) Genetics, genomics and metabolomics: new insights into maternal metabolism during pregnancy. Diabet Med. 31(3):254-62.
- Singh R, et al. (2013) Towards human-computer synergetic analysis of large-scale biological data. BMC Bioinformatics. 14 Suppl 14:S10.
- Sharp GC, Saunders PT, Norman JE. (2013) Computer models to study uterine activation at labour. Mol Hum Reprod. 19(11):711-7.
- Feltes BC, et al. (2013) Toxicological effects of the different substances in tobacco smoke on human embryonic development by a systems chemo-biology approach. PLoS One. 29;8(4):e61743.
- Sookoian S, et al. (2013) Fetal metabolic programming and epigenetic modifications: a systems biology approach. Pediatr Res. 73(4 Pt 2):531-42.

- Bionaz M, Loor JJ. (2012) Ruminant metabolic systems biology: reconstruction and integration of transcriptome dynamics underlying functional responses of tissues to nutrition and physiological state. Gene Regul Syst Bio. 6:109-25.
- Ren H, et al. (2011) Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep. BMC Genomics. 14;12:411.
- Miyagawa S, Sato M, Iguchi T. (2011) Molecular mechanisms of induction of persistent changes by estrogenic chemicals on female reproductive tracts and external genitalia. J Steroid Biochem Mol Biol. 127(1-2):51-7.
- Baum M. (2010) Concepts of holism in orthodox and alternative medicine. Clin Med. 10(1):37-40.
- Weaver IC. (2009) Shaping adult phenotypes through early life environments. Birth Defects Res C Embryo Today. 87(4):314-26.
- Wu FT, et al. (2010) A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J Cell Mol Med. 14(3):528-52.
- Cox B, et al. (2009) Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Mol Syst Biol. 5:279.
- Yeo M, Patisaul H, Liedtke W. (2013) Decoding the language of epigenetics during neural development is key for understanding development as well as developmental neurotoxicity. Epigenetics. 8(11):1128-32.
- Hunt JS, Petroff MG. (2013) IFPA Senior Award Lecture: Reproductive immunology in perspective--reprogramming at the maternal-fetal interface. Placenta. 34 Suppl:S52-5.
- Cox LA, et al. (2012) A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome. J Physiol. 15;590(Pt 12):2873-84.
- Bock J, Braun K. (2011) The impact of perinatal stress on the functional maturation of prefronto-cortical synaptic circuits: implications for the pathophysiology of ADHD? Prog Brain Res. 189:155-69.
- Bezold KY, et al. (2013) The genomics of preterm birth: from animal models to human studies. Genome Med. 29;5(4):34.
- Voltolini C, et al. (2013) Understanding spontaneous preterm birth: from underlying mechanisms to predictive and preventive interventions. Reprod Sci. 20(11):1274-92.
- Timmons B, Akins M, Mahendroo M. (2010) Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab. 21(6):353-61.
- Miller BH, Takahashi JS. (2014) Central Circadian Control of Female Reproductive Function. Front Endocrinol (Lausanne). 22;4:195. eCollection 2013.
- Toda T, et al. (2013) Birth regulates the initiation of sensory map formation through serotonin signaling. Dev Cell. 14;27(1):32-46.
- Chien Y, et al. (2013) Misregulated progesterone secretion and impaired pregnancy in CYP11A1 transgenic mice. Biol Reprod. 17;89(4):91.
- Hui L, et al. (2013) Global gene expression analysis of term amniotic fluid cell-free fetal RNA. Obstet Gynecol. 121(6):1248-54.
- Renthal NE, et al. (2013) MicroRNAs--mediators of myometrial contractility during pregnancy and labour. Nat Rev Endocrinol. 9(7):391-401.
- Sun X, Dey SK. (2012) Endocannabinoid signaling in female reproduction. ACS Chem Neurosci. 16;3(5):349-55.

Taggart MJ, et al. (2012) Molecular pathways regulating contractility in rat uterus through late gestation and parturition. Am J Obstet Gynecol. 207(1):76.e15-24.

- de Laat MW, et al. (2013) The clinical and molecular relations between idiopathic preterm labor and maternal congenital heart defects. Reprod Sci. 20(2):190-201.
- Akgul Y, et al. (2012) Dynamic changes in cervical glycosaminoglycan composition during normal pregnancy and preterm birth. Endocrinology. 153(7):3493-503.
- Shu DP, et al. (2012) Global transcriptional profiling in porcine mammary glands from late pregnancy to peak lactation. OMICS. 16(3):123-37.

Beckstrom AC, et al. (2012) The perinatal transition of the circulating metabolome in a nonhuman primate. Pediatr Res. 71(4 Pt 1):338-44.

Plunkett J, et al. (2011) An evolutionary genomic approach to identify genes involved in human birth timing. PLoS Genet. 7(4):e1001365.

Kumar CG, Everts RE, Loor JJ, Lewin HA. (2010) Functional annotation of novel lineage-specific genes using co-expression and promoter analysis. BMC Genomics. 9;11:161.

- Hassan SS, et al. (2009) The transcriptome of cervical ripening in human pregnancy before the onset of labor at term: identification of novel molecular functions involved in this process. J Matern Fetal Neonatal Med. 22(12):1183-93.
- Scher MS. (2013) Normal and abnormal cerebrovascular development: gene-environment interactions during early life with later life consequences. Handb Clin Neurol. 112:1021-42.
- Cheng Y, et al. (2013) Systems genetics implicates cytoskeletal genes in oocyte control of cloned embryo quality. Genetics. 193(3):877-96.
- White MA, et al. (2012) A model of spatially restricted transcription in opposing gradients of activators and repressors. Mol Syst Biol. 8:614.
- Filippi A, Jainok C, Driever W. (2012) Analysis of transcriptional codes for zebrafish dopaminergic neurons reveals essential functions of Arx and Isl1 in prethalamic dopaminergic neuron development. Dev Biol. 1;369(1):133-49.
- Berghard A, et al. (2012) Lhx2-dependent specification of olfactory sensory neurons is required for successful integration of olfactory, vomeronasal, and GnRH neurons. FASEB J. 26(8):3464-72.
- Morelli LG, Uriu K, Ares S, Oates AC. (2012) Computational approaches to developmental patterning. Science. 13;336(6078):187-91.
- Synnergren J, et al. (2012) Global transcriptional profiling reveals similarities and differences between human stem cell-derived cardiomyocyte clusters and heart tissue. Physiol Genomics. 27;44(4):245-58.
- Plouhinec JL, et al. (2011) Systems control of BMP morphogen flow in vertebrate embryos. Curr Opin Genet Dev. 21(6):696-703.
- Bogdanovic O, et al. (2011) Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis. Genome Res. 21(8):1313-27.
- Lenzi L, et al. (2011) TRAM (Transcriptome Mapper): database-driven creation and analysis of transcriptome maps from multiple sources. BMC Genomics. 18;12:121.
- Niehrs C. (2011) Dialectics, systems biology and embryonic induction. Differentiation. 81(4):209-16.
- Soler E, et al. (2011) A systems approach to analyze transcription factors in mammalian cells. Methods. 53(2):151-62.

Pregnancy and Parturition, Mammals

Fuller W Bazer, Texas A&M University, College Station, TX, United States Michael J Fields, University of Florida, Gainesville, FL, United States

© 2018 Elsevier Inc. All rights reserved.

Glossary

Adrenal gland The cortex or outer layer secretes steroid hormones, particularly cortisol, in response to ACTH secreted by the anterior pituitary gland.

Anterior pituitary Structure at the base of the hypothalamus that secretes luteinizing hormone (LH), follicle stimulating hormone (FSH), prolactin (PRL), adrenocorticotrophic hormone (ACTH), thyroid stimulating hormone (TSH) and growth hormone (GH) hormones in response to releasing hormones secreted by the hypothalamus, but PRL secretion is regulated by prolactin inhibitory factor which is dopamine.

Cervix A thick cartilaginous structure between the vagina and uterus that serves as a barrier protecting the developing conceptus within the uterus during pregnancy. During the periparturient period the cervix dilates and forms a birth canal through which the fetus and placenta pass to reach the external environment.

Conceptus The embryo/fetus and associated membranes.

Corpus luteum The endocrine gland(s) formed by the granulosa and theca cells of the ovarian follicle after ovulation that secretes progesterone which is necessary for the establishment and maintenance of pregnancy.

Ferguson reflex A neural response from stimulation of the vagina resulting in the release of oxytocin from the hypothalamus/ posterior pituitary into maternal blood.

Hypothalamus The structure at the base of the brain that regulates many physiological functions through secretion of hormones.

Labor The process in which the mother's uterine contractions physically force the offspring out of the reproductive tract via the cervix and vagina into the external environment.

Luteolytic hormone Hormone, particularly prostaglandin $F_{2\alpha}$ that causes functional and structural demise of the corpus luteum.

Luteotrophic hormone A hormone such as luteinizing hormone from the anterior pituitary gland or chorionic gonadotropin from placenta that stimulates secretion of progesterone by the corpus luteum.

Parturition The process of giving birth to offspring.

Periparturient The time immediately preceding, during, and immediately following parturition.

Placenta Fetal membranes that include the chorion, allantois and amnion. The chorion and allantois fuse to form the chorioallantois which transfers nutrients, waste products and gases between maternal blood and the fetal blood. In many species, the chorion secretes progesterone.

Posterior pituitary Structure at the base of the hypothalamus that secretes oxytocin and vasopressin in response to neurological signals.

Progesterone block During pregnancy, progesterone from the corpus luteum and/or placenta sustains the pregnancy by inhibiting uterine contractions and other activities that would lead to premature delivery of the fetus and placenta.

Prostaglandin $F_{2\alpha}$ The luteolytic hormone that causes functional and structural demise of the corpus luteum.

Uterus The major component of the female reproductive tract in which the conceptus (embryo/fetus and placenta) develop. It has an outer muscular layer known as the myometrium and an inner secretory layer known as the endometrium.

Introduction

Pregnancy is established and maintained in subprimate mammals in response to a series of interactions between the conceptus (embryo/fetus and associated membranes), uterus and/or ovarian corpus luteum (CL) (Bazer and First, 1983; Bazer and Spencer, 2009; Bazer *et al.*, 2008; Bazer, 2015). These interactions prevent functional and structural regression of the CL, or luteolysis. During the peri-implantation period of pregnancy, pregnancy recognition signals from the conceptus to the maternal system are either antiluteolytic or luteotrophic. The functional life span of the CL is controlled by release of prostaglandin $F_{2\alpha}$ (PGF) from either the uterus (subprimate mammals) and/or ovaries (primates, including humans). Pregnancy recognition signals from the trophoblast act in a paracrine or endocrine manner to interrupt either uterine or intra-ovarian production of luteolytic PGF (antiluteolytic) or the hormone may act directly on the CL (luteotropic).

Mammals have a placenta that surrounds the embryo/fetus and it is through these placental membranes that nutrients and other molecules from the maternal vascular system are transported to the vascular system of the conceptus to support its growth and development. At some point in fetal development, depending on the species, there is maturation of the hypothalamic-pituitary-adrenal axis that is sufficient to induce parturition which involves expulsion of the fetus and its placenta from the uterus. Each species has a paradigm for producing live offspring so that the species is able to adapt to the external environment with maximum chances for survival of the neonate. This process of giving birth to offspring is called parturition (Latin, parturio, to be in labor). There are variations regarding factors controlling parturition; however, there is a common theme across species based on the roles of the fetal hypothalamic-pituitary-adrenal axis in inducing parturition. Parturition in sheep is the "classical" model because it has provided the preponderance of information that has advanced understanding of the endocrinology and physiology of parturition in subprimate mammals.

Pregnancy Maintenance in Ruminants

In ruminants, such as sheep and cows, an ovulatory surge of LH coincident with onset of estrus (Day 0) initiates events that culminate in ovulation about 30 h later. The antiluteolytic signal for pregnancy recognition in ruminants is interferon tau (IFNT) produced by mononuclear cells of conceptus trophectoderm. IFNT exerts a paracrine, antiluteolytic effect on the endometrium to inhibit uterine secretion of luteolytic pulses of PGF. Other conceptus and/or uterine products secreted during early pregnancy, for example, prostaglandin E2 (PGE) and platelet activating factor (PAF) may exert secondary luteal protective effects. The mechanism for pregnancy recognition is similar for sheep, cattle and goats.

Luteolysis is initiated as progesterone down-regulates expression of receptors for progesterone (PGR) in uterine epithelia 12–13 days after onset of estrus. With down-regulation of PGR there is an increase in expression of estrogen receptor alpha (ESR1) and then oxytocin receptors (OXTR) by the uterine epithelia. Oxytocin secreted by the corpus luteum (CL) and posterior pituitary binds OXTR and stimulates pulsatile secretion of PGF by uterine epithelia. IFNT inhibits expression of ESR1 and OTR mRNAs in endometrial epithelia to abrogate oxytocin-induced release of luteolytic pulses of PGF that ensures maintenance of the CL and its production of progesterone, the hormone of pregnancy. Nevertheless, inter-estrous intervals of 30–35 days result when sheep conceptuses are removed from uteri of ewes on Day 16 or after intrauterine infusions of either highly purified native ovine IFNT or recombinant IFNT (roIFNT) between Days 11 and 15 after onset of estrus. Thus, a secondary endometrial luteolytic mechanism activated between 25 and 30 days post-estrus must be abrogated by the conceptus to allow maintenance of CL function has not been established, but neither placental lactogen (CSH1) nor placental growth hormone (GH1) were found to be the secondary "signal" from the conceptus that reinforces the antiluteolytic effects of IFNT.

Binucleated trophectoderm cells in sheep conceptuses appear by Day 16 and secrete placental lactogen (CSH1). Placentae of other ruminant species secrete hormones structurally related to pituitary growth hormone (GH) and prolactin (PRL) and they are members of the CSH1 family. Both ovine GH and CSH1 have similar somatogenic activities; however, their circulating levels are regulated differently during the pregnancy. CSH1 is detected in blood of ewes by Day 50 of pregnancy and concentrations peak between 120 and 130 days of the 147 day period of gestation. Concentrations of CSH1 in fetal blood are less than in maternal blood and peak at mid-gestation after which time they may remain unchanged or decrease gradually to term. Concentrations of oGH1 are low in maternal serum throughout pregnancy and are not correlated with gestational age. Concentrations of oGH are greater in fetal than in maternal serum and greatest during mid-gestation. CSH1 may be critical to maintenance of pregnancy in sheep since lactogenic hormones influence steroidogenesis in CL and transport of water and other nutrients by placental membranes. Lactogenic hormones also stimulate proliferation of cells, expression of PGR, protein synthesis, exocrine secretion of PGF (pigs) by uterine epithelia, mammary growth and lactation. Ovine placental GH1 may have multiple roles in pregnancy.

Pregnancy Maintenance in Rodents

Gestation in rodents lasts 20–22 days, and functional CL must be maintained until Day 17. The transition in rodents, (i.e., rats, mice and hamsters) from recurring estrous cycles to pregnancy is dependent on maintenance of progesterone production by the CL, the main source of progesterone throughout pregnancy (Ben-Jonathan *et al.*, 2008; Soares *et al.*, 2007). Progesterone replacement alone is sufficient to maintain pregnancy in ovariectomized rats. In addition to lacking a true luteal phase during the estrous cycle, rodents do not exhibit a change in source of progesterone from the CL to the placenta. Thus, maternal recognition of pregnancy in rodents involves activation of nonfunctional CL of the cycle into functional CL of pregnancy.

Mating of rodents during estrus results in pseudopregnancy or pregnancy, and the activated CL secrete progesterone for 12–14 days. Extension of CL lifespan past Day 12 after onset of estrus depends on the presence of viable conceptuses within the uterus. A successful pregnancy in rats requires active secretion of progesterone from CL until at least Days 17–18. Therefore, establishment and maintenance of pregnancy in rodents requires two separate endocrine events. The first endocrine event initiated by mating results in diurnal and nocturnal surges of prolactin during the first 12 days of pregnancy or pseudopregnancy in rats. The prolactin is necessary for formation and maintenance of active CL and their secretion of progesterone. Therefore, the luteotrophic effects of PRL during early pregnancy are required to convert a nonfunctional CL of the estrous cycle into a functional CL of pregnancy or pseudopregnancy.

The second endocrine event required for the maintenance of pregnancy in rodents is dependent on implantation and development of normal conceptuses. In pregnant rodents, the placenta and stromal cells that differentiate to form the uterine decidua produce PRL-like hormones that have luteotrophic effects on the CL to ensure production of progesterone during the middle and late stages of pregnancy. The antimesometrial uterine decidual cells secrete numerous hormones, including PRL-like protein B (PLP-B) and decidual PRL-like protein (dPRP). The main luteotropic hormone of the decidua is a PRL-like protein, although uterine decidual cells also secreted PLP-B. Placental lactogens (CSHs) are found in a variety of subprimate mammals, including rodents. However, the only established physiological roles for CSH1s are in rodents. In rats, seven members of the PRL gene family are expressed by trophoblast cells of the placenta: placental lactogen-I (CSH-I), CSH1-I variant (CSH1-Iv), CSH1-I mosaic (CSH1-Im), CSH1-II, PRL-like protein A (PLP-A), PLP-B and PLP-C. CSH1-I and CSH1-II have biological activities similar to those of pituitary PRL, including CL maintenance and growth of the mammary glands.

Factors regulating production of CSH1s by trophoblast cells are not well known. The ontogeny of CSH1-I expression appears to be linked to differentiation of trophoblast cells during the peri-implantation period. In mice, expression of the CSH1-I gene appears to be regulated by the number of conceptuses and by the pituitary gland. Similarly, factors affecting expression of the CSH1-II gene include the number of conceptuses, genotype of the conceptuses, pituitary via growth hormone (GH), ovarian steroids and nutritional status of the mother. The shift from CSH1-II to CSH1-II is associated temporally with degeneration of the choriovitelline placenta between Days 13 and 14 of gestation.

In rats, PRL is essential for maintenance of progesterone secretion by CL throughout pseudopregnancy. However, in the pregnant rat, removal of the anterior pituitary after mid-gestation does not affect luteal function and pregnancy is maintained. Thus, pituitary PRL is not necessary after Day 6 of gestation in rodents. Given their PRL-like activity and their ontogeny during pregnancy, CSH1s are likely luteotrophic factors from the placentae during mid- to late-pregnancy in rodents.

Pregnancy Maintenance in Swine

Estrogens produced by conceptuses between Days 11 and 12 of gestation provide the initial signal for maternal recognition of pregnancy in swine (Bazer, 2015). This signal results in a switch in the direction of secretion of PGF by uterine epithelia from an endocrine direction (i.e., into maternal blood) to an exocrine direction (i.e., into the uterine lumen). A second period of estrogen production occurs between Days 15 and 25–30 of pregnancy in pigs. Injection of exogenous estrogen (estradiol valerate, 5 mg/day) on Days 11 through 15 of the estrous cycle results in CL maintenance for a period equivalent to or slightly longer than pregnancy. This condition of estrogen-induced CL maintenance in non-pregnant pigs is known as pseudopregnancy and it persists for about 120 days. Thus, two phases of exogenous estradiol, similar to that produced by conceptuses on Days 11–13 and Days 15–25–30, are necessary for prolonged secretion of PGF into the uterine lumen. Estradiol may induce receptors for maternal hormones, for example, prolactin, or conceptus secretory proteins, which influence exocrine (into the uterine lumen) secretion of PGF. The first estrogen signal may induce receptors for PRL and the second estrogen signal may be required to replenish those receptors. Administration of estradiol on Day 9 advances the uterine secretory response in pregnant gilts, but leads to conceptus death by Day 16 due to degeneration of the extracellular matrix on the uterine luminal epithelium. An explanation for this "induced" conceptus death is not available, but it may result from asynchrony between the developing conceptus and uterine environment that adversely affects maintenance of the extracellular matrix.

Estrogen induces endometrial receptors for prolactin (PRLR) in pigs, and PRL acts on the endometrium to induce calcium cycling across the epithelium. In pigs, PRL interacts with estrogen and progesterone to increase total recoverable uteroferrin, glucose and PGF in uterine flushings. Available results strongly indicate that prolactin enhances uterine responsiveness to progesterone during periods critical for maintenance of pregnancy.

Pregnancy Maintenance in Horses

The uterine luteolytic hormone in mares is PGF and the conceptus produces an unidentified factor that inhibits uterine secretion of luteolytic pulses of PGF (see Bazer, 2015). In cycling mares, concentrations of PGF in uterine venous plasma and uterine flushings increase between Days 14 and 16 when luteolysis occurs and concentrations of progesterone decline in blood. The amount of PGF bound by luteal receptors is maximal on Day 14 of the estrous cycle and Day 18 of pregnancy. Since CL of mares can respond to circulating PGF during pregnancy, the conceptus must evoke an antiluteolytic mechanism. Pregnant mares have little PGF in uterine fluids, low concentrations of PGF in uterine venous plasma, and no pattern of pulsatile release of PGF (measured as the metabolite of PGF, PGFM) in peripheral plasma. In the presence of the conceptus, endometrial production of PGF in response to cervical stimulation and exogenous oxytocin is markedly reduced, indicating the absence or significant reduction in endometrial receptors for oxytocin in mares during early pregnancy.

The pregnancy recognition signal in mares is not known, but estradiol and/or proteins from the conceptus are likely candidates. There is also some evidence that PGE may play a role in pregnancy recognition signaling in mares. The equine conceptus migrates between the two uterine horns 12–14 times per day between Days 12–18 of pregnancy presumably to inhibit endometrial production of luteolytic PGF and protect the CL for production of P4. The equine conceptus also produces increasing amounts of estradiol

between Days 8 and 20 of gestation. A similar trend, but of greater magnitude, was found for estrone. Attempts to prolong CL lifespan in mares by injection of estrogens have been inconsistent.

Horse conceptuses secrete three major proteins between Days 12 and 14 of pregnancy with molecular weights of greater than 400,000, 50,000, and 65,000. However, the role(s) of those proteins is not known. Estrogens and/or conceptus secretory proteins may provide the maternal recognition of pregnancy signal in the mare by directly or indirectly inhibiting uterine production of luteolytic pulses of PGF.

Pregnancy Maintenance in Rabbits

Rabbits are induced ovulators and multiple ova are ovulated from each ovary approximately 10 h after mating. The oocytes remain fertilizable for about 6 h (Marcinkiewicz and Bahr, 1993). The fertilized ova arrive in the uterus 3 days post-ovulation and implantation occurs on Day 7 at the blastocyst stage of conceptus development. The rabbit placenta is not a significant source of progesterone and the CL are required for pregnancy to go to term. Following a sterile mating, CL form and persist for 14–16 days without support from conceptus products. For both pseudopregnant and pregnant does, progesterone begins to increase 2 days after mating to maximal levels of 12–20 ng/mL between Days 6–8 post-coitum. Between Days 8 and 10 post-mating progesterone profiles of pregnant and pseudopregnant does begin to diverge with concentrations of progesterone in blood declining rapidly after Day 12 to basal levels between Days 16 and 18 of pseudopregnancy. For pregnant does, concentrations of progesterone in blood do not begin to decline until 3–4 days prior to parturition (kindling).

Maternal recognition of pregnancy occurs after implantation between Days 10 and 12 of gestation. Estrogen and a placental luteotropin interact to maintain progesterone production by the corpora lutea until term (28–35 days). Estrogen from developing follicles is required to stimulate progesterone production by CL for the first 10–12 days of pregnancy, but not to term. Luteal cells of corpora lutea of rabbits express LH receptors; however, LH does not stimulate progesterone production *in vivo*.

Production of a placental luteotrophin is necessary for production of progesterone by corpora lutea to term, but exogenous estrogen does not support progesterone production by corpora lutea of hysterectomized does during late pregnancy. Placentae of rabbits secrete a molecule having immunoreactive GnRH-like activity, but there is no evidence for it being transported from the uterus to the corpora lutea. A putative placental luteotrophic factor with a molecular weight greater than 6–8 kDa does enhance progesterone production by cultured luteal cells. Placental giant cells in rabbits also contain immunoreactive chorionic gonado-tropin, and cytotrophoblast cells contain immunoreactive CSH1/PRL. However, the function(s) of those proteins has not been determined.

Pregnancy Maintenance in Cats

The cat, also an induced ovulator, ovulates 25–50 h post-mating (about 24–36 h after the LH peak) with frequent matings reducing the time to ovulation (Verstegen *et al.*, 1993; Brown, 2006). Fertilization takes place in the oviduct up to 48 h after ovulation. Feline embryos enter the uterus at the blastocyst stage, 4–6 days post-ovulation, blastocysts hatch from the zona pellucida on Day 11 and begin implanting by Days 12–13 of pregnancy. Following mating, concentrations of progesterone in plasma increase from about Day 3 to maximal levels (15–90 ng/mL) between Days 10 and 40 of pregnancy, or Days 13 and 30 of pseudopregnancy. Pseudopregnancy typically lasts 40 days and gestation ranges between 56 and 71 days, averaging 63–65 days. By Day 30, circulating levels of progesterone are significantly higher in pregnant than in pseudopregnant queens. The corpora lutea of queens are resistant to luteolytic effects of PGF until after Day 40 of pregnancy.

The placenta does not appear to be a significant source of progesterone during gestation in cats. Concentrations of prolactin in maternal blood increase after Day 40 of gestation in queens and it is considered the be luteotrophic. Inhibition of secretion of PRL in the last trimester of gestation causes abortion. Concentrations of PRL are greatest just prior to parturition 5–10 ng/mL) and remain elevated during lactation in response to suckling. Relaxin is produced by the fetal-placental unit, corpora lutea and uterus during pregnancy. Relaxin likely works in concert with progesterone to keep the uterus quiescent and to facilitate parturition by softening the connective tissues of the pelvis and cervix (Sherwood, 2004). Following parturition, queens experience a period of lactational anestrus and resume cycling 2–3 weeks after weaning kittens.

Pregnancy Maintenance in Dogs

Dogs are spontaneous ovulators and fertilization of oocytes occurs 2–5 days after ovulation in the bitch and embryos enter the uterus at the blastocyst stage around Day 10 (Concannon, 1993; Verstegen-Onclin and Verstegen, 2008). Embryos remain free-floating in the uterus until hatching and implantation around Day 16. The ovary is the primary source of progesterone and ovariectomy or hypophysectomy at any stage of pregnancy results in abortion. Since the lifespan of corpora lutea of pregnancy 64–66 days) and pseudopregnancy 60–63 days) are similar, there is no known requirement for signaling between the conceptus and maternal system for CL maintenance, pregnancy recognition or maintenance of pregnancy.

The corpora lutea of bitches are resistant to luteolytic effects of PGF until after Day 40 of pregnancy or pseudopregnancy. The secretion of prolactin increases after Days 30–40 of gestation and it is considered to be luteotrophic. Inhibition of secretion of PRL after about Day 30 of gestation causes abortion. The ovaries and pregnant uterus produce relaxin for uterine quiescence during pregnancy, as well as relaxation of the cervix and pelvic ligaments. Interestingly, it remains detectable in blood of bitches for up to 60 days after parturition.

Endocrine Cascade Leading to Parturition

Subprimate mammals have placentae that include the amnion and amniotic fluid therein that provides support for the embryo/ fetus to exist somewhat like a marine mammal and develop symmetrically in a liquid environment. The other two membranes, chorion and allantois, fuse to form the chorioallantois that transports nutrients from the blood of the mother to the blood of the conceptus and allows for the exchange of gases (O_2 and CO_2) between blood of mother and conceptus. At some point in development of the conceptus, varying with species, the fetus and its placental membranes are expelled from the uterus into the external world. Each species has a unique paradigm for producing live offspring that includes development of the fetus in utero, the birth process, and adaptation of the newborn to the external environment so that survival of the offspring is maximized for propagation of the species. The physiological events leading to birth of subprimate mammals is known as parturition (Latin, parturio, to be in labor), is the focus of this section of this chapter (see Thorburn and Challis, 1979; Liggins, 1988; Currie *et al.*, 1988; Wood and Cudd, 1997; Challis *et al.*, 2005).

One of the oldest records depicting birth is a stone relief in the tomb of Ti (2450-2320 BCE) showing assistance being given to a cow by applying traction to the limbs of a partially protruding calf and another showing removal of fetal membranes. Around 2000 years later the Greek philosopher Hippocrates proposed that the baby determines the timing of birth. In the 1930s, Joseph Barcroft found that restriction of oxygen and other nutrients to the fetus due to the mother's inability to meet the increasing demands of a developing fetus for nutrients lead to birth (see Liggins, 1988). However, Liggins (1988) published seminal findings establishing that maturation of the fetal hypothalamic-pituitary-adrenal gland axis provides for endocrine regulation of parturition. From the first record over 4400 years ago through to today, the paradigm of pregnancy leading to parturition is that the fetus and placenta signal their presence to the mother, secrete hormones that establish and maintain the pregnancy, prepare the mother's mammary glands for lactation and determine the time of birth.

There are a mulitude of variations on the theme of regulatory factors controlling reproduction in mammals and they are likely continuing to undergo evolutionary changes. Each species is exploring to find the "best fit" for maximizing survival of the species. The process of parturition also involves a mulitude of variations in factors controlling parturition. However, there is a common theme across species in regulating the major events of reproduction including parturition. Most is known about the physiology and endocrinology of parturition in the ewe, which is the "classical" model that has provided the preponderance of information toward our understanding of parturition in subprimate mammals.

Parturition, once initiated, leads to rapid expulsion of the young from the reproductive tract of the mother to the external environment. The mother prepares for this throughout pregnancy with a gradual change in her endocrine environment to accommodate changes that range from alterations in cardiac function and respiratory functions to mammogenesis and lactogenesis. The placental membranes and the hypothalamic-pituitary-adrenal axis of the fetus mature with advancing gestation and once that maturation process reaches a critical point events leading to parturition are initiated. The key events leading to parturition were established based largely on results from research by Liggins and co-workers with sheep (see Fig. 1).

In fetal lambs the hypothalamus at the base of the brain begins to secrete corticotropin releasing hormone (CRH) into the local portal circulation around Day 100 of gestation. The CRH enters the hypothalamic portal system supplying the anterior pituitary gland. On about Day 125 of pregnancy, the fetal anterior pituitary gland begins to respond to CRH by producing and secreting adrenocorticotropin hormone (ACTH) into the systemic circulation where it can stimulate the adrenal cortex to release cortisol. Arginine vasopressin (AVP) secreted by the hypothalamus may also play a role in parturition by stimulating the secretion of ACTH from the anterior pituitary gland. Beginning around Day 135 of gestation the adrenal cortex of the fetus has matured sufficiently to begin responding to ACTH and secreting cortisol in increasing amounts so that concentrations in fetal blood are maximum 24–48 h prior to the onset of parturition in ewes on Day 147 of gestation. In sheep and in many other species including goats, cows, and pigs, the endocrine events in the fetus leading to production of cortisol and culminating in parturition and birth of the offspring are very similar.

The critical role of the fetal hypothalamic-pituitary-adrenal axis was revealed in an elegant series of studies by Liggins and coworkers. They removed the fetal anterior pituitary gland at the end of the second trimester of pregnancy and found that parturition was delayed significantly. But, when ACTH was administered to the fetus at the end of the second trimester of pregnancy parturition was induced. Likewise removal of the fetal adrenal gland and cortisol prevented parturition while administration of cortisol to the fetus induced parturition. In sheep and cows with deformities in the fetal brain resulting in the absence of hypothalamic secretion of CRH, parturition does not occur normally and fetuses must be removed by Caesarean section. This is because the fetus will continue to grow to an extremely large size and eventually compress the gastrointestinal system of the ewe or cow leading to her death. A similar result was reported for fetal calves with an abnormality of the adrenal gland that prevented secretion of cortisol.

During the last 3–5 days prior to parturition there are significant changes in the endocrinology of the pregnant female (see Table 1). First, concentrations of progesterone in maternal blood decrease rapidly. This is because the placenta stops producing

Parturition - Sheep Model

- Fetus
 - Hypothalamus
 - · CRH
 - Anterior Pituitary
 - · ACTH
 - Prolactin
 - Adrenal Gland
 - Secretion of Cortisol
 - Placenta
 - Progesterone decreasing, estrogen increasing due to activation of C-21 Steroid 17
 - alpha hydroxylase enzyme by cortisol
- Maternal
 - Corpus Luteum
 - · Progesterone and Relaxin (some species)
 - · Regresses due to PGF2-alpha from uterus in response to estrogen and oxytocin
 - Anterior Pituitary
 - Prolactin and Growth Hormone
 - Posterior Pituitary
 - · Oxytocin released to stimulate secretion of PGF2-alpha and myometrial contractions
 - Uterus
 - · PGF2-alpha secretion increasing
 - · Gap junctions increase among myometrial cells and uterine contractions increase

Fig. 1 Parturition: The sheep model. The periparturient endocrine events that occur in the mature fetus initiate the endocrine cascade that leads to parturition. The fetal hypothalamus secretes corticotropin releasing hormone (CRH) that acts on the fetal anterior pituitary gland to induce production and secretion of adrenocorticotropin hormone (ACTH) into the general circulation of the fetus. The fetal adrenal gland responds to ACTH with secretion of cortisol primarily. Cortisol acts on cells of the placenta to activate C21-steroid 17α -hydroxylase which allows progesterone to be metabolized to estrogens which are key to the initiation of parturition. The shift from progesterone dominance for maintaining pregnancy to estrogen dominance is integral to the cascade that leads to parturition. For example, estrogen activates enzymes that lead to synthesis of prostaglandin $F_{2\alpha}$ (PGF2-alpha) that plays a major role in parturition, and estrogen increases in expression of receptors for oxytocin on uterine epithelial cells and smooth muscle cells of the uterine myometrium. The mother's hypothalamus secretes oxytocin which acts via its receptors on uterine epithelial cells induce pulsatile secretion of PGF2-alpha and both oxytocin and PGF2-alpha act on the myometrium to induce contractions of the myometrium. In addition to PGF2-alpha causing regression of the corpus luteum to further decrease circulating concentrations of progesterone, it also release relaxin (e.g., pigs) from the corpus luteum which is responsible for dilation of the cervix and relaxation of pelvic ligaments. In other species the placenta is the source of the relaxin (Sherwood, 2004). The decrease in concentrations of progesterone and increasing concentrations of contractions among smooth muscle cells to expel the fetus and placenta to complete the process of parturition.

progesterone and starts secreting estradiol and there is regression of the corpus luteum to eliminate that source of progesterone. The sheep placenta produces progesterone; however, cortisol activates the enzyme C21-steroid 17-alpha hydroxylase which converts progesterone to 17-alpha hydroxyprogesterone that can be metabolized further to androgens and estrogens. The fetal gonads in mares provide androgens for synthesis of estrogens by the placenta. The estradiol produced by the placenta increases phospholipase A2 activity and expression of oxytocin receptors in uterine epithelia and uterine myometrium. Phospholipase A liberates arachidonic acid from phospholipids in uterine epithelia for conversion by prostaglandin synthase 2 and prostaglandin F synthase to PGF. Oxytocin from the posterior pituitary gland is released in pulses as the fetal head pushes on the cervix during parturition

Species	Days of gestation	Source of progesterone	Placental C21 Steroid 17α- hydroxylase	Fetal adrenal hormone	Source of relaxin
Sheep	144–152	CL and Placenta	Yes	Cortisol	?
Goat	146–154	CL	Yes	Cortisol	?
Cow	270-300	CL and Placenta	Yes	Cortisol	CL
Pig	112–115	CL	Yes	Cortisol	CL
Horse	315-360	Placenta	No	Cortisol	Placenta
Dog	64–66	CL	Unknown	Unknown	CL and Placenta
Cat	64–66	Placenta	Unknown	Unknown	CL, Placenta and Uterus
Rat		CL	No	-	CL
Rabbit		CL	No	_	Placenta and Uterus
Primate		Placenta	No	Cortisol DHEA SO ₄	CL+Uterus

Table 1 Characteristics of periparturient endocrine events

Abbreviations: CL, corpus luteum; DHEA-SO₄, dehydroepiandrosterone sulfate.

Fig. 2 The myometrium is composed of smooth muscle cells that are critical to providing the forces of contractions necessary for delivery of the fetus and placenta. A prerequisite for development of strong myometrial contractions is the increase in production of estrogens by the placenta and the decreased in progesterone which leads to the formation of gap junctions among myometrial cells that allows them to contract in unison and with increasing force as oxytocin and prostaglandin $F_{2\alpha}$ act via their respective receptors to stimulate uterine contractions. Distension of the uterus and pressure of the fetus on the cervix induce release of oxytocin from the posterior pituitary gland of the mother in a pulsatile manner. The uterine endometrium is the primary source of the prostaglandin F2 α that acts on the myometrium and cervix to stimulate contractions. As noted in **Fig. 1**, relaxin softens and increases the distensibility of the pelvic ligaments and dilation of the cervix forming a passageway sufficient for delivery of the fetus. An increase in concentrations of oxytocin and prostaglandins in maternal blood, along with formation of gap junctions between smooth muscle cells of the uterine myometrium induce increasingly powerful contractions of the uterine myometrium that expel the fetus and placenta into the extra-uterine environment.

(Ferguson reflex) which causes pulsatile release of PGF from the uterine epithelia that is luteolytic and causes regression of the CL and their secretion of P4. So, cortisol changes the sex hormone ratio from high progesterone and low estradiol during pregnancy to high estradiol and low progesterone during parturition.

The decreasing concentrations of progesterone and increasing concentrations of estradiol in the ewe leads to the formation of gap junctions (known as connexin 43) between smooth muscle cells of the uterine myometrium (see Fig. 2). The gap junctions allow the smooth muscle cells to communicate with each other to contract and relax in unison. Visualize that early in parturition there are few gap junctions so contractions are weak and infrequent, but progressive increases in numbers of gap junctions allow strengthening of contractions at more frequent intervals as more and more smooth muscle cells contract and relax in unison. During this time in the peri-parturient period, oxytocin is being released in greater amounts with strength and frequency of contractions because the fetus is putting more pressure on the cervix (Ferguson reflex) at increasingly frequent intervals. Finally, uterine myometrial contractions are sufficient to expel the fetus and then the placenta from the uterus, through the cervix and vagina to the external environment. PGF is also acting with oxytocin to stimulate contractions of the uterine myometrium.

Relaxin is a hormone produced by large luteal cells of the corpus luteum of pigs, the placenta and corpus luteum of cow and placenta of the mare. Relaxin interacts with other hormones including estradiol, PGF and oxytocin to cause relaxation and dilation of the cervix and pelvic ligaments. Relaxin increases keratin sulfate and decreases dematin sulfate in cervical collagen. With loss of dermatin sulfate there is a decrease in cross-linking of collagen fibers which increases distensibility of the cervical collagen and the diameter of the lumen of the cervix.

Epinephrine stimulates synthesis and cortisol induces secretion of surfactant by epithelial cells of the fetal lungs which is critical for maturation and function of the lungs to ensure respiration and survival of the offspring.

References

Bazer, F. W. (2015). History of maternal recognition of pregnancy. In R. D. Geisert, & F. W. Bazer (Eds.), *Regulation of Implantation and Establishment of Pregnancy in Mammals: Tribute to 45 Year Anniversary of Roger V. Short's "Maternal Recognition of Pregnancy"* (pp. 1–25). Cham: Springer International Publishing AG.

Bazer, F. W., & First, N. L. (1983). Pregnancy and parturition. Journal of Animal Science, 57(Suppl. 2), 425-460.

Bazer, F. W., & Spencer, T. E. (2009). Hormones and pregnancy. In D. O. Norris, & K. H. Lopez (Eds.), Hormones and Reproduction in Vertebrates (pp. 55–70). San Diego, CA: Academic Press.

Bazer, F. W., Spencer, T. E., Ott, T. L., & Johnson, G. A. (2008). Mediators of maternal recognition of pregnancy. In J. D. Aplin, A. T. Fazleabas, S. R. Glasser, & L. C. Giudice (Eds.), *The Endometrium* (second ed., pp. 268–285). London: Informa Healthcare.

Ben-Jonathan, N., LaPensee, C. R., & LaPensee, E. W. (2008). What can we learn from rodents about prolactin in humans? Endocrine Reviews, 29, 1-41.

Brown, J. L. (2006). Comparative endocrinology of domestic and nondomestic felids. Theriogenology, 66, 25-36.

Challis, J. R., Bloomfield, F. H., Bocking, A. D., et al. (2005). Fetal signals and parturition. Journal of Obstetetrical and Gynaecological Research, 6, 492-499.

Concannon, P. W. (1993). Biology of gonadotrophin secretion in adult and prepubertal female dogs. Journal of Reproduction and Fertility, 47(Suppl.), 3–27.

Currie, W. B., Gorewit, R. C., & Michel, F. J. (1988). Endocrine changes, with special emphasis on oestradiol-17 beta, prolactin and oxytocin, before and during labour and delivery in goats. *Journal of Reproduction and Fertility, 82*, 299–308.

Liggins, C. G. (1988). Endocrinology of parturition. In J. M. Novy, & J. A. Resko (Eds.), Fetal Endocrinology (pp. 211–237). New York, NY: Academic Press.

Marcinkiewicz, J. L., & Bahr, J. M. (1993). Identification and preliminary characterization of luteotropic activity in the rabbit placenta. *Biology of Reproduction, 48,* 403–408. Sherwood, D. O. (2004). Relaxin's physiological roles and other diverse actions. *Endocrine Reviews, 25,* 205–234.

Soares, M. J., Konno, T., & Khorshed Alam, S. K. M. (2007). The prolactin family: Effectors of pregnancy-dependent adaptations. *Trends in Endocrinology and Metabolism, 18*, 114–121.

Thorburn, G. D., & Challis, J. R. G. (1979). Endocrine control of parturition. Physiological Review, 59, 863-919.

Verstegen, J. P., Onclin, K., Silva, L. D. M., et al. (1993). Regulation of progesterone during pregnancy in the cat: Studies on the roles of corpora lutea, placenata and prolactin secretion. Journal of Reproduction and Fertility Supplement, 47, 165–173.

Verstegen-Onclin, K., & Verstegen, J. (2008). Endocrinology of pregnancy in the dog: A review. Theriogenology, 70, 291-299.

Wood, C. E., & Cudd, T. A. (1997). Development of the hypothalamus-pituitary-adrenal axis of the equine fetus: A comparative review. Equine Veterinary Journal Supplement, 24, 74–82.

FETAL DEVELOPMENT

Formation and Growth of the Fetus

Alison J Forhead, University of Cambridge, Cambridge, United Kingdom; and Oxford Brookes University, Oxford, United Kingdom Abigail L Fowden, University of Cambridge, Cambridge, United Kingdom

© 2018 Elsevier Inc. All rights reserved.

The conceptus develops from a single fertilized egg into a complex multicellular organism by processes of cell proliferation, growth, and differentiation within the uterus. After organogenesis, the major period of body growth occurs in fetal life, during the second and third trimesters of human pregnancy. Fetal growth follows an orderly and coordinated increase in body weight and length, which is coupled with a proportionate increase in organ weights and their functional development. Normal fetal growth and maturation is essential for both the survival of the offspring at birth and for longer term health in adult life.

Measurement of Fetal Growth

Fetal growth can be assessed by a range of clinical and experimental methods. End-point measurements, such as body weight, length, and adiposity at the time of delivery, are simple indicators of intrauterine growth. It is also possible measure growth rate while the fetus is developing within the uterus. Ultrasound scanning can be used to make a variety of measurements of growth at different gestational ages. In clinical practice, the most common biometric measurements include biparietal diameter (diameter of a cross-section of the head or skull), femur bone length and abdominal circumference, and these values are combined to estimate the body weight of the fetus.

Using ultrasound data from many individuals, a series of growth charts can be generated to estimate the percentile and the growth trajectory of the fetus. These growth charts have recently been updated by the World Health Organization using data obtained in a multinational study. Longitudinal measurements were made from 14 to 40 weeks in singleton fetuses, where the pregnant women were recruited from middle to high income backgrounds to ensure good nutritional status (Kiserud et al., 2017; Fig. 1). Fetal growth charts can be used to diagnose abnormalities in intrauterine growth, particularly if fetal growth deviates from its previous trajectory. Estimated fetal body weight less than the 10th centile or greater than the 90th centile indicates a fetus that is small- or large-for-gestational age (SGA and LGA), respectively.

Experimentally, fetal growth has been monitored in large animal models, such as sheep, using both end-point and continuous intrauterine measurements. In the sheep fetus, indwelling growth devices measure the crown-rump length and abdominal circum-ference over a period of late gestation and incremental growth rates have been demonstrated in well-fed ewes with stable maternal plasma glucose concentrations (Mellor and Matheson, 1979; Fig. 2). Collectively, the ultrasound and experimental techniques have shown, in many species including the human, that fetal growth is greatest in absolute terms in the later stages of gestation. Close to term, however, the growth rate of the fetus slows as the developing tissues switch from cell proliferation to differentiation and functional maturation, in preparation for birth.

Control of Fetal Growth

The growth of the fetus is driven primarily by the genetic potential of the individual inherited at conception. Intrauterine growth and development, however, can be modified by a variety of factors including physiological, nutritional, environmental, and clinical conditions with consequences for size at birth. Many of these factors interact with each other to generate a wider range of birth weights in the human and animal population than predicted by genotype alone. These factors can be divided into those that originate in (1) the mother, (2) the placenta, and (3) the fetus itself (Fig. 3).

Maternal Factors

Maternal size

The size of the mother influences the growth rate of the fetus. This may be due to (i) the inherited genetic potential for fetal growth, as paternal height also correlates with birth weight, (ii) the size of the uterus and/or (iii) the body composition and energy reserves of the mother before and during pregnancy. The relative contributions of the genetic and uterine environment in determining fetal growth, however, are difficult to separate. In human populations, both maternal height and body mass index, and paternal height, correlate with offspring birth weight; further analysis shows that neonatal adiposity and head circumference are predicted by maternal height and body mass index, while limb lengths are more strongly associated with paternal height (Pomeroy et al., 2015). In assisted pregnancies where egg donation was used, the birth weight of the infant correlated with the weight and height

Fig. 1 Growth charts and percentiles for biparietal (*outer–inner*) diameter, head circumference, abdominal circumference, femur length, humerus length, and estimated body weight in human fetuses from 14 to 40 weeks of gestation. Taken from Kiserud, T., Piaggio, G., Carroli, G., Widmer, M., Carvalho, J., Neerup Jensen, L., Giordano, D., Cecatti, J.G., Abdel Aleem, H., Talegawkar, S.A., Benachi, A., Diemert, A., Tshefu Kitoto, A., Think-hamrop, J., Lumbiganon, P., Tabor, A., Kriplani, A., Gonzalez Perez, R., Hecher, K., Hanson, M.A., Gülmezoglu, A.M. and Platt, L.D. (2017). Correction: The World Health Organization fetal growth charts: A multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. *PLoS Medicine* 14(*3*), e1002284.

of the recipient, but not with measurements from the biological donor mother (Brooks et al., 1995). This suggests that the intrauterine environment may have a greater role in mediating the effect of maternal size on offspring birth weight than the genetic influence of the mother.

The larger the uterus, the more space is available for growth of both the placenta and fetus and equally, a small uterus can limit the ability of the placenta and fetus to grow to their genetic potential. The effect of uterine size on fetal growth was demonstrated in classical experiments by Walton and Hammond (1938). They developed the technique of artificial insemination to cross breed Shire horses and Shetland ponies. When a Shetland pony mare was inseminated by a Shire horse stallion, the foal produced was three times smaller than the foal conceived by a Shire horse mother and Shetland pony father (Walton and Hammond, 1938; Fig. 4). These studies showed that the size of the uterus can determine the size of the newborn foal, such that the birth weight of the offspring is a function of maternal body weight, around 8% in these experiments. Furthermore, the differences in foal size and body composition at birth persisted into later life.

Maternal nutrition

Maternal nutrition is a key regulator of fetal growth as the mother provides the macro- and micronutrients that both the fetus and placenta require to grow. Several experimental and epidemiological studies have shown that under-nutrition of the mother impairs fetal growth (Sferruzzi-Perri et al., 2013).

Fig. 2 Growth rates for crown-rump length and abdominal circumference using indwelling growth measuring devices in a sheep fetus during late gestation (term \sim 145 days). Redrawn from Mellor, D.J. and Matheson, I.C. (1979). Daily changes in the curved crown rump length of individual sheep foetuses during the last 60 days of pregnancy and the effects of different levels of maternal nutrition. *Quarterly Journal of Experimental Physiology* **64**, 119–131.

Fig. 3 Factors that influence the growth of the fetus.

Using growth-measuring devices in sheep fetuses, the growth rates of the axial skeleton and abdominal circumference were monitored before, during and after a 10-day period of maternal under-nutrition (Mellor and Murray, 1982; Fig. 5). Maternal plasma glucose levels fell when the mother was under-nourished and the growth rates measured in the fetus were suppressed. When the mother was re-fed to normal levels, maternal plasma glucose concentration returned to normal and the growth of the fetus was restored to the rate observed before the period of under-nutrition.

The Dutch Winter Hunger study is a unique opportunity to examine the effects of maternal under-nutrition on fetal growth in the human population. During World War II, parts of occupied Netherlands were severely rationed by the German army such that, for the last 6 months of the war, the food intake of the people of Western Netherlands, which included Amsterdam, Rotterdam, and The Hague, was reduced to < 1000 calories per day. Pregnant women in the third trimester during this time did not show normal weight gain and their babies were around 200–300 g lighter in birth weight (Smith, 1947; Lumey, 1998; Table 1).

Other maternal factors

Fetal growth is also affected by a variety of interacting maternal factors. Parity influences growth of the fetus, whereby first-born offspring are usually smaller than subsequent siblings, in part, as a consequence of changes in uterine size. Extreme ends of maternal

Fig. 4 Parents and offspring of reciprocal Shetland–Shire crosses to show consequences of maternal size for fetal growth. Taken from Walton, A. and Hammond, J. (1938). The maternal effects on growth and conformation in Shire horse-Shetland pony crosses. *Proceedings of the Royal Society London B* **125**, 311–335.

Fig. 5 Effect of maternal nutrition on growth rate of crown-rump length and abdominal circumference in a sheep fetus during late gestation. Redrawn from Mellor, D.J. and Murray, L. (1982). Effects of rate of increase in fetal girth of refeeding ewes after short periods of severe undernutrition during late gestation. *Research in Veterinary Science* **32**, 377–382.

age have been linked to impaired fetal growth, with both teenage and older (>35 years) mothers more likely to give birth to SGA offspring (Restrepo-Méndez et al., 2015). Low birth weight associated with young maternal age may be a result of suboptimal partitioning of resources between the fetus and mother that is still growing herself. In older mothers, preexisting disease may impair placental and fetal growth. These observations, however, are confounded by other factors linked with young and older pregnant women, such as socioeconomic class and nutritional status.

	Trimester of		nester of famine expo	famine exposure	
	Control 1st 2nd		3rd		
Placental weight (g)	636	647	611	547	
Birth weight (g)	3379	3361	3435	3130	
Placental efficiency (g/g)	5.31	5.19	5.62	5.72	

Table 1 Mea	n placental and birth weights.	, and placental efficiency	, in the Dutch Hunger Winter study
-------------	--------------------------------	----------------------------	------------------------------------

Data taken from Lumey, L.H. (1998). Compensatory placental growth after restricted maternal nutrition in early pregnancy. *Placenta* **19**, 105–111.

Low birth weight offspring are commonly associated with maternal smoking, chronic stress, alcohol, and drug use, lower socioeconomic class and medical conditions such as preeclampsia, malaria, chronic hypertension, and renal disease (Kramer, 1987). Maternal diabetes and obesity lead to increased incidences of both SGA and LGA offspring. Habitation in the chronic hypoxic environment at high altitude lowers birth weight by approximately 100 g for every 1000 m ascent in altitude, especially in nonnative populations (Moore, 2003).

Placental Factors

The placenta is the interface between the mother and fetus, and ultimately regulates the transfer of nutrients and oxygen from the maternal to fetal circulation. Therefore, the size, structural development and functional transport capacity of the placenta are key factors that affect fetal growth. In many animal species, including humans, the size and growth of the fetus correlates with the size of the placenta, although it is important to consider the common genetic make-up of the fetus and the fetal-derived placental tissues.

After implantation, the early development of the placenta is essential for normal growth of the embryo and fetus. In some species, such the sheep, the placenta grows at a rapid rate in early gestation and plateaus in size by mid-gestation, while in human pregnancy, the placenta continues to grow at a steady rate throughout gestation. During late gestation, however, the rise in fetal body weight occurs at a faster rate than the change in placental weight which means that the microstructural and functional properties of the placenta, and the transfer of nutrients, are increased to support fetal growth.

The exchange of nutrients, respiratory gasses, water, and waste products between the mother and fetus is governed by the structural development of the placenta. According to Fick's law of diffusion, the transfer rate of freely-permeable substances such as oxygen is dependent on the placental surface area, thickness of the diffusion pathway and the concentration gradient between the maternal and fetal circulations. The concentration gradient is maintained by adequate maternal oxygenation and nutrient status, and uteroplacental blood flow. For nutrients transferred by facilitated diffusion, such as glucose, the placental expression of transporter proteins contributes to the rate of transfer. Specific transporters are also essential for active transfer processes which use energy to transport nutrients, such as amino acids needed for protein synthesis, from mother to fetus against a concentration gradient.

Several experimental models demonstrate the importance of placental size in determining fetal growth. First, the consequences of decreasing placental size from the outset of the pregnancy have been examined in sheep. A number of the implantation sites in the uterus, the caruncles, were surgically removed before mating; these are the sites where the placental cotyledons form during pregnancy. Removal of some of these caruncles led to a reduction in the number of placental cotyledons and subsequently impaired the growth of the fetus (Robinson et al., 1994; Fig. 6). Many of the remaining placental sites were overgrown in an attempt to compensate for the reduction in number, but placental weight overall was still lower which caused poor fetal growth. Placental restriction can also be induced experimentally in rats by ligation of the uteroplacental blood vessels which impairs placental blood flow and leads to significant growth retardation of the offspring.

Data from the Dutch Hunger Winter study also demonstrates the effects of maternal under-nutrition on placental and thereby fetal growth (Lumey, 1998; Table 1). These effects depended on the stage of gestation when the famine occurred. For women in the first trimester of pregnancy during the famine, there was an increase in the size of the placenta at birth and the fetuses were born a normal size; the early growth of the placenta was stimulated by maternal under-nutrition and this was able to support normal fetal growth. In the second trimester, placental size was reduced at birth, but offspring birth weight was normal and overall placental efficiency was significantly improved (the ratio of fetal weight to placental weight, as grams of fetus produced for each gram of placenta). This indicates that the placenta increased its functional capacity and effectiveness in nutrient delivery to maintain fetal growth despite being of a smaller size. Finally, when women were exposed to the famine in the third trimester, birth weight was lower and this was related to a profound reduction in placental weight; although the placenta improved its efficiency, the offspring were born smaller than normal.

The placenta may also contribute to the control of growth in utero by the production and metabolism of hormones that have consequences for maternal and fetal physiology. Placental hormones influence maternal physiology and metabolism in a way that promotes nutrient delivery to the fetus. Placental lactogen induces a degree of insulin resistance in the mother such that less glucose

Fig. 6 Effect of reduction in placental size by carunclectomy on fetal growth in sheep. Both fetuses and their placentomes were measured at 127–128 days of gestation (term \sim 145 days): the upper fetus was taken from a ewe where uterine caruncles were removed before pregnancy, while the lower fetus was taken from a control ewe. Taken from Robinson, J.S., Owens, J.A. and Owens, P.C. (1994). Fetal growth and fetal growth retardation, In Thornburn, G.D. and Harding, R. (eds.) *Textbook of fetal physiology*, pp. 83–94, Oxford: Oxford University Press.

is taken up by maternal tissues and more is readily available for transfer to the fetus. In addition, the pregnancy steroid hormones, progesterone and estrogen, stimulate a range of maternal adaptations in cardiovascular, respiratory and metabolic systems, as well as regulating the contractile activity of the uterine muscles.

The placenta is also the site of metabolism of maternal hormones that can influence fetal growth and development. For instance, the transfer of maternal glucocorticoids to the fetus is limited by the placental enzyme 11β-hydroxysteroid dehydrogenase. This enzyme converts glucocorticoids to biologically-inactive metabolites and thereby protects the fetus from the growth-retarding effects of glucocorticoids from the mother. The placenta also acts as a partial barrier to the transfer of thyroid hormones; placental expression of the type III deiodinase enzyme metabolizes thyroid hormones to inactive forms and regulates circulating thyroid hormone levels in both the placental and fetal circulations.

Fetal Factors

Genetics of the fetus

The genetic makeup or genome of the offspring (which also contributes to the genome of the placenta) influences fetal growth and size at birth. In human populations with diverse backgrounds, there is variation in birth weights between different ethnic groups. For instance, a study in the USA examined the birth weights of infants born 2009–12 from 14 defined races (Morisaki et al., 2017). Compared to non-Hispanic white infants, Japanese babies were on average 289 g lighter and Samoan babies were 126 g heavier. Approximately 60% of the variation in birth weight between ethnic groups, however, was accounted for by differences in the incidence of prematurity, maternal height, body mass index, and gestational weight gain. After adjustment for maternal and socioeconomic factors, black infants were the smallest and American Indians were the largest at delivery.

Several of the genes that are important for placental and fetal growth are imprinted genes (genes that are preferentially expressed from either the maternal or paternal copy). Paternally-expressed genes, such as insulin-like growth factor-II (IGFII), promote feto-placental growth, whereas maternally-expressed genes, such as the IGF type 2 receptor, tend to restrict growth. The conflict theory proposes that the imprinted genes inherited from the father act to maximize growth and survival of the offspring, while those inherited from the mother limit growth of the fetus, in order to conserve resources for the mother and any future offspring. However, the maternal and fetal genomes also have to interact cooperatively during pregnancy to ensure delivery of a viable infant at term.

There are consequences of genetic defects in the fetus for its ability to grow normally. Genetic defects can affect overall body growth or growth of specific tissues to influence birth size. These defects may be due to single gene mutations such as osteogenesis imperfecta, a brittle bone disease where the individual cannot synthesize collagen normally which has consequences for development of the skeletomuscular system. Alternatively, the defect may involve whole chromosomes; for example, Down's syndrome is due to an extra chromosome 21 which reduces birth weight by 240–300 g, as well as leading to facial and other abnormalities in development. Growth defects can also arise from changes in the expression of single genes without any alterations in chromosome number or DNA sequence. For instance, over-expression of the *IGF2* gene on chromosome 11 due to changes in DNA methylation and imprinting status in Beckwith Wiedemann syndrome typically leads to overgrowth of specific organs and larger than normal birth weight.

The sex of the fetus influences the pattern of growth before birth and newborn weight: female fetuses are smaller than male fetuses at the same gestational age and at birth. Multiple offspring in a pregnancy are also smaller than singleton fetuses in human and other species. Growth of individual fetuses may be compromised by the number of fetuses in a pregnancy by competition for resources and uterine space for placental development.

Hormones of the fetus

There are a variety of hormones produced by the fetus that can influence its body growth and organ development, including insulin, IGFs, thyroid hormones, glucocorticoids, and leptin (Fowden and Forhead, 2009, 2013; Sferruzzi-Perri et al., 2013). Experimental and clinical studies have demonstrated that changes in the levels of these hormones in utero have consequences for the growth of the fetus and placenta (Table 2). In human infants at term, birth weight correlates positively with umbilical cord blood concentrations of insulin, IGFI, thyroxine, and leptin. Hormones act as signals of the intrauterine environment to both fetal and placental tissues, and serve to match the growth and development of the fetus with the levels of oxygen and nutrients available. They have actions on cell proliferation, growth, differentiation, metabolism, and function in a wide range of fetal tissues, and can influence placental growth and transport capacity.

Insulin promotes growth of the fetus, especially fat mass. In fetal tissues, it stimulates uptake of glucose and amino acids, and therefore glucose utilization and protein synthesis, which encourages further transplacental movement of glucose to the fetus down the maternal-fetal concentration gradient. Insulin is responsible for overgrowth of babies born to mothers with poorly controlled diabetes mellitus. The high circulating levels of glucose in the mother transfer to the fetus and stimulate the fetal pancreas to produce insulin. In turn, the high blood levels of insulin in the fetus stimulate overgrowth and fat deposition. Insulin-like growth factors, IGFI and IGFII, interact with insulin to promote growth of specific tissues such as liver, bones, and adipose tissue, while growth hormone has little effect on fetal body weight and is more important for postnatal growth.

Thyroid hormones are important regulators of fetal growth and the development of the skeletomuscular system, pancreas, brain, and skin. The actions of the thyroid hormones are mediated, in part, by changes in rates of oxygen consumption and oxidative metabolism, and therefore, the energy available for growth. Leptin may also have a role in the control of growth and development of specific fetal tissues, including the pancreas, brain and adipose tissue.

Glucocorticoids, such as cortisol, impair fetal growth in suboptimal intrauterine conditions, such as hypoxia and undernutrition. These hormones are key physiological signals to suppress general body growth and to divert energy resources to important organs during stressful situations. In addition, glucocorticoids induce a switch in cell processes from proliferation to differentiation in several fetal tissues, which contributes to the normal decline in fetal growth rate near term. Over this period, glucocorticoids promote maturation of a variety of fetal organs in preparation for birth.

Importance of Normal Fetal Growth

The control of fetal growth has important consequences for the short term and longer life-time health of the individual. Neonatal mortality and morbidity is closely related to birth weight, with higher rates associated with the extreme range of birth weight (Basso et al., 2006; Fig. 7). A study in the USA examined the rates of neonatal death, within 28 days of birth, in relation to birth weight in singleton infants born between 1995 and 2000. When all live births were considered, the overall neonatal mortality rate was 38 per 10,000 births with particularly high rates in the smallest, often preterm, infants. The mortality rate was reduced to 8 per 10,000 live births when data from term infants only were assessed, although the relationship between mortality rate and birth weight was maintained (Fig. 7). A number of confounding factors may contribute to the increased risk of death in smaller babies: for example, maternal smoking causes intrauterine growth restriction and increases neonatal mortality by 30% (Basso et al., 2006). Overgrown babies, often born to diabetic mothers, are also at greater risk of neonatal death, in part as a result of obstructed and prolonged labor, and postnatal complications caused by neonatal hypoglycemia and respiratory distress syndrome.

				Weight (% control)	
Hormone	Manipulation	Procedure	Species	Fetus	Placenta	Specific tissue effects
Insulin	Deficiency	Diabetogenic drug treatment Fetal pancreatectomy	Sheep, monkey Sheep	80–85 70	 100– 110	Bone Liver, spleen, brain
		Insulin gene deletion	Mouse	80	_	Pancreas
		Insulin receptor gene deletion	Mouse	90	100	Liver
		Pancreatic agenesis or insulin receptor defect	Human	50–80	_	
	Overexposure	Fetal insulin treatment	Sheep	100– 120	100	Fat
			Monkey	135	_	Fat
		Maternal diabetes	Human	130	_	Fat
IGFI	Deficiency	lgf1 gene deletion	Mouse	60	100	Bone, skeletal muscle
		lgf1 gene defect	Human	50	80	Brain, auditory system
		lgf1r gene deletion	Mouse	45	100	Bone, skin, respiratory muscles
		lgf1r gene defect	Human	50-80	_	Bone, brain
	Overexposure	Fetal IGFI treatment	Sheep	100	100	Liver, lungs, heart, kidney, adrenal gland
IGFII	Deficiency	lgf2 gene deletion	Mouse	60	55	Bone, skeletal muscles
	Overexposure	lgf2 gene expression	Mouse	136	125	Pancreas
		lgf2r gene deletion	Mouse	140	140	Liver, skeletal muscle
		Beckwith–Wiedemann syndrome	Human	150	_	Liver, skeletal muscle
Glucocorticoids	Deficiency	Fetal adrenalectomy	Sheep	115	100	Liver, lungs, gut
	Overexposure	Maternal glucocorticoid treatment	Sheep, monkey, mouse	80–90	65–93	Brain, liver, lungs, heart
			Guinea-pig	84	_	Brain, liver
			Human	85	—	Lungs, gut
		Fetal glucocorticoid treatment	Sheep	80– 100	100	Liver, lungs, gut
		Inhibition of placental 11β-HSD2	Rat	88	_	
		11β-HSD2 gene deletion	Mouse	84	90	
Thyroid hormones	Deficiency	Deletion of thyroid hormone receptor	Mouse	90	—	
		Fetal thyroidectomy	Sheep	70–80	100	Bone, skeletal muscle, liver, kidneys, heart, fat, pancreas, brain,
	0		Ohaan	100		nervous system
1 1	Overexposure	retal thyroxine treatment	Sneep	100	—	Liver, neart
Leptin	Deficiency	Leptin gene deletion	IVIOUSE	100	100	Brain
	0	Leptin receptor deletion	IVIOUSE Chaon	100	100	liver fot advand stand
	overexposure	retai leptin treatment	Slieep	100	100	Liver, iat, adrenai giand

Table 2
 Effects of manipulation of hormones on fetal and placental growth

Adapted from Fowden, A.L. and Forhead, A.J. (2009). Endocrine regulation of feto-placental growth. *Hormone Research* **72**, 257–265, and Sferruzzi-Perri, A.N., Vaughan, O.R., Forhead, A.J. and Fowden, A.L. (2013). Hormonal and nutritional drivers of intrauterine growth. *Current Opinion in Clinical Nutrition and Metabolic Care* **16**, 298–309.

Size at birth is also an important determinant of health in later life. The epidemiologist, Professor David Barker, and his colleagues at the University of Southampton examined the medical records of around 16,000 men and women born in Hertfordshire, UK between 1911 and 1930. Midwives at the time recorded birth weights and body proportions, and the mortality and morbidity statistics of these individuals were traced 50–70 years later. These studies identified an inverse relationship between birth weight and the incidence of death from cardiovascular disease (Barker, 1997; Fig. 8). For both sexes, the standardized mortality ratio for cardiovascular disease, which included coronary heart disease and stroke, was greatest in the individuals who were smallest at birth. This association between birth weight and adult mortality was continuous across the normal range of birth weights and was also independent of other known risk factors for cardiovascular disease; multiple, premature or severely growth-retarded babies were not included in the data analysis. Other risk factors such as smoking, alcohol intake, adult obesity, and social class were, however, additive to the effects of birth weight.

Fig. 7 Relationship between birth weight and neonatal mortality in singleton live births, United States, 1995–2000. All births (*dotted line*) and births at 40 weeks of gestation (*solid line*) by last menstrual period. Redrawn from Basso, O., Wilcox, A.J. and Weinberg, C.R. (2006). Birth weight and mortality: Causality or confounding? *American Journal of Epidemiology* **164**, 303–311.

Fig. 8 Relationship between birth weight and risk of death from cardiovascular disease in men and women aged < 65 years. Redrawn from Barker, D.J. (1997). *Mothers, babies and disease in later life*. London: BMJ Publishing Group.

A number of conditions that predispose to cardiovascular disease have also been associated with low birth weight. Individuals that were small at birth have a higher incidence of hypertension, hyperlipidemia, glucose intolerance, and insulin resistance in adulthood. Further epidemiological studies have demonstrated that the relationship is reverse-J-shaped where large babies born to diabetic mothers are also at greater risk of cardiovascular disease and type II diabetes. Therefore, the intrauterine environment has an important role in programming adult pathophysiology, a phenomenon known as the developmental origins of adult disease (Gluckman and Hanson, 2006). Research is on-going to understand the mechanisms by which a suboptimal intrauterine environment, associated with abnormal patterns of fetal growth, leads to long-term consequences for adult health.

References

Barker, D. J. (1997). *Mothers, babies and disease in later life*. London: BMJ Publishing Group. Basso, O., Wilcox, A. J., & Weinberg, C. R. (2006). Birth weight and mortality: Causality or confounding? *American Journal of Epidemiology, 164*, 303–311. Brooks, A. A., Johnson, M. R., Steer, P. J., Pawson, M. E., & Abdalla, H. I. (1995). Birth weight: Nature or nurture? *Early Human Development, 42*, 29–35. Fowden, A. L., & Forhead, A. J. (2009). Endocrine regulation of feto-placental growth. *Hormone Research, 72*, 257–265.

- Fowden, A. L., & Forhead, A. J. (2013). Endocrine interactions in the control of fetal growth. In J. Bhatia, Z. A. Bhutta, & S. C. Kalham (Eds.), Nestle nutrition institute workshop series: 74 vols. Maternal and child nutrition: The first 1,000 days (pp. 93–104). Basel: Karger AG.
- Gluckman, P., & Hanson, M. (2006). Developmental origins of health and disease. Cambridge: Cambridge University Press.
- Kiserud, T., Piaggio, G., Carroli, G., Widmer, M., Carvalho, J., Neerup Jensen, L., Giordano, D., Cecatti, J. G., Abdel Aleem, H., Talegawkar, S. A., Benachi, A., Diemert, A., Tshefu Kitoto, A., Thinkhamrop, J., Lumbiganon, P., Tabor, A., Kriplani, A., Gonzalez Perez, R., Hecher, K., Hanson, M. A., Gülmezoglu, A. M., & Platt, L. D. (2017). Correction: The World Health Organization fetal growth charts: A multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. *PLoS Medicine, 14*(3), e1002284.
- Kramer, M. S. (1987). Determinants of low birth weight: Methodological assessment and meta-analysis. Bulletin of the World Health Organisation, 65, 663-737.
- Lumey, L. H. (1998). Compensatory placental growth after restricted maternal nutrition in early pregnancy. Placenta, 19, 105-111.
- Mellor, D. J., & Matheson, I. C. (1979). Daily changes in the curved crown rump length of individual sheep foetuses during the last 60 days of pregnancy and the effects of different levels of maternal nutrition. *Quarterly Journal of Experimental Physiology*, 64, 119–131.
- Mellor, D. J., & Murray, L. (1982). Effects of rate of increase in fetal girth of refeeding ewes after short periods of severe undernutrition during late gestation. *Research in Veterinary Science*, 32, 377–382.
- Moore, L. G. (2003). Fetal growth restriction and maternal oxygen transport during high altitude pregnancy. High Altitude Medicine and Biology, 4, 141-156.
- Morisaki, N., Kawachi, I., Oken, E., & Fujiwara, T. (2017). Social and anthropometric factors explaining racial/ethnical differences in birth weight in the United States. Scientific Reports, 7, 46657.
- Pomeroy, E., Wells, J. C., Cole, T. J., O'Callaghan, M., & Stock, J. T. (2015). Relationships of maternal and paternal anthropometry with neonatal body size, proportions and adiposity in an Australian cohort. American Journal of Physical Anthropology, 156, 625–636.
- Restrepo-Méndez, M. C., Lawlor, D. A., Horta, B. L., Matijasevich, A., Santos, I. S., Menezes, A. M., Barros, F. C., & Victora, C. G. (2015). The association of maternal age with birthweight and gestational age: A cross-cohort comparison. *Paediatric and Perinatal Epidemiology, 29*, 31–40.
- Robinson, J. S., Owens, J. A., & Owens, P. C. (1994). Fetal growth and fetal growth retardation. In G. D. Thornburn, & R. Harding (Eds.), *Textbook of fetal physiology* (pp. 83–94). Oxford: Oxford University Press.
- Sferruzzi-Perri, A. N., Vaughan, O. R., Forhead, A. J., & Fowden, A. L. (2013). Hormonal and nutritional drivers of intrauterine growth. Current Opinion in Clinical Nutrition and Metabolic Care, 16, 298–309.
- Smith, C. A. (1947). The effect of wartime starvation in Holland upon pregnancy and its product. American Journal of Obstetrics and Gynecology, 53, 599-608.
- Walton, A., & Hammond, J. (1938). The maternal effects on growth and conformation in Shire horse-Shetland pony crosses. *Proceedings of the Royal Society of London B, 125,* 311–335.

		"Syste	ms Biology of Reproduction"
Spring	2024 (Even Yo	ears) - Course Syl	labus
Biol 47	5/575 Undergr	aduate/Graduate	(3 Credit)
SLN: (475) - 06763, (575) - 06764	
Time -	Tuesday and	Thursday 10:35 an	n-11:50 am
Course on WS	Lectures in po U Zoom for all	erson and recorde campuses (Hybri	d on Canvas/Panopto and Discussion Sessions live in person and d Course)
Room -	- CUE 418		
Course	Director - Mi	chael Skinner, Ab	elson Hall 507, 335-1524, skinner@wsu.edu
Co-Ins	tructor - Eric	Nilsson, Abelson I	Hall 507, 225-1835, nilsson@wsu.edu
Learni	ng Objective -		
Current	literature base	d course on the Sys	tems Biology of Reproduction. Learning Systems approaches to the
hiology	of reproductio	n from a molecular	to physiological level of understanding
Schody	lo/Lecture Ou	tline	to physiological level of understanding.
January	9.8.11	Week 1	Systems Biology Introduction
Summen		TT COR A	Systems Diology indoduction
	16 & 18	Week 2	Molecular/ Cellular/ Reproduction Systems
	16 & 18	Week 3	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems
Jan /Fe	16 & 18 23 & 25 b 30 & 1	Week 2 Week 3	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function
Jan /Fe	16 & 18 23 & 25 b 30 & 1 ry 6 & 8	Week 2 Week 3 Week 4 Week 5	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function
Jan /Fe Februa	16 & 18 23 & 25 b 30 & 1 ty 6 & 8 13 & 15	Week 2 Week 3 Week 4 Week 5 Week 6	Molecular/ Cellinar/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonada Developmental Systems Biology
Jan /Fe Februa	16 & 18 23 & 25 b 30 & 1 ry 6 & 8 13 & 15 20 & 22	Week 2 Week 3 Week 4 Week 5 Week 6 Week 7	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology
Jan /Fe Februa	16 & 18 23 & 25 b 30 & 1 ry 6 & 8 13 & 15 20 & 22 27 & 29	Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology
Jan /Fe Februar March	16 & 18 23 & 25 b 30 & 1 ry 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7	Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Dract Search Statement Statement Statement Engenetics and Transgenerational Gonadal Disease
Jan /Fe Februar March	16 & 18 23 & 25 b 30 & 1 y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15	Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break
Jan /Fe Februar March	16 & 18 23 & 25 b 30 & 1 ty 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21	Week 2 Week 3 Week 4 Week 5 Week 6 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Testis Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning
Jan /Fe Februar March	16 & 18 23 & 25 b 30 & 1 y 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28	Week 2 Week 3 Week 4 Week 5 Week 5 Week 6 Week 7 Week 8 Week 10 Week 10 Week 11 Week 12	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Ovary Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalamus-Pituitary Development & Function
Jan /Fe Februar March April	16 & 18 23 & 25 b 30 & 1 ry 6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28 2 & 4	Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Ovary Systems Biology Dvary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems
Jan /Fe Februar March April	16 & 18 23 & 25 b 30 & 1 y6 & 8 13 & 15 20 & 22 27 & 29 5 & 7 11 - 15 19 & 21 26 & 28 2 & 4 9 & 11	Week 2 Week 3 Week 4 Week 5 Week 6 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 13 Week 14	Molecular/ Cellinar/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Ovary Systems Biology Ovary Systems Biology Ovary Systems Biology Ovary Systems Context Systems Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalanus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems
Jan /Fe Februa March April	$\begin{array}{c} 16 \& 18 \\ 23 \& 25 \\ b 30 \& 1 \\ ry 6 \& 8 \\ 13 \& 15 \\ 20 \& 22 \\ 27 \& 29 \\ \hline 5 \& 7 \\ 11 - 15 \\ 19 \& 21 \\ 26 \& 28 \\ \hline 2 \& 4 \\ 9 \& 11 \\ 16 \& 18 \\ \end{array}$	Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 7 Week 8 Week 10 Week 11 Week 12 Week 13	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Ovary Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalamus-Pinuitary Development & Function Reproductive Endocrinology Systems Fetal Development & Function & Implantation Systems
Jan /Fe Februa March April	$\begin{array}{c} 16 \& 18 \\ 23 \& 25 \\ b 30 \& 1 \\ y 6 \& 8 \\ 13 \& 15 \\ 20 \& 22 \\ 27 \& 29 \\ 5 \& 7 \\ 11 - 15 \\ 19 \& 21 \\ 26 \& 28 \\ 2 \& 4 \\ 9 \& 11 \\ 16 \& 18 \\ 23 \& 25 \\ \end{array}$	Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15	Molecular/ Cellular/ Reproduction Systems Sex Determination Systems Male Reproductive Tract Development & Function Female Reproductive Tract Development & Function Gonadal Developmental Systems Biology Ovary Systems Biology Ovary Systems Biology Epigenetics and Transgenerational Gonadal Disease Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems Fertal Development & Birth Systems Assisted Reproduction/Contraception

Spring 2024 – Systems Biology of Reproduction Discussion Outline – Fetal Development & Birth Systems Michael K. Skinner – Biol 475/575 CUE 418, 10:35-11:50 am, Tuesday & Thursday April 18, 2024 Week 15

Fetal Development & Birth Systems

Primary Papers:

- Glotov, et al. (2015) BMC Systems Biology 9(Suppl 2):S4
 Pique-Regi, et al. (2019) eLife 8:e52004
 Winchester, et al. (2022) Scientific Reports 12:3361

Discussion

Student 4: Reference 1 above

- · What major diseases are compared with preeclampsia and why?
- · What networks were identified and impact?
- What risk factors were identified?

Student 5: Reference 2 above

- What technical approach was used and types of correlations?
- · What transcriptome and cellular correlations were made? · What major insights were provided for preterm birth?

Student 6: Reference 3 above

- What technical approach was used for the study?What observations were made for mother, father, child?
- What potential impact to reduce preterm birth?

Maternal-Fetal Interface **During Gestation**

Figure 1 Early pregnancy events in sheep. This schematic summarizes the relative changes in embryo'blastocyst development after fertilization in relation to position in the female reproductive tract and circulating levels of ovarian steroid hommones. Fertilization occurs in the oviduct, and the norula tage embryo enters the tennes on day 4. The blastocyst is formed by day 6 and hatches from the zona pellucida on days 8–9. The blastocyst develops from a spherical to a tubular form by day 11 and then elongates to a filamentous conceptus between days 12 and 16. The elongation of the blastocyst marks the beginning of implantation, which involves apposition and transient attachment (days 12–15) and firm adhesion by day 16.

	Fig. 11-4. Diagram of the fetal a 105-day fetal call to show the allance resotties. The oxyledow are distribute risallantoic membrane and the amnie	rembranes of a is and annustric d over the cho- shorieo.
TABLE 11-3.	Fig. 11-4. Diagram of the field of 105-day feat call or show the alluato reactines. The cotyledoms are distribute risaliantoic membrane and the same The Fetal Membranes of Farm An	embranes of a is and annotic d over the cho- chorizo.
TABLE 11-3. Membrane	Fig. 11-4. Diagram of the fuel at 105-day feel acid to show the allasto availies. The oxyledous are distribute risullantoic membrane and the annio The Fetal Membranes of Farm An Organ	embranes of a second se
TABLE 11-3. Membrane Yolk sic	Fig. 11-4. Diagram of the fetal at 105-sdy fetal calf to show the allasto availies. The oxyledous are distribute risullantoic membrane and the annuo The Fetal Membranes of Farm An Orgin Early embedrenal layer	embranes of a is and annote d over the cho- chorion. imals Functions
TABLE 11–3. Membrane Talk sac Amnion	Pic. 11-4. Diagram of the fold and 105-day fedda calf to show the allautor availate. The ootlyledous are distributor risullantoic membranes and the annulo The Fetal Membranes of Farm An Orgin Early embedremal layer Carottaino hum, none cell mass	innals innals Vertigual Enrinese forus on a finish filled caray
TABLE 11-3. Membrase Yolk sac Amision Allanton	Fig. 11-4. Diagram of the fold of 105-day fedd calf to show the allasto cavities. The ootyledous are distribute risullantoic membrane and the annue The Fetal Membranes of Farm An Organ Early entodermal layer Cavitation from inter cell mass Diverticologie of bindget	imable end annote d over the cho- chorino. Functions Vestigual Eurlows force on a fund-filled casety Rided search consert fetal with placental consult
TABLE 11–3. Membrane Yolk sac Amison Allanters	Fig. 11-4. Diagram of the fold of 105-day feel call to show the allasto cavities. The ootyledons are distribute risullantoic membranes and the annuite The Fetal Membranes of Farm An Orgin Early entodermal layer Cavitation from inner cell mass Diverticoloru of himlgat	imable end annote d over the cho- chorizon Functions Vestigal Eurlows force a fluid-filled casety Birds vested remover fetal with placental consider Puese with detrime to form the chorocallastone pla- cent
TABLE 11-3. Membrane Yolk se Amison Allantas	Pic. 11–4. Diagram of the fold of 105-day feel carlo to how the allauto avature. The ootyledous are distribute risullantoic membrane and the annue The Fetal Membranes of Farm An Orgin Early embedrinal layer Cavitation hom inner cell mass Droetteedous of hindgel Tmphrhdarte, capade of hindsevet	imulti in ordination of a second seco
TABLE 11-3. Membrane Yolk sac Amison Alkantas Chornon	Pic. 11–4. Diagram of the fold of 105-day feel calf to show the allauto avature. The ootyledows are distribute risullantoic membrane and the annue The Fetal Membranes of Farm An Orgin Early embedremal layer Cavation hom inner evel mass Droetteedown of hindged Trupheldarts: capsule of hinteevel	imulti- is and animatic of over the cho- schotton. Finations Vestigual Eurlines terror or a finid-filled castly Bird security forming to finite data and Pares with detorim to finite the discretization (conta Encloses enderso and other text al monitraines Informatic) areas inted with linear of stress to form photons.

<text><text><text><text>

Animal	Average (Bange)
Cattle (dary breeds) Avishire Brown Swiss Dary, Shorthorn Friesian Guernsey Holstein-Friesian Jersey Swedish-Friesian Zehn (Brahman)	278 260 (270-306) 282 276 (240-303) 284 279 (262-309) 279 (270-285) 282 (260-300) 292 (271-310)
Cattle (beef breeds) Aberdeen-Angus Hereford Beef Shorthorn	279 285 (243–316) 283 (273–294)
Sheep,	148 (140-159)
Swine Domestic Wild Pig	$^{114} \substack{(102-128)\\(124-140)}$
Arabian Belgaan Clydesdale Morgan Percheron Shire Thorosughbred	337 (301-371) 335 (304-354) 334 344 (316-365) (321-345) 340 338 (301-349)

(A)	1	(B)			0	Con March
	Anter Tec	(D)	An Ale	The State of the S	E)	
(F)	CM excepter immed		Recented Liggenfing	(G)	(total	(WOM
Lami-Date		PaNil		ECM-mapper inte	ation in the local division in the local div	
Lana L (Nga?+Ngh1)-		7445-7645-		PDK-Ait signaling p		
Lams 2-Olys 2-Right (-		Pitale Pitalia		Regulation of actin cylind	alation and a second second	1 124
Lamid-Degi-		MANU		Real simulation or		1 10
Lands2-(Rgs7+Rgb1)-			-			1.0
Laut Dagt-		Full-Fulle2		Ker spanning p		10
Limbs-(hgs7-bgh1)-	Ψ.	Augulacian	*	MAPK signiling p	day.	2
Lamet Degl-		2	of the se	Plangtheligneer D suggesting pr	ant -	
Lamat-(Tga7-Ogb1)-			*	Cytokine cytokine magner into		
Laund Dail-			100		á i ú	
Lama) (Jga1+0gb()-			1		Hepartes)	
			1			
Lamit Deg1-						

Endocrinology of Pregnancy

Presenting signs with ectopic pregnancy and percentage occurrence of history	
Abdominal pain	97%
Vaginal bleeding	79%
Abdominal tenderness	91%
Adnexal tenderness	54%
History of infertility	15%
Use of an intrauterine contraceptive device	14%
Previous ectopic pregnancy	11%

	Jan January Parameter	- Los dull 1000
box 1. Propo	sed mechanisms for preventing pregnan	Ky 1088 (1111, 1770)
Cytokines/growth fac	tors/hormones	
Absence of classical M	HC class I and class II molecules	
Expression of complet	nent regulatory proteins on trophoblast	
Fas ligand/Fas recept	or system	
Systemic immunosup	pression	

	Table I. Alternative CD4" 7-by	mphotyse phenotypes	and their distinguish	ing disvactoristics	
	Thi	Th2	Th2	Tri	NEL = T
inducing synokines	IL-12. IPN,	R4, R10	11-4, 11-10	01-10	
Inducing factors	deDNA, deRNA, LP5	TGPS, PCE	TGPS		
Elioiting APC	type I DC	type 2 DC	DC	DC	DC/solthelial cel
Eliciting MHC	MHC data II	MDHC clars II	MHC class II	MOHE class II	COL
Major cytokine awarend	IPNy, R2	10-4, 10-5	TGPR	R. 10. TCFR	1.4
Regulatory phenotype			100.0	4 10.00	
Help	Call-mediated IR	lgG1/lgE	TRA		heC1/hrE
Suppress	Th2	Thi	Th1/Th2	Th1/Th2	Th1
Antigen specificity		101			
Activation	Yes	Tes	Yes	Yes	No
Function	Tes	Yes	No	TH0	No
Destandar surjuentation	No	No	Yes	Yes	765

Table 1. Characteristics of different imp	nt human leukocyte antigens in human lantation
HLA-C, HLA-G, HLA-E	HLA-A, HLA-B
Low surface expression	High surface expression
ew alleles	Many afleles
Polymorphism not concentrated at antigen-binding site	Polymorphism concentrated at antigen-binding site
T cells reactive to HLA-C are occasionally observed but T cells reactive to HLA-G or HLA-E are not observed	Reactive T cells readily observed
ILA: human leukocyte anligen.	
At future analytic analytic	

Cytokine	Imphoblast	Ci I II
Ulala	+ (syncytiotrophobles)	Stromal cell
11-18	+ tsyncynonophonasi	1.1
11 -2	0	
11-3		
1-4	(syncytintroubabled containanthablant)	
T-5	((syne) double (cytotrophonau)	· · · ·
11-6	(superintrophablest	-
11.7	a lay ney notrophobilist	
8.11	I (syncyriotrophoblast	
II-10	t (syncylintrophoblast contatrankablast)	
GCSE	(Whey the top hobiast cover to the hobiast)	
GM-CSF	(syncytonophobiast-cytotrophobiast)	*
M-CSF	1 (syncytiotrophoblast costotrophoblast)	-
IF	t (syncyliotrophoblast celton opilobilist)	
INEN	+	G. I.
TGFR	1 /www.stintmonhoblast	1
SCF	t (cytotrophoblast only)	1
HGF	- (cytotrophobulat only)	201
VEGE	+ (syncytiotmphoblast cost otrophoblast) 1st trimester colo	
EGF	+ (syncytiotraphoblast	200
TGFa	+ (syncytiotrophoblast < cytotrophoblast)	
ENV	- (aying manaparonalis - cyron opnoonal)	3

Disrupted Gene	Pregnancy Discourse
Cell surface molecules MHC class ((12µ) MHC class (112µ) CDA (21 white blood cells) CDA (21 white blood cells) CDA (21 white blood cells) TCB+7, -3 CD56 (NK cells) (gK chain (gK chain) (gK chain)	Normai Normai Normai Normai Normai Roduced tetai size and weigin Normai Normai
Cytokine/growth factors IL-1 IL-2 IL-4 IL-4 IL-4 IL-4 IL-4 IL-4 IL-4 IL-4	Normal Normal Normal Normal Normal Normal Failed implantation, but normal with beterotygous makes Normal Failed implantation, but normal with beterotygous makes Normal

Ashley Moffett-King

The fetus is considered to be an allograft that, paradoxically, survives pregnency despite the taws of classical transplantation immunology. There is no direct contact of the mother with the embryo, only with the extraembryonic placenta as it implants in the uterus. No convincing evidence of uterine maternal T-cell recognition of placental trophoblast cells has been found, but instead, there might be maternal allorecognition mediated by uterine natural killer cells that recognize unusual fetal trophoblast MHC ligands.

Summ	TABLE 1 ary of Current Concepts	s of Preeclampsia
Concept		Basis of theory
Placental ischemia	Hypoma/reperfusion in	the placents initiates local exidative processes and leads
Hyperellyslipidemia	High serum lipid (VLD	has consequently rause endothelial damage. L) levels with insufficient antioxidant activity may lead to
Immune maladaptation	Immune processes at th	nd consequently to endotherial damage. Se placenta due to insufficient immune tolerance of the
	endothelial damage.	name processes, resulate of cytosimus, and consequently
Genetic imprinting	The development of pro dominant come with	seclampain may be based on a single recessive gene or a incomplete menetrance.
Mitechoodrial defects	Invision of cytotrophot consuming process. 7	dasts into the maternial endometrium is a highly energy- his process may be incomplete in case of a mitochondrial
Disturbance of the invasion of piecental extravillous cytotrophoblasts	Histological observation maternal endometriu	as confirmed incomplete invasion of cytotrophoblasts to the m. This failure may be secondary to any predisposing
	Esclar.	
Summary of	TABLE 2 Factors Possibly Predi	institut to Procelamoria
Summary of Fectors independent from prostics and unles	TABLE 2 Factors Possibly Predia	iposing to Preeclampsia Por seconomical coefficient
Summary of Peters independent from genetics and node	TABLE 2 TABLE 2 Factors Possibly Predia	sposing to Procedampsia Poor successroominal contistes Primparty Yong age of the motions Maternal rises
Summary of Festors independent from genetics and naio Factors shich may have noisedar relational by juliaritance.	TABLE 2 TABLE 2 Pactors Possibly Predia cular mechanisms	posing to Precelampsia Por scoceonamical conditions Pringenty Young ass of the nodure Material stress Low locity optic personata(ty) of the mother Low locity optic personata Database notifines Chiefung theoremailties

Table 1. Vasoactive substances that have been implicated to play a role in PE, along with their vasoactive effect.
he reported concentrations (conc.) in preeclamptic patients as compared to normal pregnancy (Conc.]=
noreased, 1-decreased,no difference, M-metabolites measured) in samples from different sampling sites and
are rerevally rereactions

Substance	Vasoactive Effect	Sample site	Conc.	References
PGI	Vasodilatation	Peripheral blood/urine M	- 41	[85-87]
		Placental production M	1	[89,90]
TxA:	Vasoconstriction	Urine M	1	[85]
		Placental production M		[89,90]
NO	Vasodilatation	Peripheral blood/urine M	1	[96-98]
		Contraction of Station of Contraction	1	[92]
			=	[93-95]
EDHF	Vasodilatation		2	1
Endothelin	Vasoconstriction	Peripheral blood/uterine vein	1	[109-113]
VEGF	Vasoconstriction	Peripheral blood	1	[122-125]
		SV. Carlos Carlos	1	[126,127]
ANP	Vasodilatation	Peripheral blood	1	[117.145]
Renin,				Y
Aldosterone, ATTI	Vasoconstriction	Peripheral blood	1	11341
Catecholinmines	Vasoconstriction	Peripheral blood/urine M	1/1	11411

Analysis of the role of HLA-G in preeclampsia

Margaret O'Brien, a, Jean Daussetb, Edgardo D. Carosellaa and Philippe Moreaua

Abstract

Preeclampsia (PE) is a multisystem disorder of human pregnancy, occuring in 5%–10% of all population births and represents the leading cause of both fetal and maternal morbidity and mortality in pregnancy. Although the disorder only becomes clinically apparent late in pregnancy, the underlying pathology indicates that invasion of fetal trophoblasts into maternal spiral arteries during early pregnancy. Is shallow or absent in PE. A large number of epidemiologic studies have been carried out and they demonstrate that the disorder is highly heritable and occurs with a high incidence in all populations. Studies have shown that PE is largely under genetic control, but the mode of its inheritance remains unclear. Genetic studies have been carried out using both large scale linkage analysis and candidate gene approaches; however, the genetic mechanisms underlying the disorder have yet to be determined. We focuss on the potential role of HLA-G, a nonclassical class I HLA located on chromosome 6, which appears to be a key component in trophoblast invasion. We examine the hypothesis that HLA-G may have a key role in both genetic susceptibility to, and pathogenesis of, PE.

Schematic of the cellular topology of the protein-protein interaction network. Shown are protein-protein interaction networks from I2D version 1.71, seeded with proteins that give a placental labyrinth or placental vascular phenotype when knocked out (rectangle or triangle). Proteins are colored to show cell-type expression. Node shapes indicate the placental phenotype (rectangle or triangle) or if no placental phenotype is known (oval or hexagon). Enrichment of proteins involved in extracellular matrix (vellow circle) and focal adhesion complex (blue circle) were observed (P<0.01). Other groupings are for clarity only. Eps15 and Cd82 (hexagons) are both novel members with no available knockout models. Visualization was done using NAVGGITOR version 2.15.

Trophoblast-microbiome interaction: a new paradigm on immune regulation. Mor G, Kwon JY. Am J Obstet Gynecol. 2015 Oct;213(4 Suppl):S131-7.

Table	Table III. Gene ontology analysis.		
	Genes in significan list (91 genes	Genes) on array	p value*
Biological process of	ategory		
Cell adhesion	12	396	< 0.0001
Regulation of anato structure	mical 6	71	<0.0001
Regulation of locom	otice 5	67	0.005
MulticeBular organi development	smal 25	1891	0.005
Cell motility	6	136	0.008
Phosphate transport	5	82	0.009
Localization	24	1777	0.01
Regulation of cellul component organization and biogenesis	ur 7	207	0.01
Regulation of body fluid levels	5	110	0.02
Skin development	2	7	0.03
Blood congulation	4	69	0.03
Molecular function	category		
Extracellular matrix structural constitu	10 sent	89	2.11×10 **
Protein binding	57	6680	0.0057
Structural molecule activity	13	648	0.0063
Integris binding	4	45	0.0063
Glycosaminoglycan hinding	5	100	0.0127
Polysaccharide bind	ing 5	103	0.0127
Pattern binding	5	114	0.0173
Henarin binding.	4	78	0.0304
Actin filament bind	ing 3	37	0.0304
Actin binding	7	264	0.0304
Cytoskeletal protein binding	8	403	0.0495

The transcriptome of cervical ripening in human pregnancy before the onset of labor at term:

Overview of the SNPs tested in the FSHR gene region. The gene structure for FSHR is represented by an arrow in which black rectangles designate 3' and 5' untranslated regions and dark grey rectangles designate coding exons. Diamonds represent SNPs on the Affymetrix SNP 6.0 array examined in the Finnish cohort. Triangles represent SNPs tested in the replication cohorts. A star indicates rs12473815, and the LD block that includes rs11686474 and rs11680730, which is significant after multiple testing correction in African Americans (p≤0.005). Circles represent conserved elements examined in the region.

Contractile function of the cervix plays a role in normal and pathological pregnancy and parturition Tantengco OAG, Menon R. Med Hypotheses. 2020 Dec;145:110336.

Chloroorganic (DDT) and organophosphate (malathion) insecticides impair the motor function of the bovine cervix. Wrobel MH, Mlynarczuk J. Toxicol Appl Pharmacol. 2021 Sep 15;427:115667. Ctrl DDT (0.1 ng/ml) nalathio Ctr (10 ng/ml) 15-50 100 50 100 Numbers of mea Numbers of measurements (measured every 2 s) (measured every 2 s) 50 50 40 40 30 30 bc 20 20 Ctrl 0.1 1 10 Ctrl 0.1 - i 10 DDT malathion

Microbial exposure during early human development primes fetal immune cells. Mishra A, Lai GC, Yao LJ, et al. Cell. 2021 Jun 24;184(13):3394-3409.e20.

Highlights

- Human fetuses in 2nd trimester show T cell diversity with effector-memory phenotype
- Fetal organs show diverse bacterial genera that can be cultured

Human fetal organs in threads are visualized in 14-2nd trimester mory T cell activation in fetal In brief Analysis of human fetal tissues and the placenta in the 2 nd trimester of ation of fetal sut bacteria gestation identifies live *-bacterial strains that are * 5-Increasing microbial diversity M able to induce the In vitro memory T cell activation

environment, infectious disease, and pharmacologics. (B) All of the outputs of a pediatric single-cell allas are interrelated to provide a holistic outlook on how cells and tissues interact, differentiate, and function with each other in times of normal versus disease states.

		"Syste	ms Biology of Reproduction"
Spring	2024 (Even Ye	ears) - Course Syl	labus
Biol 47	5/575 Undergr	aduate/Graduate	(3 Credit)
SLN: (4	475) - 06763, (575) - 06764	
Time -	Tuesday and 1	Thursday 10:35 an	n-11:50 am
Course	Lectures in p	erson and recorde	d on Canvas/Panopto and Discussion Sessions live in person an
on WS	U Zoom for all	campuses (Hybri	d Course)
Room -	- CUE 418		and the second second second second
Course	Director - Mi	chael Skinner, Ab	elson Hall 507, 335-1524, skinner@wsu.edu
Co-Inst	ructor - Eric	Nilsson, Abelson I	Hall 507, 225-1835, nilsson@wsu.edu
Learni	ng Objective -		the second s
Current	literature base	d course on the Sys	tems Biology of Reproduction. Learning Systems approaches to the
biology	of reproductio	n from a molecular	to physiological level of understanding.
Schedu	le/Lecture Ou	tline –	
January	9 & 11	Week 1	Systems Biology Introduction
	16 & 18	Week 2	Molecular/ Cellular/ Reproduction Systems
1.1	23 & 25	Week 3	Sex Determination Systems
Jan /Fel	0 30 & 1	Week 4	Male Reproductive Tract Development & Function
Februar	y 6 & 8	Week 5	Female Reproductive Tract Development & Function
	13 & 15	Week 6	Gonadal Developmental Systems Biology
	20 & 22	Week 7	Testis Systems Biology
	27 & 29	Week 8	Ovary Systems Biology
	5&7	Week 9	Epigenetics and Transgenerational Gonadal Disease
March			
March	11 - 15	Week 10	Spring Break
March	11 - 15 19 & 21	Week 10 Week 11	Spring Break Gametogenesis/ Stem Cells/ Cloning
March	11 - 15 19 & 21 26 & 28	Week 10 Week 11 Week 12	Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalamus-Pituitary Development & Function
March	11 - 15 19 & 21 26 & 28 2 & 4	Week 10 Week 11 Week 12 Week 13	Spring Break Gametogenesis/Stem Cells/Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems
March April	11 - 15 19 & 21 26 & 28 2 & 4 9 & 11	Week 10 Week 11 Week 12 Week 13 Week 14	Spring Break Gametogenesis/ Stem Cells/ Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems
March April	11 - 15 19 & 21 26 & 28 2 & 4 9 & 11 16 & 18	Week 10 Week 11 Week 12 Week 13 Week 14 Week 15	Spring Break Gametogenesis/Stem Cells/ Cloning Hypothalanus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems Fetal Development & Birth Systems
March April	11 - 15 19 & 21 26 & 28 2 & 4 9 & 11 16 & 18 23 & 25	Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16	Spring Break Gametogenesis/Stem Cells/Cloning Hypothalamus-Pituitary Development & Function Reproductive Endocrinology Systems Fertilization & Implantation Systems Fetal Development & Birth Systems Assisted Reproduction/Contraception